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Abstract: In this paper, we present a statistical model of an indirect path generated in an
ultra-wideband (UWB) human tracking scenario. When performing moving target detection,
an indirect path signal can generate ghost targets that may cause a false alarm. For this purpose,
we performed radar measurements in an indoor environment and established a statistical model of
an indirect path based on the measurement data. The proposed model takes the form of a modified
Saleh–Valenzuela model, which is used in a UWB channel model. An application example of the
proposed model for mitigating false alarms is also presented.
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1. Introduction

Recently, accurate passive localization has become a very important technology for the purposes
of security, intrusion detection, and robot tracking, to name a few. When a radar sensor is used,
a method to detect a moving target by sensing a change in the received signals has been widely used.
In particular, ultra-wideband (UWB) radars are more advantageous than the existing Doppler radars
since they can accurately detect even tiny movements of a target. However, in an indoor environment,
a variety of problems may be caused because of a dense multipath. Bartoletti et al. [1,2] showed that
the localization accuracy can be improved by appropriate allocation of resources and selection of
observations in an indoor environment with multipath, clutter, and line-of-sight blockage. A blind
zone, an area where the target cannot be detected, can cause various problems. Sobhani et al. [3]
proposed a modified particle filter to resolve the tracking issues caused by blind zones.

An indirect reflection that includes the target and other objects in the reflection path can cause a
ghost problem [4–6]. Figure 1 illustrates this phenomenon. In this figure, path number 1 (direct path)
contains the range information of the target. Path number 2 receives static background signals that
can be removed via the moving target indication (MTI). Path number 3, namely the indirect path,
contains multiple reflections from a human body and the background objects. The indirect path
signals survive the MTI process and thus generate ghost targets. The deterministic method has been
suggested for detecting an indirect path. For example, Shen and Molisch [4] adopted a deterministic
approach, using measurement parameters such as the time of arrival (ToA), direction of departure,
and direction of arrival. If a statistical model of the indirect path is available, it will be possible to
employ a stochastic approach based on the model. However, no statistical model of the indirect path
has yet been proposed, although a study on propagation characterization for UWB sensors exists.
In this study, we performed statistical modeling of the indirect path that occurs under an indoor human
tracking condition. To achieve this, a comprehensive measurement campaign was performed in an
indoor environment, and a cluster model was established based on the measured data. This model can
be applied to reject ghost targets that are generated by an indirect path.
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Figure 1. Different reflection scenarios caused by a moving human.

The rest of this paper is organized as follows: In Section 2, the measurement campaign to collect
the radar scan data is described. In Section 3, the indirect path model that is established based on these
data is introduced. Section 4 introduces an indirect path model application example of false alarm
mitigation for one-dimensional (1D) two-target tracking.

2. Measurement Campaign

Radar measurements were conducted for the statistical modeling of an indirect path that occurred
during moving target detection in indoor environments. More specifically, we modeled the arrival
time and the strength of the indirect path. These parameters can vary depending on factors such as
the geometric shape and the reflection coefficient of a target. In this study, we assume that the target
is a human. Experiments were conducted in buildings inside Handong University, and 2293 scans
were obtained. Table 1 summarizes the environment in which the measurements were taken. The radar
used in the experiment is the PulsOn 400 monostatic radar kit manufactured by Time Domain, Inc.
(Huntsville, AL, USA); it has two omni-directional dipole antennas attached with a passband of
3.1–5.3 GHz. A radar was installed at a height of 0.8 m, and the radar scans were collected when one
person walked around the radar. Five scans were obtained per second, and the sampling time was
61 ps. We attempted to remove as many sources of non-stationary clutter, such as running fans and
swaying curtains other than moving targets, as possible.

Signals without moving targets were also measured and used as reference for the MTI.
The template waveforms of the radar signals can be approximated by [5]:

s(τ) = A exp(−aτ2) sin(bτ), (1)

where a = 5.55× 1018, b = 26.15× 109, and A denotes a constant.
Let r (τ; t) be the received signal with τ being the propagation delay (fast time) and t being the

measurement time (slow time). Without loss of generality, rref (τ) = r(τ; 0) is selected as the reference
signal for stationary clutter removal, and the difference signal rdif(τ; t) is defined as:

rdif (τ; t) = r (τ; t)− rref (τ) . (2)
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Slow fluctuation of the power level with respect to time t at the obtained signal rdif (τ; t) was
observed, and high-pass filtering was done to remove it. The resulting signal is given by

z (τ; t) =
∫ ∞

−∞
rdif (τ; t) gHP(t− ξ)dξ, (3)

where gHP(t) denotes the impulse response of the high-pass filter. Signal z (τ; t) includes the indirect
path signal components as well as a direct path signal. Figure 2 shows the radargrams of measurement
sets 6 and 7. Signal components that arrived the earliest in each scan observed in the figure represent
the trajectory of the distance between the radar and the moving human. We can observe other signal
components that arrived later than the abovementioned signal components; these are the indirect path
signal components.

Table 1. Measurement environments. Measurements were taken in the lobbies, hallways, and lecture
rooms of the university buildings.

Measurement Set Location Number of Scans

1 lecture room, 3rd floor, Main Library 187
2 lecture room, 3rd floor, Main Library 178
3 #313, 3rd floor, Newton Hall 287
4 lobby, 4th floor, Newton Hall 238
5 lobby, 4th floor, Newton Hall 275
6 lobby, 3rd floor, All Nations Hall 166
7 lobby, 3rd floor, All Nations Hall 227
8 hallway, 3rd floor, Nehemiah Hall 125
9 hallway, 3rd floor, Nehemiah Hall 111

10 hallway, 1st floor, Nehemiah Hall 108
11 hallway, 1st floor, Nehemiah Hall 80
12 lobby, 1st floor, Nehemiah Hall 143
13 lobby, 1st floor, Nehemiah Hall 168

total 2293

(a)

Figure 2. Cont.
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(b)

Figure 2. Radargrams of measurement sets (a) 6 and (b) 7.

3. Indirect Path Model

First, an impulse response was obtained by applying the CLEAN algorithm [7] to signal z (τ; t)
given by Equation (3). The iteration process was supposed to stop when either of the following
conditions was met:

• Captured energy is greater than 90% of the total energy.
• Path strength is less than four times the noise standard deviation.

Figure 3a,b shows signal z (τ; t) obtained from the 170th scan of measurement set 7 and the magnitude
of its impulse response, respectively. Interestingly, we can observe that the signal components are
clustered as in the UWB channel model. More than two clusters are observed, which indicates that
there are clusters generated by indirect reflections, assuming that only one cluster is generated by a
direct reflection. In this study, we use a cluster model with the following impulse response:

h (τ; t) =
L(t)

∑
l=0

K(t)

∑
k=0

αk,l(t)δD (τ− Tl(t)− τk,l(t); t) , (4)

where δD(·) denotes the Dirac delta function. The parameter Tl(t) represents the delay of the lth

cluster, τk,l(t) indicates the delay of the ray relative to the cluster arrival time, and τ0,l(t) = 0 for all
l. The parameter αk,l(t) denotes the path strength. The subscript {k, l} indicates that the quantities
depend on the lth cluster and the kth ray; these parameters are dependent on the measurement time
t. Assuming that the direct path signal always arrives earlier than the indirect path signals, T0(t) is
the arrival time of a cluster generated by a direct reflection and Tl(t) with l > 0 is the arrival time of a
cluster generated by an indirect reflection.

To identify a cluster from the impulse response, we first carried out a sliding correlation between
the squared version of the impulse response and a 3-ns-wide rectangular window. Figure 3c illustrates
this example. Although visual inspection is widely used for cluster identification, this has the
disadvantage of a strong dependence on human intuition. Instead, we applied additional low-pass
filtering to signals obtained through a sliding correlation (see Figure 3d) and performed clustering by
finding a location where the slope of the tangent of the low-pass filter output exceeded the threshold, 1.
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Figure 3. Deconvolution and cluster identification for the 170th scan of measurement set 7. (a) z (τ; t);
(b) magnitude of the impulse response; (c) output of a sliding correlator; and (d) output of a
low-pass filter.

3.1. Path Arrivals

Ray and cluster arrivals are modeled as Poisson processes in the modified Saleh–Valenzuela
(S–V) model widely used as the UWB channel model. In this study, exponential fit was applied to
the inter-arrival time of rays as in the modified S–V model. Figure 4a shows the distribution of the
inter-arrival time of the rays and its exponential fit. The ray arrival rate, namely λ, was obtained to be
1.1521 by measuring the mean inter-ray arrival time.

In contrast to ray arrival, the inter-arrival time of clusters, namely δ, is closer to the following
gamma model than the exponential model:

fδ (δ) =
δK−1e−δ/θ

θKΓ(K)
. (5)



Sensors 2017, 17, 43 6 of 16

Figure 4b shows the distribution of inter-arrival time of the clusters and its gamma fit with K = 8.4476
and θ = 1.5510. To examine the goodness of fitness, a chi-squared test was performed. The resulting
χ2 value was 6.36, which was less than the critical value, 7.81, corresponding to a 5% significance level
and three degrees of freedom.
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Figure 4. Distributions of the (a) ray and (b) cluster inter-arrival times.

3.2. Path Strengths

As in the modified S–V model [8], the path strength is assumed to follow log-normal fading,
with its mean energy decreasing exponentially with excess delay, as follows:

E
[∣∣αk,l

∣∣2] ∝ e−Tl /Γe−τk,l /γ, (6)

where Γ and γ denote the cluster and ray decay factors, respectively. The process to find an optimal
value of model parameters γ and Γ from the measured data is similar to the approach described in [9].
First, the ray decay factor γ is obtained according to the least squared error criterion:

γ = arg min
γ′

 min{
β
(m)
l

}∑
m

∑
l

∑
k

20 log10

∣∣∣α(m)
k,l

∣∣∣− β
(m)
l +

10
(

τ
(m)
k,l − τ

(m)
0,l

)
γ′ ln 10

2 , (7)
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where m refers to an index of the used radar scan. Parameter β
(m)
l accounts for the energy of the lth

cluster of the mth radar scan in the decibel scale, which is chosen to minimize the squared error for a
given value of γ′. Once the value of γ is determined, an optimal value of the lth cluster energy can be
obtained as:

ν
(m)
l = arg min

ν

∑
k

20 log10

∣∣∣α(m)
k,l

∣∣∣− ν +
10
(

τ
(m)
k,l − τ

(m)
0,l

)
γ ln 10

2 . (8)

Now, the optimal value of Γ can be found by:

Γ = arg min
Γ′

 min
{φ(m)}

∑
m

∑
l

ν
(m)
l − φ(m) +

10
(

T(m)
l − T(m)

0

)
Γ′ ln 10

2 , (9)

where the cluster energies of the mth signal are scaled by the constant φ(m) such that the squared error
is minimized. Figure 5 shows the scatter plots of the ray and cluster energies. The values of the fading
parameters are listed in Table 2.
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Figure 5. Scatter plots of the (a) ray and (b) cluster energies.
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Table 2. Fading parameters for the cluster model. The inter-arrival times of rays and clusters
are modeled using exponential and gamma densities, respectively. The path strength follows
lognormal fading.

Parameters Symbol Value

cluster arrival K 8.4476
θ 1.5510

ray arrival rate (1/ns) λ 1.1521
cluster decay time constant (ns) Γ 33.1268

ray decay time constant (ns) γ 12.9967
standard deviation of cluster fading σcluster 1.6605

standard deviation of ray fading σray 3.9038

4. Application of the Indirect Path Model to Two-Target Tracking

4.1. Test Scenario

This section presents an application example that applies the indirect path model introduced
in Section 3 to 1D two-target tracking in an indoor environment. For this purpose, another set of
radar measurements independent of the measurement data introduced in Section 2 was conducted.
One monostatic radar was installed in an indoor environment, and two people moved along a straight
line near the radar. Measurements were conducted for three test scenarios: Figure 6a shows the
movement path of the two targets. The targets moved with different timings along the same path in all
three scenarios. Figure 6b–d shows the radargrams of each scenario.

The figures in Figure 7 are the scatter plots of the cluster arrivals obtained using the CLEAN
algorithm and cluster identification. As shown in these figures, in most scans, more clusters than the
number of targets were detected, which was attributed to indirect reflections. Among the ToAs of
the detected clusters, the ToAs of the clusters generated by a direct reflection at each target contain
the range information. Our task here is to reduce a false alarm rate by screening out clusters that are
likely to have been generated by an indirect reflection among the many detected clusters. This task is
performed on the basis of the cluster unit by assuming that the first arriving ray inside each cluster
contains the range information of the target. This algorithm is applied on a single-scan basis. It is a
type of screening process of observations detected in a single scan, which is conducted independently
of the detection results of the other scans. Thus, it is carried out independently of other tracking tasks
such as track association and prediction. This is to show that the proposed screening algorithm can
achieve false alarm mitigation independently from most of the ghost rejection algorithm applied to
the data association phase. Therefore, if tracking tasks such as track association and prediction are
performed after the screening, it is expected to further enhance the performance.
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Figure 6. (a) Floor plan of the building where the experiments were conducted; (b) radargrams of
Scenario 1. One target approached the radar and then moved away while the other repeated motions
approaching the radar from a distance and returned back; (c) radargrams of Scenario 2. One target
approached the radar and returned, and the other moved along the same path with a certain constant
delay; and (d) radargrams of Scenario 3. Both targets approached the radar with some gap between
them and moved away from the radar simultaneously.
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Figure 7. Scatter plots of clusters without ghost rejection for each scenario. (a) Scenario 1; (b) Scenario 2;
and (c) Scenario 3.

4.2. Screening Algorithm

With ToAs and strengths of clusters obtained by applying the CLEAN algorithm and the clustering
algorithm to the mth scan, the following observation matrix can be built:

R(m) =
[

T(m), ν(m)
]
=


T(m)

0 , ν
(m)
0

T(m)
1 , ν

(m)
1

...
...

T(m)
Lm−1, ν

(m)
Lm−1

 , (10)

where column vectors T(m) and ν(m) refer to the vectors of the arrival time and the strength of the
detected clusters, respectively. Here, we assume T(m)

0 < T(m)
1 < · · · < T(m)

Lm−1. Parameter Lm refers to

the number of clusters, and ν
(m)
l , which is an estimated strength of (l + 1)th cluster, is determined by

Equation (8). The first observation vector
(

T(m)
0 , ν

(m)
0

)
is assumed to be generated by a direct reflection

at a target closer to the radar. For the sake of convenience, a target that is closer to the radar is indexed 0
and the other target is indexed 1. Note that this index is a value assigned only within a single scan.
Which target is closer to the radar depends on the movements of targets; therefore, an index of the
same target can also differ according to m. Let us also define an Lm-dimensional vector µ(m), which
represents a particular association between targets and observations inside the mth scan, as:

µ(m) =
[
µ
(m)
0 , µ

(m)
1 , · · · , µ

(m)
Lm−1

]
. (11)

Here, an all-zero vector or an all-one vector is not considered to be a candidate of µ(m). Then, the

number of possible vectors µ(m) is 2Lm−1 − 2. The first “0” and the first “1” in the elements of vector

µ(m) represent the direct reflections at target 0 and target 1, respectively, and the other elements indicate

the indirect reflections. Since µ
(m)
0 = 0 is satisfied for all m, our task is to determine the position of the

first non-zero element in the vector µ(m), i.e., to find the first observation vector associated to target 1

from the matrix R(m).
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Let H(m)
j denote the hypothesis that the first non-zero element of µ(m) is µ

(m)
j . Then, we can define

the following likelihood function to evaluate each hypothesis:

L
(

H(m)
j

∣∣∣ R(m)
)
= max

µ(m)∈A(m)
j

f Tν|µ
(

T(m), ν(m)
∣∣∣ µ(m)

)
, 0 ≤ j ≤ Lm − 1, (12)

where set A(m)
j is a set of vector µ(m)s that satisfy H(m)

j , in other words,

A(m)
j =

{
µ(m)

∣∣∣∣arg min
l

[
µ
(m)
l 6= 0

]
= j
}

. (13)

In Equation (12), the likelihood function is defined as the maximum of the conditional density with
respect to all vectors

{
µ(m)

}
that belong to set A(m)

j because the distribution of µ(m) is unknown. For
the conditional density shown in Equation (12), all parameters are independent and every observation
vector is partitioned by µ(m); therefore, they can be easily evaluated. For more details, refer to
the Appendix A.

The hypotheses
{

H(m)
j

}Lm−1

j=0
are all mutually exclusive and exhaustive. In contrast to the

hypothesis testing approach in which only one hypothesis is accepted, we are more interested in
selecting a set of hypotheses that are decently probable. This is to utilize the selected candidates of the
direct reflection for further tracking tasks such as track association and filtering. We choose H(m)

j if and

only if L
(

H(m)
j

∣∣∣ R(m)
)

is greater than the threshold θL. Here, in order to define the probability of false
alarm (PFA) and the probability of detection (PD), we defined the discrete cells of the measurement
time for the sake of convenience. The size of the time cell is 1.95 ns of the time resolution, and PFA and
PD are defined as follows:

PFA =
number of false detections
number of time cells− 2

,

PD =
number of true detections
number of actual targets

.

Figure 8 shows a comparison of the receiver operating characteristic (RoC) curves obtained by
applying the algorithm proposed in this paper and the path loss compensation method proposed
in [10,11] in the three considered scenarios. In the figures, the results obtained via the former method
shows a smaller PFA for the given PD value than those obtained via the latter method. For example,
in Scenario 3, when PD = 0.81, the value of PFA is 0.025 if the former method is used, and 0.045 if the
latter method is used, which are noticeably different values.
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Figure 8. Receiver operating characteristic (RoC) curves for each scenario. (a) Scenario 1; (b) Scenario 2;
and (c) Scenario 3.

4.3. Test Results

We conducted 1D tracking in the three aforementioned scenarios by applying the ghost rejection
algorithm proposed in the previous section. Figure 9 illustrates the measurement scenario introduced
in Section 4.1. Parameter dm refers to the distance from the radar to the target in the mth scan,
xm indicates the range of the target, and ym denotes the distance to the straight line path along
which the target moved. The multi-target tracking algorithm followed the conventional approach
described in [12]. An extended Kalman filter with the following state model was used for the filtering
and prediction process:

xm+1 = Fxm + wm, (14)

where

xm = [xm ẋm ẍm ym]
t , (15)

F =


1 Ts

1
2 T2

s 0
0 1 Ts 0
0 0 1 0
0 0 0 1

 . (16)

The scan interval Ts is 0.2 s, and the system noise wm is a mean-zero Gaussian vector with the
covariance matrixL:

Kw =


0 0 0 0
0 0.1 0 0
0 0 0.5 0
0 0 0 0.01

 . (17)

The measurement model is given by:

dm =
√

x2
m + y2

m + εm, (18)

where the measurement noise εm is also Gaussian with a zero mean and a variance of 0.65. The widely
used nearest neighbor method was employed for gating, and the gating threshold was chosen to be
0.87. The initial state is x0 = [x0 ẋ0 ẍ0 y0]

t = [13 − 0.2 0.01 0.5]t. Figures 10 and 11 show the result of
the tracking algorithm applied to three scenarios. In these figures, it is not easy to perfectly distinguish
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between true tracks and ghost tracks. However, the ghost tracks can be roughly identified by comparing
them with the trajectory of the actual distance of the target shown in Figure 7, and it can be seen
that the number of ghost tracks noticeably decreased when the ghost rejection algorithm was applied.
For example, in Scenario 3, the number of ghost tracks decreased from eleven to two.

 !
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Figure 9. Test scenario.
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Figure 10. Tracking results for each scenario without ghost rejection. Separate tracks are indicated by
different colors. (a) Scenario 1; (b) Scenario 2; and (c) Scenario 3.



Sensors 2017, 17, 43 14 of 16

25 30 35 40 45 50
2

4

6

8

10

12

14

measurement time (s)

ra
n

g
e

 (
m

)

25 30 35 40 45 50 55
2

4

6

8

10

12

14

measurement time (s)

ra
n

g
e

 (
m

)

(a) (b)

25 30 35 40 45
2

4

6

8

10

12

14

measurement time (s)

ra
n

g
e

 (
m

)

(c)

Figure 11. Tracking results for each scenario with ghost rejection. Separate tracks are indicated by
different colors. (a) Scenario 1; (b) Scenario 2; and (c) Scenario 3.

5. Conclusions

In this study, an indirect path that can occur in an indoor radar signal propagation was modeled
statistically. We chose a widely used cluster model and modeled the ToA and the strength of the
indirect path. Statistical modeling of an indirect path by a comprehensive measurement campaign is a
unique contribution of this work. Applying the proposed model in 1D two-target tracking indicated
that the number of ghost tracks is reduced effectively. This result is achieved by screening the candidate
target obtained in the detection stage. If this is combined with the existing ghost rejection algorithm
applied during the data association stage, we expect that additional performance enhancement will
be possible.
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Appendix A

In this section, the conditional density f Tν|µ
(

T(m), ν(m)
∣∣∣ µ(m)

)
shown in Equation (12) is

evaluated. First, the Lm row vectors of the observation matrix R(m) are partitioned into two groups:
one associated with target 0, and the other associated with target 1. Let the observation matrix created
by the target q (q = 0, 1) be R(m)

q . Then,

R(m)
q =

[
T(m)

q , ν
(m)
q

]
=
[

T(m)
n,q , ν

(m)
n,q

]
Lm,q×2

, 0 ≤ n ≤ Lm,q − 1, (A1)

where
(

T(m)
n,q , ν

(m)
n,q

)
∈
{(

T(m)
l , ν

(m)
l

)∣∣∣ µ
(m)
l = q

}
and T(m)

0,q < T(m)
1,q < · · · < T(m)

Lm,q−1,q. By calibrating the

observation matrix, we define R̃(m)
q as:

R̃(m)
q =

[
T̃(m)

q , ν̃
(m)
q

]
=
[

T̃(m)
n,q , ν̃

(m)
n,q

]
Lm,q×2

, 0 ≤ n ≤ Lm,q − 1, (A2)

where T̃(m)
n,q = T(m)

n,q − T(m)
0,q and ν̃

(m)
n,q = ν

(m)
n,q − φ

(m)
q . That is, the ToA of each cluster is calibrated to

become T(m)
0,q = 0, and the cluster energy is scaled by the parameter φ

(m)
q selected to have the minimum

squared error. Here, the parameter φ
(m)
q can be defined as:

φ
(m)
q = arg min

φ

Lm,q

∑
n=0

ν
(m)
n,q − φ +

10T̃(m)
n,q

Γ ln 10

2
 . (A3)

Since parameters
{

T̃(m)
n,q , ν̃

(m)
n,q

}Lm,q−1

n=0
are all independent, the following condition is satisfied:

f Tν|µ
(

T(m), ν(m)
∣∣∣ µ(m)

)
= f T̃ν̃|µ̃

(
T̃(m), ν̃(m)

∣∣∣ µ̃(m)
)

=
1

∏
q=0

Lm,q

∏
n=1

fδ

(
T̃(m)

n,q − T̃(m)
n−1,q

)
· f ν̃|T̃

(
ν̃
(m)
n,q

∣∣∣ T̃(m)
n,q

)
, (A4)

where the marginal density fδ (δ) is given by Equation (5), and the conditional density of ν̃ is given by:

f ν̃|T̃
(

ν̃| T̃
)
=

1√
2πσcluster

exp

−
(

ν̃ + 10T̃
Γ ln 10

)2

2σ2
cluster

 . (A5)
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