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Abstract  

More than decades have already elapsed since human immunodeficiency virus (HIV) was identified as the causative agent of acquired 

immunodeficiency syndrome (AIDS). The HIV has since spread to all parts of the world with devastating effects. In sub-saharan Africa, the 

HIV/AIDS epidemic has reached unprecedented proportions. Safe, effective and affordable HIV/AIDS vaccines for Africans are therefore urgently 

needed to contain this public health problem. Although, there are challenges, there are also scientific opportunities and strategies that can be 

exploited in the development of HIV/AIDS vaccines for Africa. The recent RV144 Phase III trial in Thailand has demonstrated that it is possible to 

develop a vaccine that can potentially elicit modest protective immunity against HIV infection. The main objective of this review is to outline the 

key scientific opportunities, challenges and strategies in HIV/AIDS vaccine development in Africa. 
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Introduction 

 

Since the human immunodeficiency virus (HIV) was previously 

identified as the etiologic agent for acquired immunodeficiency 

syndrome (AIDS) more than three decades ago, the virus has 

spread to almost all parts of the world [1]. Globally, more than 34 

million people are infected and living with the virus [2]. In Sub-

Saharan Africa, the HIV/AIDS pandemic has reached unprecedented 

levels in most countries especially in Southern Africa [2]. The HIV 

that causes AIDS is a lentivirus and has an RNA genome that 

encodes nine open reading frames. The nine proteins encoded are 

classified into four groups, structural proteins (Gag and Env), 

enzyme proteins (Pol), regulatory proteins (Tat and Rev) and (d) 

accessory (auxiliary) proteins (Vpu, Vpr, Vif and Nef). Most of these 

genes are targets for the development of vaccines to be used for 

the prevention and control of HIV infection in Sub-Saharan Africa. 

The recent Thailand’s RV144 phase-III trial has shown that it is 

possible to develop a vaccine that can induce some protective 

immune responses against HIV acquisition [3]. 

  

  

Methods 

 

This was not a systematic review. So medical literature related to 

HIV/AIDS vaccines and other aspects of HIV in Africa was searched 

unsystematically. From the database, PubMed, specific search 

approaches were used. We searched the literature using keywords 

such as “HIV vaccines”, “HIV immune responses”, “HIV vaccines in 

Africa”, “Challenges HIV vaccines”, “HIV genetic diversity” and “HIV 

vaccine approaches”. Only articles with data or results of interest to 

HIV vaccines in Africa were included. The articles selected were all 

in English. Most of the publications we used were from 1983 to 

2013. We also collected literature related to HIV vaccines and 

biology of HIV infection from sources such as books and reports 

from organizations such as UNAIDS (the Joint United Nations 

Programme on HIV/AIDS) and World Health Organization. 

  

  

 

 

 

 

 

 

Current status of knowledge 

 

Immunological expectations of HIV/AIDS vaccines 

  

In Sub-Saharan Africa, the main mode of HIV infection is through 

heterosexual transmission. It is therefore critical that HIV/AIDS 

vaccines for the region provoke both mucosal and systemic innate 

and adaptive immune responses against the virus. Immune cells of 

the innate system play a fundamental role in preventing or control 

HIV infection especially in the early stages of infection [4]. These 

cells secrete chemokines and cytokines that have the potential to 

block viral transmission and replication at mucosal sites. Natural 

killer (NK) cells are important cells of the innate immune system and 

they are capable of killing virus-infected cells either directly or 

through antibody-dependent cell-mediated cytotoxicity and they can 

produce interferon gamma (IFN-γ) and β-chemokines, which have 

anti-HIV activities [5]. Beta-chemokine-specific responses can also 

inhibit HIV entry during infection [6]. The antiviral activities of NK 

cells soon after SIV infection have been demonstrated in rhesus 

macaques [7]. Apart from NK cells, other cells of the innate system 

such as macrophages and dendritic cells also secrete a number of 

chemokines and cytokines that contribute in controlling HIV 

infection during the early stages [8]. In many ways, innate immune 

response controls the disease and regulates the nature and quality 

of the subsequent adaptive immune responses [9]. Thus vaccines 

that provoke the innate immune system may suppress HIV 

replication during the early stages of infection. However, one of the 

greatest challenges is to develop the HIV/AIDS vaccines that can 

activate the innate immune system, thereby subsequently signaling 

the adaptive arm of the system. 

  

CD8+ T cell responses are an important arm of adaptive immunity 

and can play a major role in preventing or controlling of viral 

infections. In HIV infection, CD8+ cytotoxic T lymphocytes (CTLs) 

have the potential to destroy virally-infected cells by a number of 

ways [10]. First, the binding of HIV-specific CD8+ T cells to viral 

peptides presented by human leukocyte antigens (HLAs) on the 

surface of infected cells have the capacity to trigger lysis of HIV-

infected cells [10, 11]. The lysis of the virus-infected cells occurs 

through the production of perforin and granzymes, which penetrate 

into the cells and induce apoptosis [12]. Second, HIV-specific CD8+ 

T cells produce cytokines such as IFN-γ and tumour necrosis factor 

alpha (TNF-α), which all have antiviral activities that can suppress 

replication of HIV [13]. Third, CD8+ T cells produce chemokines 
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that block HIV entry by binding to HIV coreceptors [13]. The 

cytolytic activities of CD8+ T cells can further be enhanced by these 

chemokines [11,13]. Scientific evidence are available that show that 

CD8+ T cell responses play an important role in controlling HIV 

infection or eliminating infected cells. In primary infection, HIV-

specific CD8+ T-cells have been found to suppress or reduce viral 

replication [10,14]. After infection, it has also been found that the 

emergence of HIV-specific CD8+ T-cells is always associated with a 

decreased viral load [15]. Potent HIV-specific CD8+ T cell responses 

in chronic infection are also always correlated with low viraemia and 

reduced disease progression [15]. In animal models of HIV 

infection, it has been shown that depletion of CD8+ T lymphocytes 

would lead to failure to control viral replication [16]. In vitro studies 

have further demonstrated that HIV-specific CTLs can efficiently kill 

HIV-infected cells and inhibit viral replication [17]. It has also been 

noted that highly HIV-exposed seronegative African sex-workers 

had detectable HIV-specific lysis [18]. The emergence of CD8+ T 

cell epitope escape mutants has also been shown to be associated 

with rapid disease progression and this remains a great challenge to 

vaccine development [19]. Furthermore, vaccine-induced CD8+ T 

cell responses have been shown to protect macaques from 

developing AIDS after a challenge with simian-human 

immunodeficiency virus [20]. These studies clearly demonstrate that 

protection or control of HIV infection requires CD8+ T cell responses 

and vaccines targeted for Africans should induce this type of 

immune response. 

  

There is also mounting evidence to support that CD4+ T helper (Th) 

responses play critical roles in prevention or control of HIV-1 

infection and replication [21]. HIV-infected individuals who are long-

term non-progressors have been found to have strong CD4+ T cell 

responses to HIV antigens [21]. CD4+ T cell responses were also 

associated with control of HIV viremia as it was noted that patients 

with the highest CD4+ T cell responses had the lowest viral loads, 

whereas patients with the lowest CD4+ T cell responses had the 

highest viral loads [22]. In some patients, strong CD4+ T helper 

responses were found to be associated with strong CD8+ CTL 

responses [21]. Recent studies have further suggested that HIV-

specific CD4+ Th1 cells producing INF-β and IL-2, together with 

IgG2 were important in long-term control of HIV infection and 

reduced viraemia [23]. Thus, CD4+ T cells provide immunological 

help to CD8+ T cell responses. CD4+ T cells also produce cytokines 

such as IFN-γ and TNF-α that have antiviral activities [24]. CD4+ T 

cells further provide help for antibody responses that may be critical 

for neutralization of the virus. There have been recent reports of the 

cytotoxic CD4+ T-cells detected in HIV infection [25]. Therefore, 

HIV/AIDS vaccines for Africa need to induce specific CD4+ T cell 

responses that would enhance both CD8+ T cell and humoral 

immune responses. 

  

Humoral immune response that is mediated by antibodies produced 

by B cell lymphocytes plays a protective role against many viral 

pathogens including HIV [26]. The antibodies offer protection by 

neutralizing pathogen antigens, thereby preventing infection. 

Infection with HIV induces virus-specific antibody responses [26]. It 

has been demonstrated that HIV-infected individuals elicit high 

levels of antibodies against different viral antigens [27]. The 

antibodies that have the capacity to neutralize HIV (neutralizing 

antibodies) are mainly directed against the viral Env protein and 

they can potentially block HIV replication or infection by virus 

neutralization or antibody-dependent cellular cytotoxicity of HIV-

infected cells [28]. Neutralizing antibodies are normally correlated 

with significant decline of the primary viremia [29]. Furthermore, 

some infected individuals with strong neutralizing antibody 

responses control their viraemia for a long time [30]. Studies in 

animal models have demonstrated that passive immunization with 

monoclonal antibodies generated from HIV-infected individuals such 

as 2F5, 2G12, and 4E10 could protect monkeys from challenge 

infections [31,32]. Studies done on RV144 trial follow-up also 

demonstrated that antibodies to variable loops of HIV-1 Env were 

associated with reduction in the acquisition of the virus [3]. Non-

neutralizing antibodies through antibody-dependent cell-mediated-

ADCC and antibody-dependent cell-mediated viral inhibition also 

play a key role in preventing or controlling HIV infection [33]. 

Therefore, HIV/AIDS vaccines developed for Africans should be 

capable of eliciting both neutralizing and non-neutralizing antibodies 

that can prevent establishment of a new HIV infection or reduce the 

replication of genetically diverse HIV viruses. 

  

Most human pathogens such as HIV infect their hosts through the 

mucosal surfaces. These mucosal surfaces are found in the gastro-

intestinal, urogenital and respiratory tracts and play important role 

in the uptake and transport of pathogens or antigens [34,35]. In 

Africa, the majority of HIV infections occur through mucosal 

exposure to seminal fluid or vaginal secretions of infected 

individuals. On top of mucosal transmission, HIV replicates in the 

mucosal lymphoid tissue before systemic spread [36]. The CD4+ T 

cells of mucosal lymphoid tissues are also the targets of HIV 

throughout infection, leading to their depletion [37]. Mucosal 

plasma cells synthesize secretory immunoglobulin A (IgA) that has 
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the potential to neutralize HIV [38]. Mucosal surfaces are rich in 

immune cells such as dendritic cells, macrophages, CD4+ and CD8+ 

T cells which can play important roles in provoking immunity to a 

variety of pathogens including HIV [39]. Studies have demonstrated 

the presence of SIV- and HIV-specific CD8+ T cell responses in the 

genital tracts of infected macaques [40]. Inducing humoral, CD8+ 

and CD4+ T cell responses at mucosal surfaces with vaccines can 

potentially prevent or control HIV replication in the mucosal 

lymphoid tissue. One of the key advantages of mucosal vaccination 

against HIV is that mucosal immunity protects systemic infection, 

whereas systemic immunity poorly protects against mucosal 

infection [41]. The other advantage of mucosal vaccination is that 

antigenic exposure at one mucosal site activates B and T cells to 

emigrate and home to other mucosal surfaces, thereby conferring 

protection at these sites [42]. Protective vaccine-induced mucosal 

immunity against HIV has been demonstrated in animal models 

[43]. Therefore the challenge is to develop HIV vaccines for Africa 

that can induce both B and T cell responses in mucosal tissues. 

  

Immune correlates of HIV protection in Africa 

  

To date, the exact immune correlates of protection against natural 

HIV infection are poorly defined. However, it is generally regarded 

that HIV protective immune responses should comprise of CD8+ T, 

CD4+ T cell and humoral immune responses. Different components 

of these immune responses have different effectiveness in 

preventing or controlling HIV infection. Whereas neutralizing 

antibodies can potentially block HIV infection, they are not effective 

against cells that are already infected [44]. Cellular immune 

responses can control HIV infection, but cannot prevent infection. 

The key challenge is to develop vaccines that can induce multiple 

forms of immune responses against HIV. Mucosal immune 

responses may potentially be required to control the early stages of 

HIV infection and replication. Mucosal immunity may also delay 

systemic spread of the virus. To date, we do not clearly know the 

exact nature, quality and magnitude of immune responses that 

should be elicited by the HIV or HIV/AIDS vaccine. Nevertheless, 

recent animal studies have suggested that vaccine-induced SIV-

specific memory CD8+ T and CD4+ T cells may correlate with 

protection against simian AIDS disease in monkeys [45,46]. 

Although CD8+ T cell and neutralizing antibodies are considered 

important for HIV protection or control of infection, the RV144 trial 

has demonstrated that non-neutralizing antibodies are also crucial 

[3]. Non-neutralizing antibodies can mediate antibody-dependent 

cellular cytotoxicity (ADCC), thereby protecting against HIV infection 

[47]. ADCC is important because it is associated with reduced 

HIV/AIDS diseases progression and prevention of cell-to-cell spread 

by the virus [48]. However, the rise of ADCC-escape HIV variants 

can be a scientific challenge to HIV/AIDS vaccine development [49]. 

Another key challenge is that antibodies mediated via complement 

system or Fc receptors can unfortunately facilitate the infectivity of 

the HIV [50]. 

  

Scientific challenges to HIV/AIDS vaccine development for 

Africa 

  

Current efforts in development of HIV vaccines for Sub-Saharan 

Africans are hampered by a number of scientific challenges. A key 

characteristic feature of HIV subtypes in Sub-Saharan Africa is their 

high genetic variability [51]. The genetic diversity and high mutation 

rate emanate from the failure of the HIV reverse transcriptase (RT) 

enzyme to proof-read the viral genome during replication [52]. The 

RT can further facilitate the generation of new viral genetic 

recombinants due to its recombinogenic properties [53]. These two 

factors contribute to the generation of high genetic diversity of HIV 

in Africa. The HIV has been divided into groups, sub-types and 

circulating recombinant forms (CRF) and unique recombinants [54]. 

Three distinct HIV-1 groups of viruses exist [54]. They are M 

(main), O (outlier) and N (new or non-M/non-O). Group M viruses 

are responsible for the majority of HIV-1 infections worldwide 

including Africa. Group O isolates are highly divergent from group 

M, their prevalence is low compared to other viruses and infection is 

confined to West African countries. Phylogenetic analysis of the env 

and gag genes of the group M has established 9 distinct subtypes 

(subtypes A, B, C, D, F, G, H, J and K) [55]. Different parts of Africa 

have different HIV-1 subtypes being prevalent. The genetic diversity 

of HIV-1 subtypes and emergence of new recombinants remains 

one of the key challenges in vaccine development in Africa. It is 

therefore remains a great challenge to develop HIV/AIDS vaccines 

that can target all the diverse HIV-1 subtypes and recombinants 

circulating in Africa. Another strategy will be to develop vaccines 

specific for specific regions of Africa that include only antigens of 

the circulating subtypes. 

  

As stated above, the correlates of protection after HIV infection or 

vaccination are very complex and poorly understood [56]. Our poor 

understanding of the correlates of HIV protection makes the 

development of vaccines for Africans a great challenge. However, 

studies in Africa have given us some clues of the requirements or 

expectations of an AIDS vaccine. Some sex workers in Africa were 
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found to be resistant to HIV infection despite them being exposed to 

the risk [18]. The high prevalence of HIV discordance in African 

couples also suggests that the correlates of protection exist in the 

African populations [57]. Further research on HIV discordance 

should bring a deeper understanding of some of the correlates of 

protection in Africans and can subsequently lead to the development 

of vaccines. 

  

Currently, there are no good animal models to test HIV/AIDS 

vaccines. Chimpanzees and macaques are most commonly used to 

study the HIV pathogenesis as well as vaccines [58]. Mice are also 

used in pre-clinical evaluation of vaccines, but results in mice do not 

normally predict what will be found in humans. The use of monkey 

or baboon primate models in studying HIV/AIDS vaccines has also 

its drawbacks. Data generated from mouse, monkey or baboon 

models do not normally translate to what will be found in human 

clinical trials. Humanized mice can also be used in testing HIV/AIDS 

vaccines, but they do not normally elicit strong immune responses 

[59]. 

  

Bantu-speaking African populations of Sub-Saharan Africa are highly 

diverse genetically [60]. The high prevalence of high-risk exposed 

HIV-seronegative individuals in Africa has suggested the role of 

genetic factors in influencing HIV infection or immune responses to 

infection [61]. Some of the genetic factors include the genes of HIV 

coreceptors and their natural ligands, the human leukocyte antigen 

(HLA), apolipoprotein B mRNA-editing, enzyme-catalytic (APOBEC), 

tripartite motif-containing protein 5 (TRIM5) and killer cell 

immunoglobulin-like receptor (KIR) genes [62,63]. The geographic 

and genetic variations in some of these host genes especially the 

HLA haplotypes in Africa are likely to affect immune responses to 

HIV infection or vaccinations in Africans. It is therefore important to 

bear this in mind when developing HIV/AIDS vaccines for Africans 

that genetic diversity may cause variation in immune responses. 

  

Scientific strategies for HIV/AIDS vaccine development for 

Africa 

  

To date, there is no licensed HIV/AIDS vaccine for Africa. Several 

rational and empirical strategies to HIV vaccine development have 

so far failed dismally. However, a variety of these strategies need to 

be refined if we are to develop potential vaccine candidates for 

Africa. It has been a classical approach to use inactivated viruses as 

vaccines. It is possible to inactivate HIV and this strategy has been 

explored [64,65]. Although the inactivated HIV vaccine candidates 

may be safe for use, even in immunocompromised people, the 

strategy is not advocated for due to poor immunogenicity elicited by 

these vaccines. Such HIV vaccines would not be very helpful for 

Africa, given their poor immunogenicity. The great challenge is to 

generate inactivated vaccines that are highly immunogenic in 

Africans. It is easy to genetically attenuate viruses such as HIV 

using modern tools of genetic engineering whereby mutations or 

deletions are introduced in specific viral genes. This generates 

genetically attenuated HIV vaccines, which are expected to confer 

immunogenicity without causing AIDS. Although some of the live 

attenuated HIV vaccines have shown a degree of protective efficacy 

in animal models this approach has not attracted much attention 

because of safety concerns in humans [66-68]. To date, no live 

attenuated HIV/AIDS vaccine candidates specifically developed for 

Africa have been tested in clinical trials. Subunit vaccine candidates 

against HIV/AIDS have been developed [69,70]. These vaccines are 

based on purified HIV antigens such as Envelope and Gag. Most of 

the early HIV/AIDS vaccines that entered Phase I trials were based 

on Envelope subunit. HIV virus-like particles (VLPs) are also subunit 

vaccines generated from the expression of Gag alone and can be 

used as immunogens. They have been found to be immunogenic in 

animal trials especially when used in prime-boost strategies with 

other vaccines [70,71]. Although HIV/AIDS subunit vaccines have 

been found to be immunogenic in animals, human trials have shown 

disappointing results. 

  

Recombinant plasmids, when used as DNA vaccines induce immune 

responses specific to the antigen genes carried [72]. Most HIV DNA 

vaccines have been shown to be safe and to induce protective 

immune responses in animal models [73,74]. Induction of both 

CD8+ CTL and humoral immune responses were demonstrated in 

animals primed with gp120 DNA vaccine and boosted with gp120 

subunit vaccine [75]. A number of candidate DNA vaccines for HIV-1 

have already been developed and some tested in Africa for 

immunogenicity [76-78]. Such vaccines are likely to be useful in 

Africa since they induce strong immune responses especially if they 

are used in prime-boost strategies. Recombinant live viruses can be 

exploited as vaccine vectors for heterologous antigens [79,80]. The 

key advantage of viral vectors is that they can generate very strong 

antigen-specific CD8+ and CD4+ T cell as well as humoral immune 

responses [79-81]. Most viral vectors can target both the innate and 

adaptive immune responses at both the mucosal and systemic 

compartments. A number of viral vaccine vectors for HIV antigens 

have so far been developed and tested. These viral vaccine vectors 

have been genetically engineered to express different HIV antigens. 
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Effective anti-HIV immunity, sometimes protective, has been 

observed in a number of animal studies in which vectors such as 

adenovirus, alphavirus, sendai virus, herpes simplex virus, human 

rhinovirus and polio virus were used to express HIV antigens [82-

86]. Recombinant viral vectors therefore seem to offer great 

opportunities for vaccine development for Africans because of their 

ability to induce strong HIV-specific immune responses. 

Recombinant bacteria can also be used to deliver heterologous 

antigens to the host’s immune system [87]. Their potential use as 

candidate HIV vaccine vectors to deliver either HIV antigens or HIV 

DNA vaccines is currently being increasingly studied. Recombinant 

Bacillus Calmette-Guerin (BCG) expressing HIV antigens has been 

shown to induce antigen-specific immune responses in vaccinated 

animals [88]. BCG is generally a good vaccine vector for HIV/AIDS 

because of a number of reasons such as its known safety record 

[89]. Another attractive bacterial vaccine vector for HIV/AIDS 

is Listeria monocytogenes [90]. The key advantage of Listeria as a 

vaccine vector is that it replicates in the cytosol, thereby inducing 

both strong CD8+ and CD4+ T cell responses. Shigella is also an 

attractive vector that is capable of replicating in the cytosol thereby 

inducing strong cellular immune responses [91]. 

Attenuated Shigella strains have already been successfully used to 

deliver HIV DNA vaccines, resulting in induction of HIV-specific 

CD8+ T responses [92]. Recombinant Salmonella has also a great 

potential as a vaccine vector for HIV [93-95]. Therefore, 

recombinant bacterial vaccine vectors can be harnessed in the 

development of HIV/AIDS vaccines for Africa. 

  

Candidate HIV/AIDS vaccines for Africa can be used in prime-boost 

strategies in order to improve their potency and effectiveness. In 

these strategies, one vaccine is used to prime the immune system 

and the second vaccine is used to boost the response [96,97]. A 

number of candidate HIV/AIDS vaccines have already been tested in 

a prime-boost strategy and have been shown to induce good 

responses [98,99]. DNA vaccines have already been shown to be 

best at priming and recombinant viral vectors such as poxvirus 

vectors are good at boosting the immune responses [100]. Even the 

Thailand’s RV144 phase-III trial used the prime-boost strategy in 

which a recombinant canarypox vector-based candidate was used in 

combination with an engineered HIV-1 gp120 protein [3]. 

  

 

 

 

Conclusion 

 

The HIV/AIDS remains a serious public health problem in Africa and 

development of safe, effective and affordable vaccines for the 

region remains a daunting challenge. However, a number of efforts 

have already been done to develop candidate vaccines. 
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