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Abstract: A series of novel cannabinoid-type derivatives were synthesized by the coupling of (1S,4R)-(+)
and (1R,4S)-(−)-fenchones with various resorcinols/phenols. The fenchone-resorcinol derivatives
were fluorinated using Selectfluor and demethylated using sodium ethanethiolate in dimethylfor-
mamide (DMF). The absolute configurations of four compounds were determined by X-ray single
crystal diffraction. The fenchone-resorcinol analogs possessed high affinity and selectivity for the
CB2 cannabinoid receptor. One of the analogues synthesized, 2-(2′,6′-dimethoxy-4′-(2′′-methyloctan-
2′′-yl)phenyl)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol (1d), had a high affinity (Ki = 3.51 nM) and
selectivity for the human CB2 receptor (hCB2). In the [35S]GTPγS binding assay, our lead com-
pound was found to be a highly potent and efficacious hCB2 receptor agonist (EC50 = 2.59 nM,
E(max) = 89.6%). Two of the fenchone derivatives were found to possess anti-inflammatory and anal-
gesic properties. Molecular-modeling studies elucidated the binding interactions of 1d within the
CB2 binding site.

Keywords: cannabinoid agonists; hCB2 receptor; inflammation; fenchone

1. Introduction

Fenchone is a bicyclic monoterpene present in essential oils of plant species [1] and is
a component of the volatile oil of fresh and air-dried buds of Cannabis sativa [2]. It exerts
anti-inflammatory action in rats as noted in a carrageenan-induced right hind-paw edema
model [3]. Being a major constituent of Foeniculum vulgare essential oil, fenchone was
shown to have an anti-nociceptive activity in the tail-flick pain mouse model, without
inducing motor incoordination [4]. Recent data have demonstrated the protective effects
of Lavandula stoechas essential oil, where the principal compound is D-fenchone (29.28%),
against diabetes and oxidative stress induced by alloxan treatment in rats. Lavender
essential oils also decrease kidney and hepatic injuries through their antioxidant properties
and play a major role as hepato- and nephroprotection products [5].

Monoterpenes and 5-substituted resorcinols are widely used for the syntheses of
cannabinoids [6]. Many of them modulate the endocannabinoid system (ECS), which
is an emerging target for the regulation of inflammation and the immune response [7].
ECS activation occurs either via ligands binding to the cannabinoid receptors 1 (CB1R)
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and 2 (CB2R) or in an indirect way, by promoting the synthesis of endocannabinoids, or,
alternatively, in inhibiting their degradation. CB1R is abundant in the central nervous
system (CNS) and mediates the classical psychotropic effects, whereas CB2R is mainly
expressed in the cells and tissues of the immune system and the astrocytes and microglia in
the CNS [8].

CB2R has become an attractive target since it does not cause the adverse psychotropic
effects associated with CB1R activation. Activation of CB2R inhibits upstream and down-
stream molecules of the inflammatory process, and its stimulation exerts analgesic activ-
ity. It is known to be up-regulated in pathological conditions correlated with the onset
of inflammatory events in cancer and neurodegenerative diseases [9]. CB2 agonists re-
strain inflammatory responses in hepatic ischemia-reperfusion injury [10], uveitis [11]
and contact dermatitis [12]. Some synthetic agonists, such as HU-308 [12], JWH-133 [13]
and HU-910 [14] (Figure 1) have terpene and resorcinol-derived moieties in their struc-
ture, and hence they resemble the phytocannabinoids ∆9-tetrahydrocannabinol (∆9-THC)
and cannabidiol (CBD). Other, non-phytocannabinoid-type agonists have also been re-
ported [15].

Figure 1. Chemical structure of some CB2 receptor agonists.

Here, we present the synthesis and structural identification of twenty-four novel bi-
cyclic monoterpenoid fenchone derivatives with different alkylresorcinol and alkylphenyl
groups. We started with the synthesis of fenchone-alkylresorcinols and fenchone-alkylphenols
(Figure 2, Substitution I) in alignment with the previously reported HU-308 [12], JWH-133 [13]
and HU-910 [14] (Figure 1). Next, we explored the effect of fluorination of the aromatic
ring in the fenchone-alkylresorcinols (Figure 2, Substitution II) bearing different aliphatic
substituents. Then, the fenchone-alkylresorcinols with different alkyl substituents were
demethylated (Figure 2, Substitution III).

Figure 2. Structural modifications employed in the SAR study.
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The compounds were characterized by NMR, GCMS and LC-UV-MS (ESI). 1D and 2D
NMR experiments (DEPT, gCOSY, TOCSY, HSQC and HMBC) were used to determine the
structure assignment of three different fenchone derivatives. The absolute configurations
of four derivatives were determined by single-crystal X-ray diffraction. The binding
affinities of the fenchone derivatives at the human CB1R (hCB1R) and CB2R (hCB2R) were
assessed. Affinity data (Ki values) were used to calculate the selectivity indices of these
compounds. These ligands were also examined in the [35S]GTPγS binding assay with the
aim of evaluation of their functional activity. To assess the in vivo efficacy of the newly
developed chemotypes, two compounds from the most potent series were selected to be
tested for their anti-inflammatory and anti-nociceptive properties. In addition, we carried
out molecular-modeling studies to know the binding interactions of 1d within the CB2
binding site and compare with the parent CB2 compounds.

2. Results and Discussion
2.1. Chemistry

(1S,4R)-(+)-fenchone and (1R,4S)-(−)-fenchone (Figure 3) were used in this study to syn-
thesize novel cannabinoid-like compounds. The general routes to the synthesis of the targeted
fenchone-resorcinol/phenol are shown in Schemes 1–3. Introducing a 2-aryl substituent onto
the fenchyl system has been previously reported [16,17]. The synthesis is mainly comprised
of a three-step sequence. In the first step, alkylresorcinol dimethyl ethers/alkylphenol methyl
ethers were prepared in good yields from the corresponding 5-alkyl resorcinols (olivetol,
5-(1,1-dimethylheptyl)resorcinol and orcinol) (Scheme 1), 4-hexyl resorcinol (Scheme 2) and
4-alkylphenols (4-propylphenol, 4-pentylphenol, 4-tert-amylphenol and 4-tert-octylphenol)
(Scheme 3) using potassium carbonate, anhydrous DMF and iodomethane. The 2-lithio deriva-
tives of the corresponding alkylresorcinol dimethyl ether/alkylphenol methyl ether were
then prepared using n-butyllithium/hexane in anhydrous tetrahydrofuran (THF). The final
step was the condensation with the (+/−)-fenchone to give the final products (Scheme 1 for
1,3-dimethoxy-5-alkylbenzene; Scheme 2 for 1-hexyl-2,4-dimethoxybenzene; and Scheme 3
for 1-methoxy-4-alkylbenzene).

Figure 3. Chemical structures of (1S,4R)-(+)-fenchone and (1R,4S)-(−)-fenchone.

Different resorcinols/phenols required different temperatures and reaction times for
lithiation and condensation. The (1S,4R)-(+)-fenchone led to (+)-fenchone-resorcinol/-phenol
products, while the (1R,4S)-(−)-fenchone led to (−)-fenchone-resorcinol/phenol products.
The synthetic pathway from fenchone to the derivatives is short, and the yields vary from
20–62% depending on the resorcinol/phenol used.

Introducing fluorine into such molecules can affect conformation, pKa, intrinsic potency,
membrane permeability, metabolic pathways and pharmacokinetic properties [18]. Thereby,
fluorinated compounds at the aromatic ring of the fenchone derivatives (1a–d) were syn-
thesized (Scheme 4). They were obtained by the reaction of the fenchone-alkylresorcinol
dimethyl ether derivatives with 1-chloromethyl-4-fluoro-1,4-diazonia-bicyclo [2.2.2]octane
bis(tetra-fluoroborate) or Selectfluor [19].
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Scheme 1. Synthesis of 2-(2′,6′-dimethoxy-4′-alkylphenyl)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol
analogs (1a–1f) a. a Reagents and conditions: (i) Potassium carbonate, anhydrous DMF and iodomethane.
(ii) n-Butyllithium in hexane and anhydrous THF. (iii) Fenchone and anhydrous THF.

Scheme 2. Synthesis of 2-(3′-hexyl-2′,6′-dimethoxyphenyl)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol
analogs (2a, 2b) a. a Reagents and conditions: (i) Potassium carbonate, anhydrous DMF and iodomethane.
(ii) n-Butyllithium in hexane and anhydrous THF. (iii) Fenchone and anhydrous THF.

Scheme 3. Synthesis of 2-(2′-methoxy-5′-alkylphenyl)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol analogs
(3a–3h) a. a Reagents and conditions: (i) Potassium carbonate, anhydrous DMF and iodomethane.
(ii) n-Butyllithium in hexane and anhydrous THF. (iii) Fenchone and anhydrous THF.

The optimal conditions involved the use of the Selectfluor reagent in CH3CN at
r.t under a nitrogen atmosphere. Selectfluor is one of the most reactive electrophilic
fluorination reagents and is safe, nontoxic and easy to handle [20]. However, Selectfluor
only worked with the fenchone-alkylresorcinol dimethyl ether derivatives (1a–d) with low
yield. Fluorination of the fenchone derivatives with the alkylphenol methyl ether (3a–h)
was not successful.

Demethylation of aromatic compounds involves the use of acids; however, fen-
chone upon treatment with acids undergoes rearrangement [21]. Therefore, the fenchone-
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alkylresorcinol dimethyl ether derivatives (1a–d) were demethylated with sodium ethanethi-
olate in DMF. However, only one methoxyl group was demethylated (Scheme 5) [22], and
the yield was low. Moreover, when trying to demethylate the fenchone-alkylphenol methyl
ether derivatives (3a–h), no reaction occurred, meaning that, in our series of compounds,
this reagent works only with dimethoxy derivatives.

Scheme 4. Synthesis of 2-(3′-fluoro-2′,6′-dimethoxy-4′-alkylphenyl)-1,3,3-trimethylbicyclo [2.2.1]heptan-2-ol
analogs (4a–4d) a. a Reagents and conditions: (i) Selectfluor and CH3CN.

Scheme 5. Synthesis of 2-(2′-hydroxy-6′-methoxy-4′-alkylphenyl)-1,3,3-trimethylbicyclo[2.2.1] heptan-2-ol
(5a–5d) a. a Reagents and conditions: (i) Sodium ethanethiolate and anhydrous DMF.

In total, 24 novel fenchone-based compounds were synthesized, and we grouped these
in such a manner as to illustrate the effects of systematic structural variation.

2.2. NMR Analysis

The structures of all compounds were determined by 1H and 13C NMR and for the
fluorinated compounds, 19F NMR was done. However, a complete analysis of 1D and 2D
NMR spectra was performed for 1b, 1d and 5a. The structures were assigned based on
the analysis of 1H, 13C, DEPT, gCOSY, TOCSY, HSQC and HMBC NMR [23]. Through
NMR analysis, it was possible to determine all the chemical shifts for all the carbons and
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hydrogens. The 2D HSQC permits to obtain a 2D heteronuclear chemical shift correlation
map between directly-bonded 1H and X-heteronuclei (commonly, 13C and 15N). Following
a 1H-13C-HSQC experiment for 1d (Figure S1, Supplementary Materials), we saw that
Carbon 2 (of the fenchone), connected to a hydroxyl group, did not have any cross peaks
with the hydrogens and was shifted downfield (Supplementary Materials).

2.3. Description of the Crystal Structures

The crystals of 1b, 1d, 4b and 5d were prepared and determined by single crystal X-ray
diffraction. Their crystal data and structure refinement are shown in Table S1. The observed
hydrogen bonds are listed in Table S2. The molecular ellipsoids (at 50% probability) are
shown in Figures S2 and S3.

2.4. Affinity for Cannabinoid Receptors

The compounds were further characterized using a radioligand binding assay to deter-
mine their affinities for CB1R and CB2R based on each test compound’s ability to displace
the radiolabeled CB1R/CB2R agonist CP-55,940 from membranes of cells expressing the hu-
man CB1R and CB2R [24]. Inhibition constant values (Ki) from the respective competition
binding curves are listed in Table 1 in which HU-308 was included for comparison.

Table 1. Affinities of fenchone derivatives for hCB1R and hCB2R.

Compound Ki (nM)
hCB1R

95% Confidence
Interval (nM)

Ki (nM)
hCB2R

95%
Confidence

Interval (nM)

1a NB - 47.7 (21.2–107)
1b >10 µM - 14.4 (9.27–22.5)
1c NB - 56.8 (39.4–81.9)
1d >10 µM - 3.51 (2.07–5.96)
1e NB - >10 µM -
1f NB - 233 (171–317)
2a NB - 223 (126–397)
2b >10 µM - 73.4 (48.0–112)
3a NB - 1012 (376–2723)
3b NB - 610 (44.6–8343)
3c NB - 444 (246–800)
3d NB - 834 (414–1681)
3e NB - 2874 (150–54,940)
3f NB - 1449 (135–15,540)
3g NB - 1651 (65.4–41,720)
3h NB - 494 (171–1427)
4a NB - 155 (13.5–1787)
4b >10 µM - 28.3 (8.31–96.5)
4c NB - 438 (246–781)
4d >10 µM - 56.6 (30.9–104)
5a NB - 4978 (841–29470)
5b >10 µM - 36.5 (17.0–78.4)
5c NB - 107 (55.7–207)
5d >10 µM - 24.5 (16.2–37.3)

HU-308 NB - 1.16 (0.71–1.90)
NB = No binding detected at concentrations up to 10 µM. >10 µM = Displacement of radioactive ligand detected
at high concentrations competing ligand.

As shown in Table 1, the fenchone derivatives showed high selectivity towards hCB2R
over hCB1R. In most compounds, the (−) analogues prepared from the (−)-fenchone (1b,
1d, 1f, 2b, 3b, 3f, 3h, 4b, 4d, 5b and 5d) showed higher affinity towards hCB2R than their
(+) counterparts prepared from (+)-fenchone (1a, 1c, 1e, 2a, 3a, 3e, 3g, 4a, 4c, 5a and 5c). We
also observe that the affinity for the hCB2R can be optimized by varying the length of the
side chain at C4′ for the fenchone-alkylresorcinol dimethyl ether derivatives (1a–f). Thus,
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the analogue with one methyl group at C4′ (1f) had the least affinity to hCB2R (Ki = 233 nM)
compared to 1b (with a pentyl group) and 1d (with a dimethylheptyl group). Accordingly,
1a (+ isomer) with a pentyl side chain displaced the binding of [3H]CP-55,940 to hCB2R
with a Ki value of 47.7 nM and produced no measurable inhibition of [3H]CP-55,940 binding
to hCB1R. On the other hand, 1b (− isomer) inhibited [3H]CP-55,940 binding to hCB2R
more strongly (Ki = 14.4 nM) with no detectable inhibition of [3H]CP-55,940 binding to
hCB1R. Other potent compounds carry the dimethylheptyl substituent at C4′, which is
typical for synthetic cannabinoids. 1c (+ isomer) and 1d (− isomer) with a dimethylheptyl
side chain inhibited binding of [3H]CP-55,940 to hCB2R with a Ki value of 56.8 nM and
3.51 nM, respectively. The displacement of [3H]CP-55940 by HU-308, 1b and 1d from
specific binding sites in membranes from cells expressing hCB2Rs is shown in Figure 4.
The change in the position of the chain from the C4′ to C5′ (2a and 2b) reduced the affinity
towards hCB2R by an order of magnitude (Ki = 223 and 73.4 nM, respectively). The
presence of only one methoxyl group in the aromatic part (3a–h) reduced the affinity to
hCB2R dramatically (Table 1). Introducing a fluorine atom in the aromatic part of 1a–d
(4a–d) or demethylating it (5a–d) reduced the binding affinity of 1a–d to the hCB2R by
almost one order of magnitude (Table 1).

Figure 4. In vitro interaction of the agonists HU-308, 1b and 1d with hCB2R. Ki values for CB2R
were derived from displacement of [3H]CP-55,940 binding in membranes of CHO-K1 cells expressing
human CB2R. Each curve represents the mean of three experiments performed in triplicate.

Analysis of the structure–activity relationships (SAR) of all of these analogs revealed
several structural features for maintaining CB2R affinity and selectivity, including the
stereochemistry of the compounds that should be the (−) derivatives, the presence of a
branched lipophilic side chain at C4′, dimethoxy groups in the positions C2′ and C6′ and
no substituents in the aromatic ring (Figure S4).

2.5. Functional Characterization

By using the [35S]GTPγS binding assay [24], we next evaluated the activity (agonism,
antagonism and inverse agonism) properties of nine key compounds that showed the
highest affinity for the hCB2R. Data are listed in Table 2 in which the CB2R agonist HU-308
is included for comparison. Our testing results show that most compounds stimulate the
GTPγS binding to CB2R, indicating that these compounds behaved as potent agonists at
the hCB2R.

The (−) compounds with the dimethylheptyl side chains at C4′ (1d, 4d and 5d) were
highly efficacious with 1d being more potent (EC50 = 2.59 nM; E(max) = 89.6%) than its
monomethoxy (5d) (EC50 = 14.8 nM; E(max) = 105%) and its fluorinated analogues (4d)
(EC50 = 104 nM; E(max) = 119%). The (−) compounds with the pentyl side chain at C4′ (1b,
4b and 5b) were less potent and less efficacious than their dimethylheptyl counterparts
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(Table 2) (Figure 5). Compound 2b with a hexyl side chain in C5′ instead of C4′ weakly
stimulated the [35S]GTPγS binding to hCB2R.

Table 2. Functional potencies (EC50) of key fenchone derivatives and HU-308 for the hCB2R (±SE
confidence limits).

Compound EC50(nM) 1 95% Confidence
Interval (nM) E(max)% 2

1b 11.6 (agonist) (2.25–70.9) 65.1
1c 121 (agonist) (13.6–676) 87.1
1d 2.59 (agonist) (1.01–6.75) 89.6
2b 1943 (agonist) (98.0–. . . ) 46.2
4b 305 (agonist) (113–807) 54.2
4d 104 (agonist) (56.2–186) 119
5b 82.8 (agonist) (31.9–193) 69.5
5d 14.8 (agonist) (7.80–29.2) 105

HU-308 1.01 (agonist) (0.0330–8.94) 100
1 Functional potencies at hCB2R were determined by measuring the increase in [35S]GTPγS binding to the receptor.
EC50 values were calculated using nonlinear regression analysis. Data are the average of two independent
experiments run in triplicate. 2 E(max) values (maximal effects) is presented as the percentage of HU-308 response
at 1 µM.

Figure 5. Mean log concentration–response curves of 1b and 1d for stimulation of [35S]GTPγS binding
to hCB2R CHO cell membranes. Each symbol represents the mean percentage increase in [35S]GTPγS
binding ± SE.

The most potent compounds in this assay, 1b, 1d and 5d, appeared to be less potent and
efficacious than HU-308 at activating the hCB2R in the [35S]GTPγS binding assay (Table 2).
However, the mean EC50 that it displayed in this assay was not significantly different
from the corresponding EC50 values of HU-308 as indicated by the overlap of the 95%
confidence limits. Analysis of the SAR revealed that the structural features requirements
for maintaining CB2R agonism are the same as those required for maintaining affinity and
selectivity (Figure S4).

2.6. Effect on Inflammation and Hyperalgesia (Pain Sensation)

Preclinical studies have shown that CB2R activation mitigates inflammatory reaction
and swelling, indicating that CB2R agonists might be a beneficial target for treating inflam-
matory pain responses [25]. In this study, we used the zymosan-induced inflammation
mouse model [26] to investigate the anti-inflammatory and anti-nociceptive activities of the
fenchone derivatives, 1b (the (−) enantiomer with a pentyl side chain at C4′) and 1d (the
(−) enantiomer with a dimethylheptyl side chain at C4′). The compounds were compared
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to HU-308 and to a vehicle control group in three inflammation assays: paw swelling, pain
sensation in the paw and circulating TNF-α (Figure 6).

Figure 6. Anti-inflammatory and analgesic evaluation of HU-308 (light blue) compared to 1b
(blue), 1d (dark blue) and vehicle control (black). (A) Swelling after six hours, (B) pain sensa-
tion after six hours, and (C) TNF-α serum levels after 24 hours. Statistical comparison was done
by 1-way ANOVA (p-value = 0.05). * p < 0.05 comparing to control group. # p-value < 0.05 in the
indicated comparison.

The extent of hind paw swelling was determined 6 h following paw injection of 60 µg
zymosan together with an ip administration of HU-308, 1b or 1d at two doses. The results
revealed that both 1b and 1d have anti-inflammatory activity (Figure 6). HU-308 was able
to significantly reduce swelling at a dose of 25 mg/kg with 20% reduction in swelling
(Figure 6A). However, both compounds, 1b and 1d, were able to significantly reduce
swelling at the same concentration with 54% reduction in swelling and significantly exceed
HU-308′s effect. More importantly, among the three compounds, only 1d reduced swelling
at 15 mg/kg with 30% reduction.

The anti-nociceptive effect was determined by the von Frey monofilament assay, and
the higher the paw withdrawal threshold, the higher the anti-nociceptive effect of the
drug. The two dosages, 15 and 25 mg/kg of 1d showed strong anti-nociceptive effects after
6 h (p < 0.01) (Figure 6B). 1d was significantly better than 1b and HU-308 at both doses
(15 and 25 mg/kg) in reducing pain sensation. Moreover, the levels of TNF-α were reduced
significantly for HU-308 (25 mg/kg, 28% inhibition), 1b (25 mg/kg, 39% inhibition) and
1d (15 and 25 mg/kg with 26% and 40% inhibition, respectively) (Figure 6C). 1b and 1d
were slightly but significantly better than HU-308 in reducing TNF-α at 25 mg/kg and 1d
at 15 mg/kg was better than both compounds at the same concentration.
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2.7. Molecular Modeling

We carried out molecular modeling studies to investigate the binding interactions of 1d
within the CB2 binding site and compare with the parent CB2 compounds, HU-308 (+) and
its (−) enantiomer, HU-433. For better understanding of the interactions and orientations
of ligands in the orthosteric binding pocket, we superimposed all best docked poses of
the compounds and colored them differently (Figure 7). The electrostatic potential surface
shows the hydrophobic nature of the orthosteric site. In our previous studies [27], we
reported that the enantiomers HU-308 (+) and HU-433 (−) adopted quite different poses in
the binding site of CB2 receptor.

Figure 7. Orientation of docked ligands in the orthosteric site of CB2. The binding site of the
CB2 cavity is represented by electrostatic potential surface. Ligands are shown in different colors;
5ZTY_ligand (pink), HU-308 (Yellow), HU-433 (Orange) and 1d (Green). TM means Transmembrane
Helix. The residues of binding site and ligands are represented by thin and thick tubes, respectively.
H-bonds and π–π interactions are represented by orange and cyan dotted lines, respectively.

The HU-308 has a constrained binding pose, while HU-433 acquired the extending
conformation. 1d (-11.582 Kcal/mol) has the similar stereochemistry of HU-433, and
therefore it adopted the extended conformation like HU-433 (-11.848 Kcal/mol) in docking
calculation. The interaction of CB2 with 1d is mainly from the hydrophobic and aromatic
residues of ECL2, TM2, TM3, TM4, TM5, TM6 and TM7. The bicyclic ring of 1d establishes
an extensive hydrophobic interaction network with the residues of extracellular side of
the pocket, i.e., F912.61, F942.64, F952.65, F1063.25 and I1103.29 while the 1,1-dimethylheptyl
chain extends towards a deep pocket and forms hydrophobic interactions with the residues
F1173.36, W1945.53, W2586.48, V2616.51, L2626.52 and F2817.35.

The affinity was further enhanced by the cooperative π–π interaction between the
2,6-dimethoxy phenyl ring of 1d and F872.57 and F183ECL2. The interaction of the ligands
with CB2 are shown separately in Figures S5 and S6. The docking scores are shown in
Table S3.

3. Conclusions

In the present study, we report the design and synthesis of a series of a novel class of
CB2R selective ligands. These fenchone-resorcinol/phenol derivatives were synthesized
and characterized by NMR, GCMS and LC-UV-MS (ESI). The X-ray data reinforced the
structural elucidation and assignments of all NMR signals. Furthermore, the effects of
different alkylresorcinols/phenols on the binding ability of these derivatives to the hCB1R
and hCB2R were explored.
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Structure–activity relationship studies (SAR) revealed several structural features for
maintaining CB2R affinity and selectivity of these analogs. In particular, the (−)-fenchone-
resorcinol compounds with branched lipophilic side chain at C4′, dimethoxy groups in
the positions C2′ and C6′ and no substituents in the aromatic ring had high affinity and
selectivity for the hCB2R. These structural features were also important for maintaining
hCB2R agonism. Compound 1d possessed high affinity (Ki = 3.51 nM) and selectivity
for the hCB2R and was highly potent and efficacious hCB2R agonist (EC50 = 2.59 nM,
E(max) = 89.6%).

1d was potent in reducing the zymosan-induced paw swelling, pain responses and
TNF-α levels in mice. Molecular-modeling analysis elucidated the binding interactions
of 1d within the CB2 binding site compared with the parent CB2 compounds, HU-308 (+)
and its (−) enantiomer, HU-433. Our data indicate that the design and the development
of new terpenoid-derived cannabinoid-like drugs may play a significant role in human
disease treatment.

4. Experimental Section
4.1. Chemistry

(+)-Fenchone (analytical standard, assay ≥99.5%, [α]20/D +62±1◦, neat) and
(1R)-(−)-Fenchone (≥98%, [α]24/D −50.5◦, neat) were both purchased from Sigma-Aldrich.
Other reagents and solvents were purchased from Biolab LTD (Jerusalem, Israel), J. T. Baker
(Center Valley, PA, USA), Sigma-Aldrich (Rehovot, Israel), Acros (Yehud, Israel), Alfa Aesar
(Lancashire, UK) and Merck (Darmstadt, Germany) and were used without further purification.

NMR spectra were recorded at 500 MHz (1D and 2D 1H and 13C NMR) for 1b, 1d and
5a and at 300 MHz (1H, 13C and 19F NMR) for the rest of the compounds using deuterated
chloroform (CDCl3, δ = 7.26 ppm) with tetramethylsilane (TMS) as an internal standard.
Thin-layer chromatography (TLC) was run on silica gel 60F254 plates (Merck). Column
chromatography was performed on silica gel 60 Å (Merck). Compounds were located using
a UV lamp at 254 nm. GCMS analyses were performed on an HP GCMS instrument (Model
GCD PLUS) with an EI detector and a 30 m methyl silicone column. Optical rotations were
measured on a polarimeter (Optical Activity) in a 2.00 dm cell at 25 ◦C.

4.1.1. Synthesis of Fenchone-Resorcinol/Phenol
Methylation of Alkyl Phenols/Resorcinols

Methyl iodide (12 mmol) was added to a solution of alkyl phenol/resorcinol (1.51 mmol)
and K2CO3 (12 mmol) in dry DMF (5 mL). After stirring at room temperature for 24 h, the
mixture was diluted with water (40 mL) and extracted with ether. The organic layer was
washed with water, dried and evaporated followed by purification by column chromatog-
raphy on silica gel with ether/petroleum ether (2–4%).

Synthesis of 2-(2′,6′-Dimethoxy-4′-pentylphenyl)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol
(1a and 1b)

To 0.5 g (2.4 mmol) 1,3-dimethoxy-5-pentylbenzene in 5 mL dry THF at room tempera-
ture was added n-BuLi (1.6 M in hexane, 3.3 mL, 5.28 mmol), and the resulting solution was
refluxed under N2 for 2.5 h, cooled to r.t and the ketone (fenchone, 2.64 mmol, 0.401 g) in
1 mL THF was added. The fenchone used was the (+)-fenchone for 1a and (1R)-(−)-fenchone
for 1b. The reaction mixture was refluxed for 3 h and then for 18 h at r.t. The reaction was
worked up by the addition of saturated NH4Cl solution and extracted with ether. After
washing (H2O) and drying (MgSO4), the solvent was evaporated to give the crude target
compound, which was purified by chromatography, generally using ether/petroleum ether
(3–5%).

Yield: 0.26 g (30%). White powder, mp= 76–78 ◦C. HPLC purity: 98.6%. 1H-NMR
(500 MHz, CDCl3): 6.42 (s, 1H, H-3), 6.40 (s, 1H, H-5′), 3.79 (s, 3H, H-7′), 3.87 (s, 3H, H-8′),
2.57 (t, 2H, H-1′′), 1.62 (m, 2H, H-2′′), 1.37 (m, 4H, H-3′′,H-4′′), 0.93 (t, 3H, H-5′′), 0.62 (s,
3H, H-7), 2.75 (dd, 1H, H-8), 1.12 (m, 5H, H-8, H-9, H-6), 1.17 (m, 4H, H-10, H-5), 2.41
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(m, 1H, H-6), 1.71 (m, 2H, H-5, H-4). 13C-NMR (500 MHz, CDCl3): 159.16 (C-2′), 156.51
(C-6′), 142.23 (C-4′), 120.71 (C-1′), 105.59 (C-3′), 104.85 (C-5′), 55.57 (C-7′), 54.32 (C-8′), 35.91
(C-1′′), 30.80 (C-2′′), 31.64 (C-3′′), 22.00 (C-4′′), 14.07 (C-5′′), 54.23 (C-1), 87.95 (C-2), 46.52
(C-3), 50.78 (C-4), 23.97 (C-5), 35.13 (C-6), 41.16 (C-8), 28.48 (C-7), 18.42 (C-10), 22.05 (C-9).
LC-UV-MS (ESI): m/z calculated for C23H36O3 360.27, found 343.09 (m-OH) for 1a and
342.98 (m-OH) for 1b. [α]D

25 +112.7◦ for 1a and –106.6◦ for 1b.

Synthesis of 2-(2′,6′-Dimethoxy-4′-(2′′-methyloctan-2′′-yl)phenyl)-1,3,3-
trimethylbicyclo[2.2.1]heptan-2-ol (1c and 1d)

To a solution of the 1,3-dimethoxy-5-(2-methyloctan-2-yl)benzene (1 g, 3.8 mmol) in
32 mL of dry THF was added a 1.6 M solution of n-BuLi in hexane (8.8 mmol, 5.4 mL)
at 0 ◦C with stirring under N2. After additional stirring for 1 h at 0 ◦C, a solution of the
fenchone (6 mmol, 0.9 g) in 1 mL of dry THF was added all at once. The fenchone used
was the (+)-fenchone for 1c and (1R)-(−)-fenchone for 1d. The reaction mixture was stirred
for 0.5 h at 0 ◦C and then for 18 h at r.t. The reaction was worked up by the addition
of saturated NH4Cl solution and extracted with ether. After washing (H2O) and drying
(MgSO4), the solvent was evaporated to give the crude target compound, which was
purified by chromatography with ether/petroleum ether (3–4%). Yield: 0.99 g (62.4%).

White powder, mp = 106–108 ◦C. HPLC purity: 98.9%. 1H-NMR (500 MHz, CDCl3):
6.50 (s, 1H, H-3′), 6.48 (s, 1H, H-5′), 3.86 (s, 3H, H-7′), 3.77 (s, 3H, H-8′), 1.55 (m, 2H, H-3′′),
1.26–1.07 (m, 22 H, H-4′′, H-5′′, H-1′′, H-9′′, H-6′′, H-7′′, H-8, H-9, H-6, H-10), 0.84 (t, 3H,
H-8′′), 0.58 (s, 3H, H-7), 2.73 (dd, 1H, H-8), 1.35 (m, 1H, H-5), 2.38 (m, 1H, H-6), 1.68 (m, 2H,
H-5, H-4). 13C-NMR (500 MHz, CDCl3): 158.90 (C-2′), 156.21 (C-6′), 149.14 (C-4′), 120.30
(C-1′), 103.33 (C-3′), 102.61 (C-5′), 55.52 (C-7′), 54.28 (C-8′), 37.74 (C-2′′), 44.41 (C-3′′), 22.62
(C-4′′), 29.94 (C-5′′), 31.70 (C-6′′), 29.94 (C-7′′), 14.07 (C-8′′), 28.75 (C-1′′), 28.75 (C-9′′), 54.16
(C-1), 87.87 (C-2), 46.54 (C-3), 50.73 (C-4), 23.96 (C-5), 35.07 (C-6), 28.42 (C-7), 41.17 (C-8),
18.48 (C-9), 22.00 (C-10). LC-UV-MS (ESI): m/z calculated for C27H44O3 416.33, found
399.12 (m-OH) for 1c and 399.02 (m-OH) for 1d. [α]D

25 +96.88◦ for 1c and −95.95◦ for 1d.

Synthesis of 2-(2′,6′-Dimethoxy-4′-methylphenyl)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol
(1e and 1f)

The same procedure as above but 1,3-dimethoxy-5-methylbenzene was used and no
reflux was done. Yield: 0.16 g (22%). The fenchone used was the (+)-fenchone for 1e and
(1R)-(−)-fenchone for 1f. White powder, mp = 90–92 ◦C. HPLC purity: 98.4%. 1H-NMR
(300 MHz, CDCl3): 6.42 (s, 1H, H-3′), 6.40 (s, 1H, H-5′), 3.76 (s, 3H, H-7′), 3.85 (s, 3H,
H-8′), 2.38 (t, 3H, H-1′′), 0.60 (s, 3H, H-7), 2.72 (dd, 1H, H-8), 1.10 (m, 9H, H-8, H-9, H-10,
H-6), 1.36 (m, 1H, H-5), 2.30 (m, 1H, H-6), 1.66 (m, 2H, H-5, H-4). LC-UV-MS (ESI): m/z
calculated for C19H28O3 304.20, found 287.05 (m-OH) for 1e and 1f. [α]D

25 +91.5◦ for 1e
and −82.90◦ for 1f.

Synthesis of 2-(3′-Hexyl-2′,6′-dimethoxyphenyl)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol
(2a and 2b)

The same procedure as above but 1-hexyl-2,4-dimethoxybenzene was used and no
reflux was done. Yield: 0.25 g (28%). The fenchone used was the (+)-fenchone for 2a and
(1R)-(−)-fenchone for 2b. Yellowish powder, mp = 82–84 ◦C. HPLC purity: 98.6% for 2a
and 96.4% for 2b. 1H-NMR (300 MHz, CDCl3): 7.06 (d, 1H, H-4′), 6.61 (d, 1H, H-5′), 3.81 (s,
3H, H-7′), 3.75 (s, 3H, H-8′), 2.57 (t, 2H, H-1′′), 1.64 (m, 2H, H-2′′), 1.51 (m, 2H, H-3′′), 1.33
(m, 4H, H-4′′, H-5′′), 0.89 (t, 3H, H-6′′), 0.73 (s, 3H, H-7), 2.82 (dd, 1H, H-8), 1.05 (m, 5H, H-8,
H-9, H-6), 1.33 (m, 4H, H-10, H-5), 2.36 (m, 1H, H-6), 1.73 (m, 2H, H-5, H-4). LC-UV-MS
(ESI): m/z calculated for C24H38O3 374.28, found 357.08 (m-OH) for 2a and 2b. [α]D

25

+84.82◦ for 2a and −90.32◦ for 2b
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Synthesis of 2-(2′-Methoxy-5′-propylphenyl)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol (3a
and 3b)

The same procedure as for 1a and 1b but 1-methoxy-4-propylbenzene was used. Yield:
0.38 g (53%). The fenchone used was the (+)-fenchone for 3a and (1R)-(−)-fenchone for
3b. White solid, mp = 78–80 ◦C. HPLC purity: 98.8%. 1H-NMR (300 MHz, CDCl3): 7.33 (s,
1H, H-6′), 6.80 (d, 1 H, H-3′), 7.00 (d, 1 H, H-4′), 3.86 (s, 3H, H-7′), 2.54 (m, 2H, H-1′′), 1.57
(m, 2H, H-2′′), 0.93 (t, 3H, H-3′′), 0.46 (s, 3H, H-7), 2.54 (m, 1H, H-8), 1.12 (m, 5H, H-8, H-9,
H-6), 1.30 (m, 4H, H-10, H-5), 2.23 (m, 1H, H-6), 1.73 (m, 2H, H-5, H-4). LC-UV-MS (ESI):
m/z calculated for C20H30O2 302.22, found 285.07 (m-OH) for 3a and 3b. [α]D

25 +63.44◦

for 3a and −62.96◦ for 3b.

Synthesis of 2-(2′-Methoxy-5′-pentylphenyl)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol (3c
and 3d)

The same procedure as for 1a and 1b but 1-methoxy-4-pentylbenzene was used. Yield:
0.20 g (25%). The fenchone used was the (+)-fenchone for 3c and (1R)-(−)-fenchone for 3d.
White solid, mp = 42–44 ◦C. HPLC purity: 93.8%. 1H-NMR (300 MHz, CDCl3): 7.31 (s, 1H,
H-6′), 6.77 (d, 1H, H-3′), 6.94 (d, 1H, H-4′), 3.81 (s, 3H, H-7′), 2.52 (m, 2H, H-1′′), 1.57 (m,
2H, H-2′′), 1.39 (m, 4H, H-3′′,H-4′′), 0.89 (t, 3H, H-5′′), 0.45 (s, 3H, H-7), 2.54 (m, 1H, H-8),
1.17 (m, 5H, H-8, H-9, H-6), 1.29 (m, 4H, H-10, H-5), 2.24 (m, 1H, H-6), 1.72 (m, 2H, H-5,
H-4). LC-UV-MS (ESI): m/z calculated for C22H34O2 330.26, found 313.09 (m-OH) for 3c
and 3d. [α]D

25 +99.29◦ for 3c and −96.99◦ for 3d.

Synthesis of 2-(2′-Methoxy-5′-(tert-pentyl)phenyl)-1,3,3-trimethylbicyclo[2.2.1] heptan-2-ol
(3e and 3f)

The same procedure as for 1a and 1b but 1-methoxy-(4-tert-pentyl)benzene was used.
Yield: 0.35 g (44%). The fenchone used was the (+)-fenchone for 3e and (1R)-(−)-fenchone
for 3f. White solid, mp = 68–70 ◦C. HPLC purity: 96.2%. 1H-NMR (300 MHz, CDCl3): 7.48
(s, 1H, H-6′), 6.81 (d, 1H, H-3′), 7.09 (d, 1H, H-4′), 3.86 (s, 3H, H-7′), 1.62 (m, 2H, H-3′′), 0.66
(t, 3H, H-4′′), 0.43 (s, 3H, H-7), 2.48 (m, 1H, H-8), 1.16 (m, 5H, H-8, H-9, H-6), 1.36 (m, 4H,
H-10, H-5), 2.22 (m, 1H, H-6), 1.73 (m, 2H, H-5, H-4). LC-UV-MS (ESI): m/z calculated for
C22H34O2 330.26, found 313.09 (m-OH) for 3e and 313.10 (m-OH) for 3f. [α]D

25 +81.07◦ for
3e and −82.68◦ for 3f.

Synthesis of 2-(2′-Methoxy-5′-octylphenyl)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol (3g and
3h)

The same procedure as for 1a and 1b but 1-methoxy-4-(2-methylheptan-2-yl)benzene
was used. Yield: 0.18 g (20%). The fenchone used was the (+)-fenchone for 3g and (1R)-
(−)-fenchone for 3h. White solid: 120–122 ◦C. HPLC purity: 95.5% for 3g and 92.4% for 3h.
1H-NMR (300 MHz, CDCl3): 7.52 (s, 1H, H-6′), 6.78 (d, 1H, H-3′), 7.13 (d, 1H, H-4′), 3.86 (s,
3H, H-7′), 2.64 (m, 2H, H-1′′), 1.70 (m, 2H, H-2′′), 1.43 (m, 10H, H-3′′,H-4′′,H-5′′,H-6′′,H-7′′),
0.73 (t, 3H, H-8′′), 0.44 (s, 3H, H-7), 2.45 (m, 1H, H-8), 1.12 (m, 5H, H-8, H-9, H-6), 1.34 (m,
4H, H-10, H-5), 2.23 (m, 1H, H-6), 1.70 (m, 2H, H-5, H-4). LC-UV-MS (ESI): m/z calculated
for C25H40O2 372.30, found 355.12 (m-OH) for 3g and 3h. [α]D

25 88.52◦ for 3g and 81.82◦

for 3h.

4.1.2. Fluorination with Selectflour®

We dissolved 0.48 mmol of Selectflour® in 2.6 mL acetonitrile. The solution was cooled
to 0–5 ◦C and fenchone-dimethoxyalkylresorcinol (0.48 mmol) in 2.6 mL acetonitrile was
added to it. The reaction was stirred at this temperature for 1.5 h, and then the reaction
was left stirring overnight at room temperature. Ether was added to the reaction mixture,
and then the mixture was washed with brine. Removal of the solvent afforded the desired
products, which were purified by chromatography with ether/petroleum ether (0–2%) [19].
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2-(3′-Fluoro-2′,6′-dimethoxy-4′-pentylphenyl)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol
(4a and 4b)

The fenchone used was the (+)-fenchone for 4a and (1R)-(−)-fenchone for 4b. Yield:
0.031 g (17%). White solid, mp = 70–72 ◦C. HPLC purity: 97.2% for 4a and 97.3% for 4b.
1H-NMR (300 MHz, CDCl3): 6.37 (s, 1H, H-5′), 3.92 (s, 3H, H-8′), 3.97 (s, 3H, H-7′), 2.55
(t, 2H, H-1′′), 1.66 (m, 2H, H-2′′), 1.32 (m, 4H, H-3′′, H-4′′), 0.88 (t, 3H, H-5′′), 0.61 (s, 3H,
H-7), 2.71 (dd, 1H, H-8), 1.12 (m, 5H, H-8, H-9, H-6), 1.16 (m, 4H, H-10, H-5), 2.48 (m, 1H,
H-6), 1.58 (m, 2H, H-5, H-4). 19F-NMR (300 MHz, CDCl3): −140. LC-UV-MS (ESI): m/z
calculated for C23H35FO3 378.26, found 361.09 (m-OH) for 4a and 360.91 (m-OH) for 4b.
[α]D

25 110.01◦ for 4a and 103.13◦ for 4b.

2-(3′-fluoro-2′,6′-dimethoxy-4′-(2′′-methyloctan-2′′-yl)phenyl)-1,3,3-
trimethylbicyclo[2.2.1]heptan-2-ol (4c and 4d)

The fenchone used was the (+)-fenchone for 4c and (1R)-(−)-fenchone for 4d. Yield:
0.035 g (22%). White solid: 100–102 ◦C. HPLC purity: 90%. 1H-NMR (300 MHz, CDCl3):
6.41 (s, 1H, H-5′), 3.96 (s, 3H, H-7′), 3.90 (s, 3H, H-8′), 1.57 (m, 2H, H-3′′), 1.26 (m, 10 H,
H-4′′, H-5′′, H-1′′, H-9′′), 1.21 (m, 4H, H-6′′,H-7′′), 0.84 (t, 3H, H-8′′), 0.61 (s, 3H, H-7), 2.75
(dd, 1H, H-8), 1.08 (m, 5H, H-8, H-9, H-6), 1.15 (m, 3H, H-10), 1.35 (m, 1H, H-5), 2.40 (m, 1H,
H-6), 1.72 (m, 2H, H-5, H-4). 19F-NMR (CDCl3): −134.6. LC-UV-MS (ESI): m/z calculated
for C27H43FO3 434.32, found 417.13 (m-OH) for 4c and 417.12 (m-OH) for 4d. [α]D

25 69.98◦

for 4c and 58.30◦ for 4d.

4.1.3. Demethylation with Sodium Ethanethiolate/DMF

We added 4–8 mL (2–4 mmol) of a 0.5 M solution of NaSEt in DMF to the aromatic
methoxy compound (1 mmol), and the resulting solution was heated in an oil bath at
115–120 ◦C under N2. The completion of the reaction in each case was determined by
TLC. The cooled reaction mixture was then acidified with 10% aqueous HCl and extracted
with EtOAc (3 × 10 mL). The combined organic extracts were washed with 10% aqueous
NaOH (3 × 3 mL) and H2O (3 mL) and dried (MgSO4). Removal of the solvent afforded
the desired products, which were purified by chromatography with ether/petroleum ether
(6–8%) [22].

2-(2′-hydroxy-6′-methoxy-4′-pentylphenyl)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol (5a
and 5b)

The fenchone used was the (+)-fenchone for 5a and (1R)-(−)-fenchone for 5b. Yield:
0.045 g (13%). White powder: 76–78 ◦C. HPLC purity: 98.7% for 5a and 100% for 5b.
1H-NMR (500 MHz, CDCl3): 6.38 (s, 1H, H-3′), 6.40 (d, 1H, H-5′), 3.77 (s, 3H, H-7′), 2.51 (t,
2H, H-1′′), 1.63 (m, 2H, H-2′′), 1.36 (m, 4H, H-3′′, H-4′′), 0.92 (t, 3H, H-5′′), 0.71 (s, 3H, H-7),
2.82 (dd, 1H, H-8), 1.18 (m, 5H, H-8, H-9, H-6), 1.20 (s, 4H, H-10, H-5), 2.41 (m, 1H, H-6),
2.05 (m, 1H, H-6), 1.74 (m, 2H, H-5, H-4). 13C-NMR (500 MHz, CDCl3): 159.42 (C-6′), 156.40
(C-2′), 143.58 (C-4′), 115.00 (C-1′), 110.96 (C-5′), 102.85 (C-3′), 54.32 (7′), 35.54 (C-1′′), 30.52
(C-2′′), 31.69 (C-3′′), 22.55 (C-4′′), 14.06 (C-5′′), 55.05 (C-1), 90.86 (C-2), 47.55 (C-3), 50.03
(C-4), 23.30 (C-5), 35.23 (C-6), 41.33 (C-8), 27.90 (C-7), 17.61 (C-10), 22.00 (C-9). LC-UV-MS
(ESI): m/z calculated for C22H34O3 346.25, found 328.99 (m-OH) for 5a and 328.94 (m-OH)
for 5b. [α]D

25 56.25◦ for 5a and 48.01◦ for 5b

2-(2′-Hydroxy-6′-methoxy-4′-(2′′-methyloctan-2′′-yl)phenyl)-1,3,3-trimethylbicyclo-
[2.2.1]heptan-2-ol (5c and 5d)

The fenchone used was the (+)-fenchone for 5c and (1R)-(−)-fenchone for 5d. Yield:
0.048 g (12%). White powder: 98–100 ◦C. HPLC purity: 90%. 1H-NMR (300 MHz, CDCl3):
6.50 (s, 1H, H-5′), 6.48 (s, 1H, H-3′), 3.86 (s, 3H, H-7′), 1.55 (m, 2H, H-3′′), 1.26 (m, 10 H,
H-4′′, H-5′′, H-1′′, H-9′′), 1.20 (m, 4H, H-6′′, H-7′′), 0.84 (t, 3H, H-8′′), 0.58 (s, 3H, H-7), 2.73
(dd, 1H, H-8), 1.07 (m, 5H, H-8, H-9, H-6), 1.15 (m, 3H, H-10), 1.35 (m, 1H, H-5), 2.38 (m,
1H, H-6), 1.68 (m, 2H, H-5, H-4). 13C-NMR (300 MHz, CDCl3): 158.90 (C-6′′), 156.21 (C-2′′),
149.14 (C-4′′), 120.30 (C-5′′), 118.20 (C-1′′), 103.33 (C-3′′), 55.52 (C-7′′), 37.74 (C-2′′), 44.41
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(C-3′′), 22.62 (C-4′′), 29.94 (C-5′′), 31.70 (C-6′′), 29.94 (C-7′′), 14.07 (C-8′′), 28.75 (C-1′′), 28.75
(C-9′′), 54.16 (C-1), 87.87 (C-2), 46.54 (C-3), 50.73 (C-4), 23.96 (C-5), 35.07 (C-6), 28.42 (C-7),
41.17 (C-8), 18.48 (C-9), 22.00 (C-10). LC-UV-MS (ESI): m/z calculated for C26H42O3 402.31,
found 385.13 (m-OH) for 5c and 384.97 (m-OH) for 5d. [α]D

25 +96.88◦ for 1c and −95.95◦

for 1d.

4.2. X-ray Crystallography

A single crystal of the compound was attached to a 400/50 MicroMeshes™ with NVH
Oil [28] and transferred to a Bruker SMART APEX CCD X-ray diffractometer equipped with
a graphite-monochromator. The system was controlled by a pentium-based PC running the
SMART software package [29]. MoKα radiation (λ = 0.71073 Å) was used for data collection
at room temperature, and CrysAlisPro [30] was used for data processing using Olex2 [31].
The SHELXT [32] structure solution program using Intrinsic Phasing was used for structure
solving, and the SHELXL [33] refinement package using Least Squares minimization was
used for structure refinement.

4.3. Binding Assays

Binding to the CB1R was assessed in a competition displacement assays using [3H]CP-
55,940 as the radioligand [24]. Membranes from cells expressing hCB1R and hCB2R were
purchased from Charles River, (Cat#A317 and A318, respectively; OH, USA). Solutions
of test compounds ranging from 0.1 nM to 10 mM were prepared in DMSO. The desired
amount of membrane preparation was diluted with ice-cold assay buffer (50 mM Tris-
HCl, 2.5 mM EDTA, 5 mM MgCl2, 0.1% BSA, pH 7.4) and was vortexed. We distributed
100 µL of compound into each tube, followed by addition of 800 µL of diluted membranes
(1 µg/tube) and kept on ice until the addition of [3H]CP-55,940. [3H]CP-55,940 was diluted
with cold (unlabeled) assay buffer and 100 µL was added into each tube. The assays were
incubated for 90 min at 30 ◦C and then immediately filtered on WHATMAN GF/B Filter
Paper (Fired) using a Brandel M-24R Harvester followed by six washes with ice cold wash
buffer (50 mM Tris-HCl, 2.5 mM EDTA, 5 mM MgCl2, 0.1% BSA, pH 7.4). Radioactivity was
detected by adding the Filter Paper directly to the ULTIMA GOLD scintillation cocktail
(PerkinElmer, Waltham, MA, USA), incubation at 20 ◦C for 60 min and then counted using
a Tri-Carb 4910TR liquid scintillation counter (PerkinElmer, Waltham, MA, USA).

4.4. [35S]GTPγS Binding Assay

The method used for measuring agonist-stimulated binding of [35S]GTPγS was based
on a described protocol [24]. Membranes (5 µg protein) were incubated in GTPγS assay
buffer (50 mM Tris HCl (pH 7.4), 0.2 mM EGTA, 9 mM MgCl2, 150 mM NaCl, 1 mg/mL BSA)
containing 100 µM GDP, 0.05 nM [35S]GTPγS and test compounds at various concentrations.
Vacuum filtration was used to separate bound ligand from free ligand. We used 10 µM
GTPS to determine nonspecific binding. Basal binding was assayed in the absence of the
ligand and in the presence of GDP.

4.5. Biological Evaluation
4.5.1. Animals

Female Sabra mice, 6 to 8-weeks old were kept in the SPF unit of Hadassah Medical
School. They were maintained at a 20–21 ◦C and a 12 h light/dark cycle with a standard
pellet diet and water ad libitum. The experimental protocols were approved by the Animal
Care Ethical Committee of the Hebrew University-Hadassah Medical School, Jerusalem,
Israel. The data presented in the Figures are representatives of two separate experiments.

4.5.2. Paw Inflammation and Treatment with HU-308/1b/1d

We injected 40 µL of 1.5% (w/v) zymosan A in 0.9% saline into the right hind paw of
the mice to induce inflammation. HU-308/1b/1d in 0.1 mL ethanol:Cremophore:saline
(1:1:18) (vehicle) was injected intraperitoneally (i.p.) immediately after zymosan injection.
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Control mice were injected with vehicle. Paw swelling and pain perception were measured
after 2, 6 and 24 h [26].

4.5.3. Measurement of Oedema Formation

The paw swelling (thickness) was measured by calibrated calipers (0.01 mm), 2, 6 and
24 h following injections of zymosan alone or HU-308/1b/1d [26].

4.5.4. Pain Assay

The paw withdrawal von Frey test was used to evaluate hyperalgesia at 2, 6 and
24 h following injections of zymosan and/or the test compounds [26]. In the von Frey
nociceptive filament assay, von Frey calibrated monofilament hairs of logarithmically
incremental stiffness (1.4–60 g corresponding to 4.17 to 5.88 log of force) was used to test
the mouse sensitivity to a mechanical stimulus on the swollen paw. The measurements
were done in a quiet room. The animals were held for 10 s prior to paw pain measurements.
The investigator applied the filament to the central area of the hind paw with gradual
increasing size. The middle of the hind paw was poked to provoke a flexion reflex followed
by a clear flinch response after paw withdrawal. Each filament was applied for 3–4 s to
induce the end-point reflex. The force filament of 1.4 g was used for the first testing. In
the case of no withdrawal response, the next higher stimulus was tried. The mechanical
threshold force (in grams (g)) was defined as the lowest force imposed by two von Frey
monofilaments of various sizes, required to produce a paw retraction. The untreated left
hind paw served as a control.

4.5.5. Measurement of TNFα

After 24 h of zymosan injection, blood was collected, and the sera were assayed for
TNFα. A mouse TNFα ELISA kit was used according to the manufacturer’s instructions
(R&D Systems, Minneapolis, MN, USA).

4.6. Molecular Modelling Studies

The three-dimensional structure of human CB2 (PDB ID: 5ZTY) was downloaded
from the protein databank. The missing residues between 222 and 235 were modelled, and
mutations were reverted to wildtype residues. The protonation states of all acidic and basic
residues were assigned at physiological pH 7.2. The retrained minimization considering
0.30 Å root mean square deviation (RMSD) of all atoms was performed using optimized
potentials for a liquid simulation extended (OPLS3e) force field.

All docking calculations were performed using two different docking protocols,
Schrodinger suit 2020.3 [34] and Autodock 4.5.7 [35]. The orthosteric ligand binding site
was defined by generating 20 Å grid around the co-crystallized small molecule (AM10257)
in Glide, whereas 60 × 60 × 60 grid points with a 0.375 Å spacing around the centroid of
AM10257 were generated in Autodock.

The compounds were prepared at pH 7.0 ± 2.0 using the LigPrep module. The
docking calculations were performed using the default protocol of GLIDE module. The
10 conformations of each compound were generated using Standard precision (SP) docking.
The 10 poses of each conformation were generated using Extra precision (XP) docking.
The best pose was selected based on the lowest energy and interaction with the active site
residues. Lamarckian Genetic Algorithm was used in Autodock to identify the binding
poses of each compound.

The receptor was kept rigid, whereas the ligand was allowed torsional flexibility. The
default parameters were set but with 2.5 × 107 energy evaluations. The 50 poses of each
compound were generated using the Lamarckian Genetic Algorithm. The resulting poses
were clustered into groups of 2.0 Å root-mean-square deviation (rmsd). The best scoring
pose from the group with a higher number of conformers was chosen as the final pose.
Both software demonstrated similar lowest energy poses of the ligands.
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4.7. Statistical Analyses

Statistical analysis was performed with GraphPad Prism software. Statistical analysis
details are listed under each figure. The results are presented as the value ± SE (standard
error). In rare cases where all the measurements give the same values, no SE bar is presented,
as no error can be measured. * p < 0.05 comparing to control group. # p-value < 0.05 in the
indicated comparison.

Supplementary Materials: The following supporting information are available online: Figure S1:
The HSQC of compound 1d; Figure S2: Crystal structures of 1b and 4b; Figure S3: Crystal structures
of 1d and 5d; Table S1: Crystal data and structure refinement for 1b, 4b, 1d, and 5d; Table S2:
Hydrogen bonds for 1b, 4b, 1d, and 5d (Å, u); Figure S4: Structural Requirements for CB2 affinity
and selectivity; Figure S5: Binding site of the CB2 cavity is represented by electrostatic potential
surface. The residues of binding site and ligands are represented by thin and thick tubes respectively.
H-bonds and π-π interactions are represented by orange and cyan dotted lines respectively. A.
5ZTY_Ligand B. HU-308 C. HU-433 D. 1d; Figure S6: Two dimensional representation of protein-
ligand interactions. A. 5ZTY_Ligand B. HU-308 C. HU-433 D. 1d; Table S3: Docking Glide XP score
with energy decomposition; LC-UV-MS (ESI); NMR data for 1b; NMR data for 1d; NMR data for 5a.
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