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In spite of decades of research, the exact subcellular pathway for calcium transport in intestine has not been elucidated. In this
mini-review, we present three models for vectorial movement of calcium across the cell: facilitated (cytoplasmic) diffusion, vesic-
ular/lysosomal transport, and tunneling through the endoplasmic reticulum compartment. We conclude by offering one way to
integrate elements of these three models.

INTRODUCTION

While a number of models have been proposed to ex-
plain the transport of calcium across polarized epithelium
such as that found in the intestine, each potential mech-
anism also relies on some points of speculation. Many of
these models have been developed within the context of the
vitamin D endocrine system in which a hormonally active
metabolite, 1,25-dihdyroxyvitamin D3, promotes the trans-
port. Thus, numerous observations compare cellular and
molecular events as a function of time after repletion of vita-
min D-deficient animals with the seco-steroid hormone. In
this manner, Wasserman and Taylor [1] reported the vita-
min D-induced calbindins, and Nemere (see [2], for review)
found that vesicular carriers may be viable candidates for cal-
cium transporters. In this mini-review, we present the mod-
els as they where chronologically proposed, as well as one
that has not yet been evaluated in the intestine. We conclude
by suggesting points where elements of these models can be
integrated.

INTESTINAL CALCIUM TRANSPORT

Intestinal calcium transport can be described as a three-
step process: calcium entry across the apical membrane,
transcellular transport, and extrusion across the basolateral
membrane. Three models for intestinal calcium transport
have been postulated: (1) facilitated diffusion, (2) vesicular
transport, and (3) tunneling through intracellular stores (en-
doplasmic reticulum).

Facilitated diffusion

In this model, calcium enters the intestinal cell through
calcium channels in the apical membrane [3]. Upon entry,

calcium binds to calbindins (calcium binding proteins in-
duced by the steroid hormone 1,25-dihydroxyvitamin D3),
which transport calcium through the cytoplasm to the ba-
solateral membrane. At the basolateral membrane calcium is
transferred from the calbindin to a higher affinity Ca-ATPase
or Na/Ca-exchanger, which in turn transports the divalent
cation to the extracellular media [4, 5].

Vesicular transport

Formation of calcium-enriched vesicles is initiated by
influx of the cation through calcium channels in the api-
cal membrane. The rapid increase in calcium concentrations
close to the apical membrane, disrupts the actin filaments
near the calcium channels and initiates the formation of en-
docytic vesicles. Concurrently, calcium ions bind to calmod-
ulin (CaM) associated with myosin I or alternatively CaM
associated with the calcium channels, which leads to an in-
activation of the channels. This inactivation of the calcium
channels causes a decrease in the free calcium levels close
to the apical membrane and the actin filament network can
be restored. Alternatively, influx through a calcium channel
may promote the exocytotic delivery of vesicles containing
calcium transporters [4, 6], which then are coupled to the
formation of endocytic vesicles. The newly formed calcium-
containing vesicle is transported by microtubules and some
fuse with lysosomes [2]. Both the transport vesicles and
lysosomes have been reported to contain high levels of cal-
bindin [7]. Ultimately, the vesicles/lysosomes are delivered
to the basolateral membrane where they fuse with the mem-
brane and the calcium content is extruded to the extracellu-
lar media. Fusion of vesicles with the basolateral membrane
is dependent on calcium influx through calcium channels,
which disrupts the actin filaments close to the membrane
[2, 4].
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Figure 1. Vectorial transcellular calcium transport in intestinal epithelium.
Three distinct but potentially complementary pathways are depicted: (1)
uptake and transport of calcium (and calbindin) by vesicles/lysosomes with
transport along microtubules, and fusion with the basolateral membrane to
complete delivery of the cation; (2) entry of calcium into the cytoplasm with
binding to calbindin and diffusion to the basal lateral membrane for extru-
sion by Ca-ATPase; (3) entry of calcium into the cytoplasm and uptake by
the ER, diffusion through the ER, and extrusion of calcium in the vicinity
of Ca-ATPases and Na/Ca-exchangers.

Tunneling through intracellular stores

This model has been demonstrated in pancreatic acinar
cells [8], and constitutes a possible calcium transport route
in enterocytes. As in the previous model of facilitated diffu-
sion, calcium enters the intestinal cell through calcium chan-
nels. The transport from the apical to the basolateral side oc-
curs through passive diffusion in the endoplasmic reticulum
(ER). This transport pathway involves active buffering of cal-
cium rather than passive buffering as in the case of facilitated
diffusion. Calcium enters the sarco-endoplasmic reticulum
via a Ca-ATPase (SERCA) and is released at the basolateral
membrane through calcium release channels; the latter activ-
ity is regulated by IP3 and ryanodine receptors. Calcium ex-
trusion to the extracellular media is governed by Ca-ATPases
and Na/Ca-exchangers in the basolateral membrane.

INTEGRATION OF THE THREE MODELS

The intestine plays an important role in vertebrate cal-
cium regulation. Depending on the activity and the demand
of the animal, intestinal calcium uptake has to be regulated
on a short-term and a long-term basis. This regulation is
governed by endocrine factors such as PTH, 1,25(OH)2D3,

and 24,25(OH)2D3. Short-term regulation includes activity
of calcium transporters and channels together with forma-
tion of transport vesicles. Long-term regulation involves syn-
thesis of key proteins for the cellular transport pathway, to
increase calcium movement and buffering capacity.

Vesicular calcium transport and tunneling calcium
through the ER are mechanisms that are important in the
short-term regulation of intestinal calcium transport. Both
transport pathways can be activated within seconds to min-
utes by endocrine factors. Cytoplasmic transport of calcium
by calbindin is the slower mechanism, and the effects on
intestinal calcium transport via this pathway are observed
hours after hormone stimulation. However, calbindins and
the ER are important in the short term for buffering cytoplas-
mic calcium concentrations. Figure 1 describes an integrated
model for intestinal calcium transport.

CONCLUDING REMARKS

It is conceivable that calcium transport across polarized
epithelia encompasses elements of all three models. “Sig-
nalling” calcium from the apical membrane may tunnel
through ER compartments to contribute to the net trans-
ported ions. Vesicular calcium, which is capable of vectorial
transport along microtubules, might also provide a store of
“signalling” [9] as well as transport calcium. Finally, calcium
transported by the facilitated diffusion model might be re-
sponsible for maintaining the supply of cation after the rapid
delivery mechanisms have ceased.
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