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Abstract: Human cytochrome P450 enzymes (CYPs) are heme-containing monooxygenases. This
superfamily of drug-metabolizing enzymes is responsible for the metabolism of most drugs and
other xenobiotics. The inhibition of CYPs may lead to drug–drug interactions and impair the
biotransformation of drugs. CYP inducers may decrease the bioavailability and increase the clearance
of drugs. Based on the freely available databases ChEMBL and PubChem, we have collected over
70,000 records containing the structures of inhibitors and inducers together with the IC50 values for
the inhibitors of the five major human CYPs: 1A2, 3A4, 2D6, 2C9, and 2C19. Based on the collected
data, we developed (Q)SAR models for predicting inhibitors and inducers of these CYPs using
GUSAR and PASS software. The developed (Q)SAR models could be applied for assessment of the
interaction of novel drug-like substances with the major human CYPs. The created (Q)SAR models
demonstrated reasonable accuracy of prediction. They have been implemented in the web application
P450-Analyzer that is freely available via the Internet.

Keywords: CYP; inhibitors; inducers; (Q)SAR models; PASS; GUSAR; drug-like compounds;
metabolism; in silico prediction; P450 isoforms; 1A2; 3A4; 2D6; 2C9; 2C19

1. Introduction

Biotransformation of xenobiotics (in other words, drug metabolism) can be described
as the biological transformation of external to organism lipophilic nonpolar molecules
into more hydrophilic polar metabolites, which in turn are easily excreted from the body.
Biotransformation has a significant effect on the pharmacokinetics of most drugs. From
the chemical point of view, drug metabolism reactions can be divided into two large
categories: oxidative reactions (phase I) and conjugation reactions (phase II) [1]. The
human cytochrome P450 enzyme (CYP) family is the main phase I enzymes and contains
57 isoenzymes. CYPs metabolize approximately two thirds of known drugs in humans,
with 80% of this process occurring by five isoenzymes—1A2, 2C9, 2C19, 2D6, and 3A4 [2].
Safety is a serious problem for many launched drugs, especially for patients taking multiple
medications [1,3]. Adverse drug reactions (ADRs) are among the top 10 leading causes
of death, and it is estimated that one hundred thousand deaths per year are attributed to
ADRs [1]. ADRs caused by drug–drug interactions (DDIs) can lead to early termination
of drug development or even to the withdrawal of drugs from the market; astemizole,
cerivastatin, cisapride, terfenadine, and mibefradil are some examples of drugs withdrawn
from the market. It is known that most DDIs are mediated through CYP inhibition and
induction [3,4]. Such DDIs are manifested by the effect of one drug (the perpetrator drug)
on the biotransformation of others (the victim drugs); this may be a slowdown in the case of
the inhibition of CYPs or an acceleration in the case of the induction of CYPs; nevertheless,
the pharmacological action of coadministered drugs may be altered. In some cases, DDIs
can cause more than tenfold increases or decreases in victim drug exposure, with dangerous
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health effects [5]. Thus, the FDA’s guidance documents prescribe the preliminary screening
of drugs for interaction with CYPs [6].

In vitro and in vivo investigations are performed to study the safety and side effects
of drugs. Computational (in silico) approaches take much less time to evaluate a large
number of compounds both for the known drugs and for new, not yet synthesized drug-like
substances. Recently, various computational approaches have been used to create structure–
activity relationship (SAR) classification models for predicting drug activity in relation to
the interaction with CYPs; a comprehensive description of the methods for DDIs in silico
prediction is presented in the review [7]. In silico predictions of interaction with CYPs are
made using two approaches: ligand-based and structure-based. Ligand-based predictions
of inhibition can be performed by two categories of methods: regression (predicted using
IC50 or Ki values of CYP) and classification (predicted using the category of CYP inhibitory
potency). The induction prediction for some CYPs can be performed indirectly by an
assessment of the xenobiotic’s interaction with nuclear receptors: the aryl hydrocarbon
receptor (AhR), the constitutive androstane receptor (CAR), and the pregnane X receptor
(PXR). Structure-based approaches to predicting inhibition of CYPs use CYP structures,
docking simulations, and/or molecular dynamics and were not applied for the creation of
web services due to the complexity of implementation. Some of the created ligand-based
SAR models were implemented as freely available web applications, which predict, based
on the structural formula of compounds, their ability to inhibit CYP isoforms important for
drug metabolism. They are PreADMET [8], pkCSM [9], SwissADME [10], WhichCyp [11],
CYPlebrity [12], vNN-ADMET [13], AdmetSAR [14], and SuperCYPsPred [15]. Despite the
good predictive accuracy of these applications, they do not predict CYP-inducing activity
and IC50 values of the inhibitors. To overcome these limitations, we created the freely
available web application P450-Analyzer, which predicts inhibition (including IC50 values)
and directly predicts the induction of CYPs with reasonable accuracy.

2. Results

Using GUSAR [16] and PASS [17] software based on the data from ChEMBL and
PubChem database, we created (Q)SAR models for inhibitors and SAR models for inducers
of the most important drug-metabolizing isoform of CYPs.

320 QSAR models were built based on the data from ChEMBL by GUSAR using
different sets of QNA (Quantitative Neighborhoods of Atoms) and MNA (Multilevel
Neighborhoods of Atoms) descriptors and the RBF–SCR (Radial-Basis Function and Self-
Consistent Regression) algorithm for each training set with the information about the
appropriate isoforms of CYPs. Only those QSAR models in which R2 exceeded 0.6 and Q2

exceeded 0.5 were selected in the consensus models. The 5-fold cross-validation (5-fold-CV)
procedure was used to validate the accuracy of the prediction of QSAR models. The initial
datasets were sorted by the ascending mode of pIC50 values. After that, the sets were
divided into five parts, which were used for the 5-Fold-CV procedure. As a result, different
five training and five external test sets for IC50 data were created for each isoform. The
prediction accuracy of the created consensus QSAR models along with the characteristics
of the training sets are represented in Table 1.

Table 1 shows that Q2 values in QSAR models for the CYPs 1A2, 2C9, and 3A4 exceed
0.6. The standard deviations between the predicted and experimental data for almost all
studied isoforms of CYPs were less than 0.6 and close to 0.5, excluding CYP 1A2 (0.625),
which reflects the acceptable accuracy of prediction. RMSE values given on the test sets
during 5-fold cross-validation vary from 0.565 (2C19) to 0.682 (1A2). They are less 0.7
and may be considered as applicable. R2 values given on the test sets during 5-fold cross-
validation (R2

5-Fold-CV) exceed 0.5 for 1A2, 2C9, and 3A4. R2
5-Fold-CV for 2C19 and 2D6

are less 0.5, and the prediction results of such models should be treated with caution.
Most compounds from the test sets during 5-fold cross-validation fall into the applicability
domain (AD). The percent of compounds in AD exceed 95% for all isoforms.
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Table 1. Characteristics of the training sets and prediction accuracy of consensus QSAR models for
CYP inhibitors.

CYP Ncmp
Interval of

Values, pIC50

Mean Value,
pIC50

Nmdls
Training Sets 5-Fold-CV

R2 Q2 SD R2 RMSE AD, %

1A2 1216 [1.6:8.8] 5.47 65 0.999 0.680 0.625 0.614 0.682 99.4
2C9 1657 [1.5:9.0] 5.28 72 0.994 0.609 0.512 0.508 0.565 95.6

2C19 930 [2.8:8.3] 5.16 68 0.992 0.501 0.519 0.348 0.588 99.0
2D6 1588 [1.2:9.2] 5.32 59 0.972 0.566 0.567 0.480 0.619 97.1
3A4 3299 [1.4:10.3] 5.39 89 0.992 0.640 0.528 0.589 0.562 98.2

Ncmp—number of compounds in the training set; Nmdls—number of QSAR models in the appropriate consensus
model; SD—standard deviation; 5-Fold-CV—results given on the test sets during 5-fold cross-validation; AD,
%—% of compounds from the test sets in applicability domain.

For all CYP isoforms in the training sets, the pIC50 value ranges are characterized
by a significant width and include both inactive and very active compounds. The mean
values of pIC50 are close to 5, which is a threshold used by medicinal chemists to make a
division between the active and inactive compounds [18]. Therefore, the created QSAR
models may be used in web applications for estimating the degree of activity of potential
inhibitors of the CYPs. Taking into account the mean values and the values of standard
deviation (Table 1), one may conclude that compounds with prediction results, including
pIC50 values exceeding 6, may be considered as potential inhibitors of the appropriate
CYPs and should by experimentally tested.

Fifteen classification SAR models, depending on the training sets, for prediction of
inhibitors for appropriate isoforms of CYPs were built using PASS software. In this case,
in addition to a dataset from ChEMBL, we used a dataset from PubChem. The accuracy
of prediction for the created SAR models and sources of the training sets are represented
in Table 2. The “Total” column represents models, which were built from both ChEMBL
and PubChem resources. To calculate the quality of the SAR model, we used the Invariant
Accuracy of Prediction (IAP) (which is numerically similar to ROC AUC), calculated by
leave-one-out cross-validation procedure (LOO CV) and 20-fold CV. As one may see, for
both ChEMBL and PubChem training sets, the best models were obtained for CYP1A2. The
combined training set allowed us to improve the quality only for 2D6; in all other cases, the
models with PubChem data were better.

Table 2. Prediction accuracy (IAP) for classification models.

CYP
ChEMBL PubChem Total

LOO CV 20-Fold CV LOO CV 20-Fold CV LOO CV 20-Fold CV

1A2 0.884 0.884 0.937 0.937 0.923 0.922
2D6 0.873 0.873 0.861 0.861 0.891 0.891
2C9 0.827 0.826 0.875 0.875 0.855 0.854

2C19 0.816 0.813 0.879 0.878 0.856 0.856
3A4 0.845 0.845 0.896 0.895 0.871 0.870

The created (Q)SAR models were implemented in a new web application (P450-
Analyzer), which is freely available at http://www.way2drug.com/p450-analyzer/ (ac-
cessed on 16 August 2022). It provides the ability to draw the structures in Marvin Applet,
to input SMILES or drug name, or to use the initially prepared MOL file. The prediction
results include three tables (Figure 1). The first table is a result of the QSAR models’ appli-
cation, which represents the numerical estimation of pIC50. The highest predicted pIC50
values represent the most potent inhibitory activity of compounds for the appropriate
CYP isoforms. The second table presents a result of classification models to predict the
belonging of inhibitors of CYP isoforms. The table includes the name of the isoenzymes,
Pa and Pi values, which are the probabilities “to be inhibitors” and ”to be non-inhibitors“,

http://www.way2drug.com/p450-analyzer/
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respectively. For our web application, we used models obtained from both datasets (“Total”
column in Table 2). The third table represents the selected activities from the PASSOnline
(http://www.way2drug.com/passonline/) (accessed on 16 August 2022); these activities
are responsible for the belonging of compounds to CYP inducers. The training set of PASS
software is collected from various sources, including commercially available databases, and
currently contains over 1.5 million compounds. PASS predicts more than eight thousand
activities with an average accuracy about 0.93, estimated in leave-one-out cross-validation.
The accuracy of prediction for the selected activities related to CYP inducers is represented
in Table 3.
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Table 3. Characteristics of selected activities from PASSOnline.

Activities Npos IAP, LOO CV IAP, 20-Fold CV

1A2 inducer 26 0.907 0.905
2C9 inducer 28 0.846 0.846
2C19 inducer 8 0.840 0.839
2D6 * inducer 4 0.604 -
3A4 inducer 78 0.893 0.879

Npos—number of inducers in the training set; IAP, LOO CV—Invariant Accuracy of Prediction calculated by
leave one-out cross-validation procedure. * The number of the four finding CYP 2D6 inducers is too small to
create good SAR model.

Each table generated in the web application may be downloaded as PDF, CSV, and
Excel files.

http://www.way2drug.com/passonline/
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In order to demonstrate how the web application may be used (Figure 1), we took
Rifampicin, which is a well-known inducer of CYPs [19] as a case study. In Figure 1, one
can see three tables: table A represents the numerical estimation of pIC50, and tables B
and C represent a probabilistic assessment of belonging to inhibitors or inducers of CYPs,
respectively. We chose the default threshold Pa>Pi for displaying possible activities. As one
can see in Figure 1, in table B, there are no activities, meaning that no inhibitory activity
was predicted with Pa>Pi; therefore, Rifampicin could not be classified as a CYP inhibitor.
This result coincides with the predicted result of pIC50 values (table A), which are less
than 6, and it means that Rifampicin is not a CYP inhibitor. There are three activities in
table C. So, Rifampicin is correctly predicted as the inducer of the CYPs 3A4, 2C9, and
2C19. It should be emphasized that Rifampicin was excluded from the training set before
the prediction.

3. Discussion

CYP-mediated metabolism represents a major route of elimination of many drugs;
therefore, information about CYP inhibition and induction is very important to prevent
DDIs. We created the web application (P450-Analyzer), which allows estimating the
possibility for a drug-like compound to be an inhibitor or inducer of CYPs. Unlike the
other existing computational tools, our web application provides an estimation of the IC50
values, which allows classifying compounds as strong, moderate, and weak CYP inhibitors.
Thus, with the P450-Analyzer, it is possible to perform a more thorough analysis of the
potential DDIs. In addition, the P450-Analyzer allows estimating the inducing activity of
compounds for five of the most important drug-metabolizing isoforms of CYPs.

4. Materials and Methods
4.1. ChEMBL and PubChem

Similar to the CYPlebrity [12], we used the ChEMBL and PubChem databases as a
resource for extraction of structures and experimental data for compounds studied on
inhibition of CYPs 1A2, 3A4, 2D6, 2C9, and 2C19. The selection criteria were the same as in
the publication [12].

From PubChem, we took bioassay 1851 dataset [20], which was downloaded as CSV
table; then, SMILES notations for the selected compounds were retrieved by querying
PubChem’s download services. Compounds with “Pubchem_activity_outcome” = “active”
supported by a “Complete curve” were assigned to the “inhibitors” class. Compounds
with “Pubchem_activity_outcome” = “inactive” were marked as “non-inhibitors”.

On the basis of ChEMBL, we created two types of training sets. The first type was used
to build classification models and contains qualitative information; the compounds were
classified as inhibitors or noninhibitors, based on IC50 values and percentage of inhibition.
The entries with IC50 lower than 10,000 nM were defined as inhibitors if the field ”standard
relation“ containing any of the signs “=”, “≤”, or “<”. The entries with IC50 exceeding
20,000 nM were defined as noninhibitors if the field ”standard relation“ containing one of
signs “=”, “≥”, or “>”. In addition, the entries with percentage of inhibition > 50% were
defined as inhibitors and otherwise as noninhibitors. The conflicting data (if the same
structure was classified as inhibitor and noninhibitor) were removed from the training set.

The second type of training sets was used to build QSAR models and contained
quantitative data on enzyme inhibition. For these types of training sets, only IC50 values
with the field “standard relation” containing sign “=” were considered. The data in the
training sets for double records of the same structures were recalculated as median values.
IC50 values in nM were converted to pIC50 = −log10

(M).
After the data selection and filtration of the training sets containing structures and

appropriate information (pIC50 or belonging to inhibitors), the SDfiles were created for
the appropriate CYP isoforms. Then, these training sets were used in PASS and GUSAR
software to build the appropriate (Q)SAR models. Characteristics of the training sets for
development of classification models are represented in Table 4.
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Table 4. Characteristics of the training sets for development of classification models.

CYP
ChEMBL PubChem Total

Npos Nneg Npos Nneg Npos Nneg

1A2 1098 2183 2035 3680 3141 8536
2D6 1955 3414 999 10,249 2912 13,625
2C9 2074 2750 1586 7635 3642 10,346

2C19 1050 1706 2538 6484 3571 8159
3A4 3836 4501 1890 6829 5702 11,295

Npos—number of inducers in the training set; IAP, LOO CV—Invariant Accuracy of Prediction, calculated by
leave one-out cross-validation procedure

The intersections of the training sets in “Total” model are shown in Figure 2. As
can be seen, the compounds presented in the sets usually inhibit only one isoenzyme;
133 compounds inhibit all isoenzymes. Among the noninhibitors, most compounds do not
inhibit any of the enzymes.
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Additionally, “Total” model chemical space of inhibitors and noninhibitors was shown
by molecular weight as X-axis and logP, calculated by RdKit, as Y-axis (see Figure 3).
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4.2. GUSAR

GUSAR software [16,21] was used to create the QSAR models predicting the inhibition
of CYP isoforms on the basis of the structural formula of compounds. GUSAR is based
on the representation of the compound structure by QNA and MNA descriptors [16,17] A
combined RBF–SCR algorithm was used to build the relationships between the descriptors
and biological activity [22]. To improve the accuracy of prediction, GUSAR allows to create
a consensus model; the final predicted value for each activity/end point is estimated by
including the weighted average of the predicted values from the set of QSAR models [23].
The value obtained from each model is weighted by the similarity value calculated in the
estimation of its applicability domain. For applicability domain calculation in GUSAR,
three different approaches are used for each model: similarity, leverage, and accuracy
assessment [23].

4.3. PASS

PASS software [17] predicts the profile of biological activity based on advanced naïve
Bayes classifier. The molecular structures of compounds are described by Multilevel
Neighborhoods of Atom (MNA) descriptors. Accuracy of prediction is estimated in PASS
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by leave one-out cross-validation procedure using the IAP criterion. IAP is a probability
that is randomly selected from an independent test set; positive and negative examples
will be correctly classified [14]. The PASS output is a ranked list of activities with estimates
the probabilities ”to be active“ Pa and ”to be inactive“ Pi. The activities with Pa > Pi are
considered as possible. The percent of new MNA descriptors for the tested molecule is used
in the web application for assessment of the applicability domain; the higher the percent
of new MNA descriptors, the less the molecule structure is appropriate for the model.
The tested molecules with up to 25% of new MNA descriptors are in the applicability
domain [24].

Supplementary Materials: The following supporting information can be downloaded as archive
containing SDfiles at: https://www.mdpi.com/article/10.3390/molecules27185875/s1.
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