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Background: Growing evidence suggests that infiltrating neutrophils are key

players in hepatocellular carcinoma (HCC) tumor progression. However, a

comprehensive analysis of the biological roles of neutrophil infiltration and

related genes in clinical outcomes and immunotherapy is lacking.

Methods: HCC samples were obtained from the TCGA and GEO databases. The

CIBERSORT algorithm was used to reveal the TIME landscape. Gene modules

significantly associated with neutrophils were found using weighted gene co-

expression network analysis (WGCNA), a “dynamic tree-cut” algorithm, and Pearson

correlation analysis. Geneswere screened usingCox regression analysis and LASSO

and prognostic value validation was performed using Kaplan-Meier curves and

receiver operating characteristic (ROC) curves. Risk scores (RS) were calculated and

nomograms were constructed incorporating clinical variables. Gene set variation

analysis (GSVA) was used to calculate signaling pathway activity.

Immunophenoscore (IPS) was used to analyze differences in immunotherapy

among samples with different risk scores. Finally, the relationship between RS

and drug sensitivity was explored using the pRRophetic algorithm.

Results: 10530 genes in 424 samples (50 normal samples, 374 tumor samples)

were obtained from the TCGA database. Using WGCNA, the “MEbrown” gene

module was most associated with neutrophils. Nine genes with prognostic

value in HCC (PDLIM3, KLF2, ROR2, PGF, EFNB1, PDZD4, PLN, PCDH17, DOK5)

were finally screened. Prognostic nomograms based on RS, gender, tumor

grade, clinical stage, T, N, and M stages were constructed. The nomogram

performed well after calibration curve validation. There is an intrinsic link

between risk score and TMB and TIME. Samples with different risk scores

differed in different signaling pathway activity, immunopharmaceutical

treatment and chemotherapy sensitivity.
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Conclusion: In conclusion, a comprehensive analysis of neutrophil-related

prognostic features will help in prognostic prediction and advance

individualized treatment.

KEYWORDS

hepatocellular carcinoma, WGCNA, neutrophils, risk score, tumor immune
microenvironment

1 Introduction

Hepatocellular carcinoma (HCC) is the most common case type

of liver cancer and the fifth leading cause of cancer-related death

worldwide (Ioannou et al., 2007; Global Burden of Disease Study

2013 Collaborators, 2015; Lersritwimanmaen and Nimanong, 2018).

Because symptoms are not obvious or asymptomatic in the early

stages of cancer, most HCC cases are already in the incurable stage at

the time of diagnosis. Even if detected early, with surgical resection,

the best treatment, recurrence rates are high (Famularo et al., 2018;

Fujiwara et al., 2018). This makes the prognosis of HCC poor (Jemal

et al., 2017). Therefore, it is of great significance to study the

influencing factors affecting HCC tumor progression and clinical

prognosis, to develop novel and reliable indicators for treatment

effect estimation, and to further advance individualized treatment.

In recent years, the progress of liver cancer treatment

technology is encouraging, and many cutting-edge treatment

methods have been discovered by researchers and applied in

clinical practice. Among them, the development of anti-tumor

immunotherapy is particularly rapid, and it has become a

breakthrough in the treatment of liver cancer (Heinrich et al.,

2018; Iñarrairaegui et al., 2018; Llovet et al., 2018).

Immunotherapy is characterized by recognition by the

immune system, and then by activating the immune system in

the host to suppress or kill tumor cells, thereby reducing the rate

of tumor recurrence and metastasis. International guidelines also

clearly stated that immunotherapy is one of the effective methods

for the treatment of advanced liver cancer (European Association

for the Study of the Liver, 2018). Unfortunately, however,

immunotherapy is only effective in a minority of HCC

patients. The main reason for the limited nature of this

treatment may be the suppression of the tumor immune

microenvironment (TIME) (O’Reilly et al., 2019). TIME is a

dynamic system composed of tumor cells and their surrounding

immune cells, inflammatory cells, microvessels and various

cytokines (Chew et al., 2017). TIME mainly affects the

proliferation and metastasis of tumor cells by producing and

activating cytokines, chemokines and growth factors, and

recruiting immune cells (Yang et al., 2014). Among them,

neutrophils play a particularly important role in this process.

As themost abundant leukocyte type in the human body, the anti-

infection function of neutrophils has been generally recognized

(Nathan, 2006; Nauseef and Borregaard, 2014). The important role

of neutrophils in tumor cell progression and anti-tumor has long been

confirmed by many studies (van Rees et al., 2016). There are many

immune receptors on neutrophils that can bind to a variety of different

extracellular ligands, thereby regulating activation and inhibition of

signaling (van Rees et al., 2016). Amongmany cancer types, the role of

neutrophils in HCC is particularly pronounced. Study finds that in

HCC, circulating neutrophils may promote tumor development and

can more accurately predict prognosis (Margetts et al., 2018; Quintela

et al., 2019). In HCC tumor tissues, a high density of neutrophil

infiltration is associated with shorter survival (Kuang et al., 2011).

Recent studies have shown that neutrophils can be a potential

therapeutic target for HCC (Geh et al., 2022). However, a

comprehensive understanding of the role of neutrophils in the

development of HCC is still lacking. The most reliable and efficient

strategy for comprehensively assessing tumor susceptibility to clinical

therapy is likely to be derived from the immune profile. Therefore, it is

of great interest to identify HCC cases based on neutrophil-related risk

profiles, thereby facilitating individualized treatment.

In this paper, we explore the potential role of neutrophils using

the TCGA dataset, with external validation using the GEO (Gene

Expression Omnibus) dataset. The abundance of 22 tumor-

infiltrating immune cells (TIC) subtypes was obtained using the

CIBERSORT algorithm. Gene modules significantly associated with

neutrophils were identified by weighted gene coexpression network

analysis (WGCNA). From these 590 genes, we finally got 9 genes

significantly associated with HCC. The risk score (RS) was calculated

according to the contribution of each gene to prognosis, and all

samples were grouped according to the median RS. Subsequently,

based on risk characteristics and other clinical variables, we developed

and validated a HCC prognostic nomogram. We explored the

synergistic effects of RS and tumor mutational burden (TMB) and

potential relationships with TIME and cell signaling pathways.

Finally, the effect of risk characteristics on the efficacy of

immunotherapy and chemotherapy was investigated. In

conclusion, based on neutrophil-related genes, reliable biological

indicators and prognostic indicators for predicting the clinical

prognosis of HCC have been established, which can guide for the

precise treatment of HCC.

2 Materials and methods

2.1 Data download and preprocessing

The TCGA-LIHC dataset was downloaded from the TCGA

portal and 424 HCC samples were obtained. There are 374 tumor

samples and 50 normal tissue sequencing profiles. Among the
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374 tumor samples, four samples had missing clinical data, and the

remaining 370 tumor samples were used for follow-up studies. We

obtained somatic mutation data from the TCGA database and

analyzed copy number variation (CNV) to further analyze

potential relationships between neutrophil-related risk signatures

and TMB. The GSE76427 cohort was obtained from the GEO

database for external validation.

2.2 Landscape of immune cell infiltration

The sequencing data of the samples were analyzed using the

CIBERSORT algorithm (http://cibersort.stanford.edu/) to obtain

the relative abundance of 22 TICs subtypes. The relative

abundance of these TICs can be used to represent the

structural composition of TIME cells.

2.3 Neutrophil-associated gene module

We selected 10,530 genes from TCGA-LIHC as data and the

relative abundance of 22 TICs subtypes as the phenotype of interest.

We used WGCNA to study the association between gene co-

expression networks and phenotypes (Langfelder and Horvath,

2007; Langfelder and Horvath, 2008; Gysi et al., 2018). A

“dynamic tree-cut” algorithm was used to introduce similar genes

into the same candidate module. Pearson correlation test (p < 0.05)

was used to analyze the correlation between the module eigengenes

and the phenotype of interest. Finally, we focused on the

“neutrophil” population and extracted the gene modules most

significantly associated with neutrophils for subsequent analysis.

2.4 Construction of neutrophil-related
prognostic features

To investigate the impact of neutrophil-related genes on the

prognosis of HCC cases, we extracted 590 genes in the “MEbrown”

gene module. Through univariate Cox regression analysis, Lasso

regression and multivariable Cox regression analysis, 9 neutrophil-

related genes (PDLIM3, KLF2, ROR2, PGF, EFNB1, PDZD4, PLN,

PCDH17, DOK5) related to the prognosis of HCC were finally

screened. The TCGAcohort was used as our training set, and the risk

score (RS) was calculated as follows: ↓

riskscore � ∑
n

i�1
(coefi*Xi)

2.5 Validation of prognostic neutrophil-
related features

RS was calculated for each HCC sample. Taking the median

of RS as the dividing line, all samples were divided into two parts:

high-risk group (HRG) and low-risk group (LRG). Kaplan-Meier

(KM) survival analysis was used and the KM survival curve was

drawn to compare the survival difference between the HRG and

LRG. To verify its prognostic value, wemapped the transient receiver

operating characteristic (ROC). Univariate Cox regression and

multivariate Cox regression were used to validate RS as an

independent prognostic factor for HCC patients.

2.6 Establishment and verification of
nomogram

To intuitively and accurately predict the 1-year, 3-year, and

5-year survival probability of HCC patients, we combined RS

with clinical variables to draw a prognostic nomogram.

Calibration curves were used to verify the performance of the

model.

2.7 Gene set enrichment analysis

The c2.cp.kegg.v7.4.symbols collection were used to explore

the function annotation by GSEA software.

2.8 Relationship between tumor
mutational burden and risk score

Somatic mutation data were obtained from the TCGA

database. Waterfall plots of HRG and LRG were drawn using

the “maftools” R package (Yoshihara et al., 2013). Differences in

the survival of HCC patients were analyzed according to median

TMB and RS.

2.9 Association of tumor immune
microenvironment and risk score

To investigate the potential association between RS and

TIME, we assessed immune infiltration using seven methods.

Immune cells and stromal cells in HCC malignancies were

estimated using the ESTIMATE algorithm (Yoshihara et al.,

2013). We calculated immune and stromal scores and

explored the relationship between RS and immune infiltration

signatures by the Spearman correlation.

2.10 Genome variation analysis

To assess the activation of hallmark and metabolic pathways

described in the MSigDB database (Chan et al., 2019), we used

the GSVA package (version 1.36.3) to pass the Gene Set Variation

Analysis (GSVA) (Rizvi et al., 2015) predicts pathway activity
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and ultimately assesses relative pathway activity in a single

sample.

2.11 Predicting the effect of
immunotherapy

To explore the potential association between immunotherapy

and RS, we analyzed the association between the expression levels of

immune checkpoint blockade-related genes (PDCD1, etc.) and

HRG/LRG. In this process, Immunophenoscore (IPS)

(Charoentong et al., 2017) was used as a novel robust predictor

of response to immunotherapy regimens.

2.12 Prediction of chemotherapy effect

To explore the relationship between RS and drug sensitivity, we

constructed a ridge regression model based on the Genomics of Drug

Sensitivity in Cancer cell lines and TCGA gene expression profiles.

Using the pRRophetic algorithm, half-maximal inhibitory

concentrations (IC50) were estimated for four chemotherapeutic

agents (sorafenib, gemcitabine, cisplatin, and doxorubicin) in HCC

patients.

2.13 Statistical analysis

The Wilcoxon test and the Kruskal–Wallis test were used to

compare two groups and more than two groups of variables,

respectively. The analysis of RS and TMB was performed by the

chi-square test, and the correlation between coefficients was analyzed

by Spearman. Two-sided p < 0.05 was considered statistically

significant. All statistical calculations were done in R software

(version 4.1.1).

3 Results

3.1 Tumor immune microenvironment
landscape in hepatocellular carcinoma

Table 1 lists the data characteristics of the samples in

this study after preprocessing. The number of complete

follow-up data samples available for the TCGA-LIHC and

GSE76427 datasets is 370 and 115, respectively. The median

follow-up time for the two cohorts was 1.66 and 1.16 years,

respectively. The probabilities of end-point events in the two

cohorts were 35.68% and 20.00%, respectively.

The relative abundances of the 22TICs isoforms (Figure 1A)were

obtained using the CIBERSORT algorithm as shown in

Supplementary Table S1. The comprehensive heatmap we created

(Figure 1B) visualized the differences in the TIME landscape between

tumor and normal tissues. Potential connections between various

TIME immune cells in HCC tissues are shown in Figure 1C.

Neutrophils were positively correlated with B cells memory (r =

0.18, p < 0.05) and significantly negatively correlated with T cells

follicular helper (r = -0.29, p < 0.05).

3.2 Establish the weighted gene co-
expression network analysis network

10,530 gene data and immune-infiltrating subsets were

extracted from the TCGA-LIHC dataset to develop the

WGCNA network. The scale-free network was constructed

by setting the optimal soft-threshold power (β) to the first

power value of 17 when the scale-free topology index reached

TABLE 1 Clinicopathological characteristics of HCC patients from the
TCGA and GSE76427 databases.

Characteristics TCGA-LIHC
cohort

GSE76427

N = 370 N = 115

Age

<=65 229 (61.89%) 65 (56.52%)

>65 141 (38.11%) 50 (43.48%)

Gender

Female 119 (32.16%) 22 (19.13%)

Male 251 (67.84%) 93 (80.87%)

Grade

1–2 232 (62.70%) NA

3–4 133 (35.95%) NA

Unknow 5 (1.35%) NA

Stage

I–II 258 (69.73%) NA

III–IV 88 (23.78%) NA

Unknow 24 (6.49%) NA

T

T0–T2 276 (74.59%) NA

T3–T4 92 (24.86%) NA

Unknow 2 (0.54%) NA

M

M0 367 (99.19%) NA

M1 3 (0.81%) NA

N

N0–N1 365 (98.65%) NA

N2–N3 4 (1.08%) NA

Unknow 1 (0.27%) NA

Survival status

Alive 238 (64.32%) 92 (80.00%)

Dead 132 (35.68%) 23 (20.00%)

The median follow-up time (year) 1.66 1.16
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0.90 (Figure 2A). Weighted hierarchical clustering analysis

was then performed and the results were segmented, resulting

in 6 gene modules (Figure 2B). The relationship between each

immune cell and candidate gene modules in HCC tumor

tissues was analyzed using Pearson correlation, and the

results are shown in Figure 2C. By observation, we can

easily find that the module with the strongest correlation

with neutrophils is “MEbrown” (r = 0.11, p = 0.03). We

used the 590 genes in the “MEbrown” module

(Supplementary Table S2) for further analysis.

3.3 Development risk signature

Neutrophil-related gene expression data and prognostic

information of HCC patients were extracted from the TCGA-

LIHC dataset. Using univariate Cox regression analysis,

122 genes were initially screened from 590 genes (p < 0.05,

Supplementary Table S3). To more intuitively show the results of

univariate Cox regression, we draw Figure 3A. To prevent

overfitting, we performed a lasso regression analysis on the

122 genes obtained above (Figures 3B,C). Finally, through

FIGURE 1
Landscape of immune cell infiltration in the tumor immune environment of HCC. Subpopulation of 22 immune cell subtypes (A) and
proportional heatmap of 22 TICs in each HCC samples (B). (C) Intrinsic correlation of 22 infiltrating immune cells in HCC.
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multivariate Cox regression analysis, we screened out

9 neutrophil-related genes (PDLIM3, KLF2, ROR2, PGF,

EFNB1, PDZD4, PLN, PCDH17, DOK5, Supplementary Table

S4) that are beneficial for predicting the prognosis of HCC

patients. The RS was computed: risk score(RS) �
(0.2945 × PDLIM3) − (0.4333 × KLF2) + (0.2322 × ROR2) +

FIGURE 2
Choosing an appropriate soft threshold (power) and building a hierarchical clustering tree. (A) The choice of the soft threshold enables the
scale-free topology to achieve an exponent of 0.90, and the average connectivity for 1–20 soft threshold powers is analyzed. (B)Neutrophil-related
genes with similar expression patterns were merged into the samemodule using a dynamic tree-cutting algorithm, creating a hierarchical clustering
tree. Heatmap of correlations between (C) modules and immune-infiltrating cells (traits).
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FIGURE 3
(A) 122 genes associated with HCC prognosis screened using univariate Cox regression. (B) Variation curve of regression coefficient with Log (λ)
in Lasso regression. (C) Ten-fold cross-validation for tuning parameter selection in lasso regression.Vertical lines are drawn from the best data
according to the minimum criterion and 1 standard error criterion. (D) Kaplan-Meier curve analysis showed differences in overall survival between
high- and low-risk groups in the TCGA-LIHC cohort.
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FIGURE 4
(A) Kaplan-Meier curve analysis showed the difference in overall survival between the high and low expression groups for 9 neutrophil-related
genes (PDLIM3, KLF2, ROR2, PGF, EFNB1, PDZD4, PLN, PCDH17,DOK5). (B)Univariate Cox regression results for overall survival. (C)Multivariate Cox
regression results for overall survival.
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(0.5494 × PGF) + (0.1935 × EFNB1) − (0.4964 × PDZD4)
−(0.4623 × PLN) + (0.3700 × PCDH17) − (0.4628 × DOK5)

The 370 HCC samples were divided into HRG and LRG

according to median RS to reveal potential optimal values for

neutrophil-related genes.

3.4 Validation of prognostic risk
characteristics

To validate the scientific validity of the risk signature, we

used 370 HCC samples in the TCGA-LIHC dataset for internal

validation. The KM survival curve we plotted indicated that HRG

had a poor prognosis (p < 0.001, Figure 3D). In addition, we

performed an external validation of the survival results using the

GSE76427 dataset, the results of which are shown in

Supplementary Figure S1. All samples were regrouped

according to the median expression of each gene. The KM

survival curve was drawn with the expression of a single gene

as the only variable. The results showed that each neutrophil-

related gene had a significant impact on the clinical prognosis of

HCC (p < 0.05, Figure 4A). We combined RS with clinical

variables such as gender and age, and explored the potential

role of RS in predicting the prognosis of HCC. The hazard ratios

(HR) for RS in univariate Cox regression and multivariate Cox

regression were 1.179 (95% CI 1.128–1.232; Figure 4B) and 1.150

FIGURE 5
(A)Confirmation of prognostic risk scores in the TCGA cohort. (B) Polygenicmodel risk score distribution in the TCGA cohort. (C) Survival status
and duration of HCC patients in the TCGA cohort. (D) Confirmation of prognostic risk scores in the GSE76427 cohort. (E) Polygenic model risk score
distribution in the GSE76427 cohort. (F) Survival status and duration of LUAD patients in the GSE76427 cohort.
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(95% CI 1.092–1.211; Figure 4C), respectively. These results

suggest that the risk signature developed based on neutrophil-

related genes has good prognostic predictive power and can serve

as an independent risk factor for the prognosis of HCC patients.

The expression patterns of 9 genes, the distribution of sample

survival status, and the corresponding risk scores among the

370 samples in the TCGA-LIHC cohort are shown in Figures

5A–C. In addition to this, we also performed external validation

using 115 independent samples from the GSE76427 cohort

(Figures 5D–F). These results all clearly demonstrate that

neutrophil-related risk-prognostic features have stable and

robust prognostic value.

3.5 Functional analysis of neutrophil-
related genes

According to the median expression level of each neutrophil-

related gene, we divided all samples into high and low expression

groups. Then, high and low gene expression groups were

functionally enriched using GSEA (Figures 6A–I). KEGG

enrichment analysis showed that the high expression of the

EFNB1 gene was related to cytokine cytokine receptor interaction.

The high expression of the PGF gene was significantly enriched in

signaling pathways such as hypertrophic cardiomyopathy,

neuroactive ligand-receptor interaction and fatty acid metabolism.

FIGURE 6
GSEA for samples with high and low expression of 9 central genes. (A) Enriched gene set collected in KEGG for samples with high DOK5
expression. (B) Enriched gene set collected in KEGG for samples with high EFNB1 expression. (C) Enriched gene set collected in KEGG for samples
with high KLF2 expression. (D) Enriched gene set collected in KEGG for samples with high PCDH17 expression. (E) Enriched gene set collected in
KEGG for samples with high PDLIM3 expression. (F) Enriched gene set collected in KEGG for samples with high PDZD4 expression. (G) Enriched
gene set collected in KEGG for samples with high PGF expression. (H) Enriched gene set in the KEGGcollection for samples with high PLN expression.
(I) Enriched gene set in the KEGG collection for samples with high ROR2 expression.
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3.6 Distribution of clinical variables and
risk scores in samples

To visualize the distribution of clinical variables in low/high

risk subgroups, we plotted Figure 7A. The proportions of gender,

WHO grade, clinical stage, T, N, and M stage clinical subtypes in

the low/high risk subgroup are shown in Figures 7B–G.

3.7 Construction of prognostic nomogram

The area under the curve (AUC) of the ROC curve we drew

was 0.769, 0.779 and 0.764 for 1-year, 3-year and 5-year

overall survival (OS), respectively, indicating a high

prognostic validity (Figure 8A). To further validate that RS

had the best prognostic predictive power among clinical

variables, we designated these variables as candidate factors

and included them in the AUC analysis. The results confirmed

our conjecture, with the AUC analysis RS achieving maximum

values at 1, 3, and 5 years of OS (Figures 8B–D), which further

affirmed the clinical predictive power of the risk signature.

Subsequently, combining these clinical variables with RS, a

prognostic nomogram was developed for quantitatively

predicting the probability of survival at a specific time in

HCC patients (Figure 8E). The calibration curve indicated that

the prognostic nomogram we developed had reliable

predictive performance (Figure 8F).

3.8 Association of risk signatures with
tumor mutational burden

Studies have shown that TMB is related to the anti-tumor

immune response of immune cells (McGranahan et al., 2016).

We speculate that TMB may be an important factor affecting

the efficacy of anti-tumor immunotherapy. To this end, we

analyzed the differences in TMB in different RS groupings

(Figure 9A). Subsequently, we present the distribution of RS

and TMB for 370 HCC samples in the form of scatter plots

(Figure 9B). It was found that RS and TMB were significantly

correlated (R = 0.17, p = 0.0013). According to the median of

TMB, HCC samples were divided into high- and low-mutation

groups, and then KM survival curves were drawn. The results

showed that the low-mutation group had a better prognosis

FIGURE 7
Clinical significance of prognostic risk characteristics. (A) Heatmap showing the distribution of clinical characteristics and corresponding risk
scores in each sample. Incidence of clinical variable subtypes of LRG/HRG. (B) Gender, (C) Grade, (D) Clinical stage, (E) Stage T, (F) Stage N, and (G)
Stage M.
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compared with the high-mutation group (Figure 9D). The

survival curve was drawn according to TMB and RS, and the

results showed that the samples with low TMB and low risk

had the best survival status (Figure 9E). This also shows that

RS and TMB have a certain synergy in predicting HCC

survival.

In addition, in order to more intuitively display the somatic

mutation situation of the high-risk group and the low-risk group,

we drew a comprehensive landscape map of somatic mutations in

the high-risk group (Figure 9C) and the low-risk group

(Figure 9F). The results showed that genes such as TP53 (36%

vs. 16%), TTN (26% vs. 22%), and MUC16 (17% vs. 15%) had

higher mutation rates in the high-risk group, while CTNNB1

(28%) vs. 23%), ALB (11% vs. 9%) and other genes had higher

mutation rates in the low-risk group.

3.9 Risk signature in tumor immune
microenvironment context of
hepatocellular carcinoma

Based on the intrinsic link between RS and TIME of

neutrophil-related genes, we further investigated the

contribution of RS to the complexity and diversity of TIME.

Using Spearman correlation analysis, the results are shown in

Figure 10A (Supplementary Table S5). By ESTIMATE analysis,

it was found that the stromalscore and ESTIMATE score showed

a significant downward trend in the high-risk group (p < 0.01,

Figure 10B). Validation of the correlations predicted by the

four methods MCPCOUNTER (Figure 10C), CIBERSORT

(Figure 10D), TIMER (Figure 10E) and CIBERSORT−ABS

(Figure 10F) indicated that our analysis was accurate.

3.10 Enriching signaling pathways in low/
high risk populations

By GSVA analysis (Figures 11A,B), we found that

neutrophil-related genes were negatively correlated with

KEGG/PPAR signaling pathway and positively correlated

with most other signaling pathways. RS is negatively

correlated with adipocytokine signaling pathway, and

positively correlated with the p53 signaling pathway.

3.11 Immunotherapy prediction

Since there is no information on immunotherapy in the

TCGA-LIHC dataset, we used an indirect approach to analyze

immunotherapy. The relationship between immune checkpoint

FIGURE 8
Validation of prognostic efficiency of risk signatures. (A) ROC analysis was used to estimate the predictive value of prognostic features. (B–D)
The area under the curve (AUC) of the risk score for predicting overall survival at 1, 3, and 5 years and other clinical characteristics. (E)Nomogramwas
used to predict survival in HCC patients. (F) 1-, 3-, and 5-year nomogram calibration curves.
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blockade-related gene expression and RS was analyzed. The

results showed that most of the immune checkpoint blockade-

related genes (VTCN1, TNFSF9, TNFSF18, TNFSF15, CD80, etc.)

were positively correlated with the risk score, and a few immune

checkpoint blockade-related genes (such as TMIGD2 and BTLA)

were associated with RS were negatively correlated (Figure 11C).

The IPS scores of different RS groupings are shown in Figures

12A–D. HRG IPS scores were lower when PD1-positive and

CTLA4-positive, suggesting that high-risk patients are more

suitable for novel immune checkpoint inhibitors (ICIs)

immunotherapy.

3.12 Predicting response to chemotherapy

Through pRRophetic algorithm analysis, we found that the

IC50 of chemotherapeutic drugs (sorafenib, gemcitabine, cisplatin,

and doxorubicin) were different in HRG/LRG. We found that

sorafenib has a lower IC50 in LRG (p < 0.05; Figure 12E),

suggesting that sorafenib has a higher drug sensitivity in LRG. In

contrast, gemcitabine, cisplatin and doxorubicin had lower IC50s in

HRG (p < 0.05; Figures 12F–H), suggesting that tumor cells in HRG

are more sensitive to these drugs.

4 Discussion

The high degree of malignancy of HCC, combined with the

generally late diagnosis and inadequate treatment methods,

makes it a major threat to human health worldwide

(Vanderborght et al., 2020). Treatment is complicated by

underlying liver disease in up to 80 percent of all HCC cases

(Kirstein and Wirth, 2020). HCC is an inflammation-related

malignancy in which TIME can induce immune tolerance and

escape through various mechanisms (Fu et al., 2019). As the first

barrier against pathogen invasion, neutrophils not only have

anti-inflammatory and anti-infection effects, but also play a

pivotal role in anti-tumor immunity.

In our study, two datasets, TCGA-LIHC and GSE76427, were

used, the former for developing neutrophil-related risk signatures

and the latter for external validation. The 10530 genes were

divided into 6 gene modules according to their functional

FIGURE 9
Correlation between risk score and TMB. (A) Differences in TMB between HRG and LRG. (B) Scatterplots depicting the positive correlation
between risk scores and TMB. (D) Kaplan-Meier curves of high TMB and low TMB groups. (E) Kaplan-Meier curve stratification of patients according
to TMB and risk signature. The oncoPrint was constructed using high-risk score (C) and low-risk score (F).
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similarity using WGCNA and the “dynamic tree cutting”

algorithm. The correlation of these 6 gene modules with

immune cells in HCC tumor tissues was analyzed by Pearson

correlation. The “MEbrown” significantly associated with

neutrophils was selected and 590 genes were extracted from

this gene module. Through a series of screening, 9 neutrophil-

related genes (PDLIM3,KLF2, ROR2, PGF, EFNB1, PDZD4, PLN,

PCDH17, DOK5) with good prognostic value for HCC were

finally obtained. RS was calculated from the coefficient of each

gene and the expression level in the sample. With the median RS

as the boundary, all samples were classified as HRG and LRG.We

analyzed the survival of HRG/LRG samples in the TCGA-LIHC

and GSE76427 datasets, and plotted K-M survival curves. The

K-M survival curve plotted using the TCGA-LIHC dataset

(Figure 3D) indicated that the LRG sample had a better

prognosis (p < 0.001). Interestingly, when HRG/LRG sample

survival was analyzed using the GSE76427 dataset

(Supplementary Figure S1), we found that HRG samples had

better prognosis (p = 0.041). This may be related to the small

sample size in the GSE76427 dataset, which requires sufficient

samples for validation.

We used RS to represent neutrophil-related genes to further

explore its impact on the prognosis of HCC and its relationship

with TMB, cell signaling pathways, immunotherapy and

chemotherapy. To display the relationship between risk

characteristics and HCC prognosis more intuitively and

conveniently, a nomogram was constructed by combining RS

and other clinical variables. It can directly use the graph to

calculate the value of a variable, such as the patient’s index score

or survival probability. In the nomogram model we constructed,

if the RS and other clinical variables are known, and the scores

obtained by each independent variable are added together, it is

possible to predict the 1-year, 3-year year and 5-year survival

probability.

FIGURE 10
Estimated abundance of tumor-infiltrating cells. Patients in the (A) high-risk group had a stronger correlation with tumor-infiltrating immune
cells, as shown by the Spearman correlation analysis. (B) Association between prognostic risk signatures and central immune checkpoint genes. The
correlations predicted by the four methods MCPCOUNTER (C), CIBERSORT (D), TIMER (E), and CIBERSORT−ABS (F) were validated.
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We explored the association of risk signature and TMB in

this study and found that risk signature and TMB had some

synergistic effects in predicting patient survival. Previous studies

have found that TMB can be used to predict the efficacy of

immune checkpoint inhibitor therapy (Snyder et al., 2014; Hugo

et al., 2016; Carbone et al., 2017; Liang et al., 2021; Xu et al.,

2022a; Xu et al., 2022b). It has also been found that TMB is

associated with the prognosis of diffuse glioma (Wang et al.,

2020). Studies have shown that HCC generally has a lower TMB

(Ang et al., 2019; Mauriello et al., 2019; Wang and Li, 2019; Li

et al., 2020a). In contrast, Ritu and his team found that HCC

patients with higher TMB had poorer prognosis (Shrestha et al.,

2018). Cai and colleagues found that high TMB was associated

with poor prognosis in HCC patients after radical hepatectomy

(Cai et al., 2020). These findings further confirm our conclusions.

Among the many treatments for liver cancer, immunotherapy

has great advantages. Precise and effective HCC immunotherapy

brings a new dawn to patients. In recent years, the clinical

application of ICIs has increased the enthusiasm for HCC

immunotherapy research. Studies showing that the combination

of atezolizumab (anti-PD-L1) and bevacizumab (anti-VEGF) can

significantly improve overall survival has made them first-line

therapy for patients with advanced HCC (Donisi et al., 2020;

Donne and Lujambio, 2022; Sperandio et al., 2022). Besides ICI,

there are other immunotherapy strategies under investigation,

such as oncolytic virus immunotherapy and adoptive T cell

transfer (Foerster et al., 2022). Despite great progress in HCC

immunotherapy, current immunotherapies are only able to induce

durable responses in a subset of HCC patients (Ruf et al., 2021).

There is ample evidence that the effect of HCC tumor

immunotherapy is significantly associated with TIME (Riaz

et al., 2017; Cheng et al., 2020; Ruf et al., 2021).

Immunotherapy of HCC is promising but challenging.

We developed a potential association between neutrophil-

related gene-based risk signatures and TIME. It was found that

stromalscore and ESTIMATE score had an increasing trend in

LRG. This indicates that the tumor purity in the LRG samples is

relatively low. Some researchers suggest that TIME can be used as

FIGURE 11
Enrichment pathways of GSVA. (A) Heatmap showing the correlation of representative pathway terms of Hallmark with risk score. (B)Heatmap
showing the correlation of representative pathway terms of KEGG with risk score. Prediction of Immunotherapeutic Response. (C) Correlation of
expression level of immune checkpoint blockade genes with risk score.
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FIGURE 12
(A–D) IPS score distribution map. Estimates of chemotherapy effect risk scores. (E) Sensitivity analysis of sorafenib in patients with high and low
risk scores. (F) Sensitivity analysis of gemcitabine in patients with high and low risk scores. (G) Sensitivity analysis of cisplatin in patients with high and
low risk scores. (H) Sensitivity analysis of doxorubicin in patients with high and low risk scores.
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an independent factor affecting the prognosis of HCC patients

and provide help for precision medicine (Taube et al., 2018; Xu

et al., 2019).

Among the 9 neutrophil-related genes we screened, several

genes have been confirmed to play important roles in the

occurrence, development and prognosis of HCC tumors. Studies

have found that KLF2 gene plays a tumor suppressor function by

inhibiting TGF-β/Smad signaling in HCC cells (Li et al., 2020b).

Geng and colleagues found in a study of 85 samples that

Ror2 protein deletion was associated with poor prognosis in

HCC (Geng et al., 2012). Liu and his team found that

PCDH17 is regulated by DNMT3B methylation and inhibits cell

proliferation, invasion and migration in HCC via EMT (Liu et al.,

2022). These existing research results confirm the scientific reliability

of our construction of risk characteristics. Although we screened out

the 9 genes most related to HCC from many neutrophil-related

genes and constructed a prognostic risk model, the underlying

mechanisms of these genes’ functions still need to be explored

and discovered by a large number of researchers. Of course, our

study also has some limitations and needs to be further improved.

Therefore, it is necessary to collect tissue samples and validate our

results at the cellular, animal and tissue levels separately in the

studies noted to make the results more credible.

5 Conclusion

In conclusion, bioinformatics-based deciphering of the TIME

landscape constructs a prognostic signature dominated by

neutrophil-related genes. This prognostic feature has a certain

good value in predicting the clinical prognosis of HCC, analyzing

gene mutation, TIME heterogeneity and treatment response.

Nonetheless, future prospective studies are needed to further

examine this feature.
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