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Abstract: Cancer is the leading cause of death in the USA, and the incidence of cancer increases 

dramatically with age. Beta-adrenergic blockers appear to have a beneficial clinical effect in 

cancer patients. In this paper, we review the evidence of an association between β-adrenergic 

blockade and cancer. Genetic studies have provided the opportunity to determine which 

proteins link β-adrenergic blockade to cancer pathology. In particular, this link involves the 

major histocompatibility complex class II molecules, the renin–angiotensin system, transcrip-

tion factor nuclear factor-kappa-light-chain-enhancer of activated B cells, poly(ADP-ribose) 

polymerase-1, vascular endothelial growth factor, and the reduced form of nicotinamide adenine 

dinucleotide phosphate oxidase. Beta-adrenergic blockers also exert anticancer effects through 

non-genomic factors, including matrix metalloproteinase, mitogen-activated protein kinase 

pathways, prostaglandins, cyclooxygenase-2, oxidative stress, and nitric oxide synthase. In 

conclusion, β-adrenergic blockade may play a beneficial role in cancer treatment. Additional 

investigations that examine β-adrenergic blockers as cancer therapeutics are required to further 

elucidate this role.
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Introduction
The relationship between β-adrenergic antagonism and cancer has been well established 

in the literature. The function of β-adrenergic receptors was demonstrated in the cell 

membranes of breast cancer cells by the significant increase in cyclic adenosine mono-

phosphate (cAMP) production induced by different concentrations of isoproterenol 

compared with cells that were unstimulated (control).1 Further, β-adrenergic receptors 

were implicated in the regulation of cell growth in lung cancer cell lines via the cAMP 

signaling pathway.2,3 Beta-adrenergic receptors were more highly expressed in oral 

squamous-cell carcinomas than in normal controls cells, and their expression was cor-

related with cervical lymph node metastasis, age, tumor size, and clinical stage.4 The 

β
2
-adrenergic receptor density in hepatocellular carcinoma (HCC) cellular membranes 

was higher than the β
2
-adrenergic receptor density in nonadjacent non-tumor liver cell 

membranes.5 Isoproterenol significantly increased cell proliferation via β-adrenergic 

receptors in a dose-dependent manner, with the concomitant activation of the extracel-

lular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) signal-

ing pathway in pancreatic cancer cells.6 In several experimental cancer models, the 

activation of the sympathetic nervous system promotes the metastasis of solid epithelial 
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tumors and the dissemination of hematopoietic  malignancies 

via the β-adrenoreceptor-mediated activation of protein 

kinase A (PKA) and the activation of exchange proteins 

by the adenylate cyclase signaling pathways.  Interestingly, 

 common haplotypes of the β
2
-adrenergic receptor, which 

affect its translational efficiency, are associated with longev-

ity in men and the level of β
2
-adrenergic receptor protein 

is inversely associated with male lifespan.7 These findings 

may well have clinical implications for treating patients with 

β-adrenergic receptor agonists or antagonists.

Beta-blockers, used in a clinical context, reduced the 

rates of progression of several solid tumors.8 Chronic stress 

can accelerate the progression of human acute lymphoblastic 

leukemia via β-adrenergic signaling.9 Psychological stress 

promotes the progression of pancreatic cancer xenografts via 

neurotransmitter-induced activation of multiple pathways 

and increases systemic and tumor levels of norepinephrine 

(NE), epinephrine, cortisol, vascular endothelial growth 

factor (VEGF), and cAMP.10 Social stress also stimulates 

non-small cell lung carcinoma (NSCLC) by increasing nico-

tinic acetylcholine receptor-mediated stress neurotransmitter 

signaling.11 These findings are consistent with sympathetic 

effects on cell growth in cancer.

Epinephrine significantly increased the esophageal 

squamous-cell carcinoma cell proliferation that accompa-

nied the elevation of intracellular cAMP levels, which were 

decreased by β-adrenergic antagonists.12 The development 

of lumbar lymph node metastases of human prostate can-

cer cells in athymic BALB/c nude mice increased with the 

application of NE via micro-osmotic pumps, and propranolol 

inhibited this effect.13 Exposure to nicotine either by tobacco 

smoke or nicotine supplements facilitates the growth and 

progression of NSCLC, and pharmacological intervention 

with β-blockers may lower the risk of NSCLC development 

among smokers.14 In elderly malnourished cancer patients, 

atenolol and propranolol treatment reduced resting energy 

expenditure,15 and propranolol decreased patient’s basal meta-

bolic rates.16 Beta-blockers have also been associated with 

reduced prostate cancer-specific mortality, a 54% reduction in 

epithelial ovarian cancer death, a reduced risk in progression 

of thick malignant melanoma, the inhibition of astrocytoma 

cell proliferation, the induction of human gastric cancer cell 

apoptosis, the stimulation of cell cycle arrest, and the pre-

vention of pancreatic cancer.17–22 In breast cancer, β-blocker 

use improved relapse-free survival in all patients with breast 

cancer; this effect was particular pronounced in patients 

with triple-negative breast cancer. The use of β-blockers 

resulted in a 57% reduction in the risk of metastasis and a 

71% reduction in the 10-year mortality rate, and β-blockers 

could potentially be administered concomitantly with che-

motherapy to increase treatment efficacy in breast cancer 

patients.23–26 Following β-adrenergic-receptor stimulation, 

receptor activator of nuclear factor kappa-B ligand (RANKL) 

expression was induced in bone marrow osteoblasts and 

increased the migration of metastatic breast cancer MDA-

231 cells in vitro. Further, RANKL expression can be 

blocked with the β-blocker propranolol in MDA-231 cells. 

Beta-blockers and drugs that interfere with RANKL signal-

ing, such as denosumab, could increase patient survival if 

used as an adjuvant therapy to inhibit the early colonization 

of bone by metastatic breast cancer cells.27 In a retrospective 

study, propranolol treatment decreased the incidence of HCC 

in patients with compensated hepatitis C virus cirrhosis.28 

Carvedilol was a very potent inhibitor of cell proliferation in 

cells derived from breast tumors (MDA-MB-361), melanoma 

(Fem-x), cervix adenocarcinomas (HeLa) and human myelog-

enous leukemia.29 In addition, ICI 118551, a β
2
-adrenoceptor 

blocker, significantly synergized the antiproliferative and 

pro-apoptotic effects induced by gemcitabine to inhibit 

the proliferation of pancreatic cancer cells.30 The use of 

propranolol as an adjunctive treatment has been reported 

for severe recurrent respiratory papillomatosis.31 Propranolol 

enhanced the sensitivity of gastric cancer cells to radiation 

by inhibiting β-adrenergic receptors and the downstream 

nuclear factor kappa-B cells (NF-κB)-VEGF/epidermal 

growth factor receptor/cyclooxygenase (COX)-2 path-

way.32 Propranolol also had antiproliferative and apoptotic 

effects on multiple myeloma cells.33 These findings sug-

gest that β-adrenergic blockade might play a role in cancer  

treatment.

Based on the evidence described above, in this review, 

we discuss the role of β-adrenergic blockers in cancer.

Figure 1 illustrates the signaling pathways and their con-

nections to β-adrenergic receptors.

Genetic factors that relate to 
β-adrenergic inhibition and cancer
The major histocompatibility complex (MHC) class II mol-

ecules play an important role in the immune system and are 

essential in the defense against infection. The human MHC 

class II molecules are encoded by three different human 

leukocytic antigen (HLA) isotypes: HLA-DR, HLA-DQ, 

and HLA-DP. Published studies have suggested that several 

genes within the MHC region promote cancer susceptibility. 

A chimeric DR4 homozygous transgenic mouse line was 

reported to spontaneously develop diverse hematological 
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malignancies at a high frequency.34 Most of these neoplasms 

were highly similar to the types of neoplasms that are found 

in human diseases. HLA-DR antigen expression was cor-

related with histopathological type and with the degree of 

cell differentiation in cutaneous squamous-cell carcinomas.35 

In southern Tunisia, the DRB1*03 and DR-B1*13 alleles 

were significantly more frequent in patients with nasopha-

ryngeal carcinoma (NPC).36 The DR1 gene was shown to be 

strongly associated with thyroid carcinoma.37 HLA-DR was 

also increased in poorly differentiated thyroid carcinoma 

and in the anaplastic type of this carcinoma in particular.38 

In Chinese populations, the DQA1*0102 and DPB1*0501 

alleles have been reported to be significantly more common 

in patients with HCC than in controls.39 Among Korean study 

populations, the frequency of the DRB1*0404 allele was 

significantly higher in gastric cancer patients than in gastri-

tis patients.40 However, the frequencies of the DRB1*0405 

and DQB1*0401 alleles were increased in Japanese patients 

with intestinal-type gastric cancer compared with controls.41 

Somatic mutations affecting HLA class II genes may lead 

to a loss of HLA class II expression due to the formation of 

microsatellites in unstable colorectal carcinomas (CRCs).42 

The DRB1*15 allele and the DRB1*15 DQB1*0602 haplo-

type have been associated with human papillomavirus-16 

positive invasive cervical cancer in Mexican women.43 It 

has been demonstrated that the DRB1*0410 allele is the 

susceptibility allele in Japanese patients with testicular 

germ cell carcinoma.44 Furthermore, the frequencies of the 

DRB1*09 and DQB1*03 alleles were increased in patients 

with non-Hodgkin’s lymphoma and diffuse large B-cell 

lymphoma compared with normal controls.45 In a study 

of Turkish children, the frequencies of the DRB1*04 and 

DRB1*15 alleles were significantly higher in patients with 

acute leukemia than in controls.46 In Eastern Canada, the 

DRB1*16 allele was a marker for a significant risk of chronic 

myelogenous leukemia.47 The DRB1*04 and DRB5 alleles 

were associated with disease progression in Iranian patients 

with chronic lymphocytic leukemia.48 Moreover, cardiac 

β-adrenergic receptors and adenylate cyclase activity in 

dilated cardiomyopathy were shown to be modulated by cir-

culating autoantibodies against the cardiac β
1
-adrenoceptor; 

the presence of these autoantibodies is controlled by the 

HLA-DR.49 Furthermore, propranolol-abrogated interferon-

gamma increased HLA class II expression and interleukin-1-

beta (IL-1β) secretion.50 HLA-DR was significantly reduced 

in the lymphocytes of carvedilol-treated chronic heart failure 

patients.51 These findings suggest that β-adrenergic blockers 

may have an effect on cancer by suppressing the expression 

of MHC class II antigens.

The primary function of the renin–angiotensin system 

(RAS) is to maintain fluid homeostasis and regulate blood 

pressure. The angiotensin-converting enzyme (ACE) is a key 

enzyme in the RAS that converts angiotensin (AT) I to the 

potent vasoconstrictor AT II.52 The local RAS may influence 

tissue angiogenesis, cellular proliferation, apoptosis, and 

inflammation.53 Epidemiological and experimental studies 

have suggested that the RAS might contribute to the para-

crine regulation of tumor growth. Renin levels are elevated 

in patients with liver cirrhosis and HCC and have been 

positively correlated with α-fetoprotein.54 The overexpression 
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Figure 1 Signaling pathways and their connections to β-adrenergic receptors.
Abbreviations: ATP, adenosine triphosphate; cAMP, cyclic adenosine monophosphate; MAPK, mitogen-activated protein kinase; SOS, factor Son of Sevenless.
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of ACE has been reported in extra-hepatic cholangio-carci-

noma,55 leukemic myeloid blast cells,56 and macrophages in 

the lymph nodes of Hodgkin’s disease patients.57 AT II recep-

tors were also shown to be expressed in all human gastric 

cancer lines,58 premalignant and malignant prostate cells,59 

human lung cancer xenografts,60 and ovarian cancer.61 The 

RAS mutation in codon 61 was the most common genetic 

alteration in poorly differentiated thyroid carcinomas.62 The 

ACE I/D polymorphism has been identified as a possible 

target for developing genetic markers for breast cancer 

in Brazilian women.63 The ACE I/D polymorphisms were 

shown to play an important role in breast cancer risk and 

disease-free survival in Caucasian postmenopausal  women.64 

Carriers of the high-activity DD genotype exhibited an 

increased risk of breast cancer compared with low activity 

II/ID genotype carriers.65 The DD genotype was associated 

with patients with an aggressive stage of prostate cancer.66 

ACE2 expression was decreased in NSCLC and in pancreatic 

ductal adenocarcinoma, in which AT II levels were higher 

than in controls.67,68 ACE2 has been suggested as a potential 

molecular target for pancreatic cancer therapy.69 The AT II 

concentration was significantly higher in the gastric cancer 

region than in adjacent tissue.70 Furthermore, angiotensin 

II-receptor blockers suppressed the cell proliferation effects 

of AT II in breast cancer cells.71 The addition of ACE inhibi-

tors or angiotensin II-receptor blockers to platinum-based 

first-line chemotherapy contributed to prolonged survival in 

patients with advanced lung cancer72 and positively affected 

the prognosis of advanced pancreatic cancer patients receiv-

ing gemcitabine.73 RAS inhibitors also improved the outcome 

of sunitinib treatment in metastatic renal cell carcinoma.74 

Moreover, catecholamines can alter the release of AT II. 

Ming et al75 demonstrated that isoproterenol enhances the 

stimulatory effect of dexamethasone on the expression of the 

AT gene via β
2
-adrenergic receptors in mouse hepatoma cells. 

Isoproterenol promoted an increase in the release of AT II 

from isolated perfused mesenteric arteries, and this release 

was blocked by propranolol.76 In other studies, isoproterenol 

also increased the secretion of AT II in neuronal cultures, 

cultured bovine aortic endothelial cells, and the brachial 

arteries of hypertensive subjects.77–79 Propranolol treatment 

reduced plasma renin activity, AT I, AT II, and AT
1–7

 in the 

portal vein and periphery in cirrhotic patients compared 

with non-treated patients.80 Carvedilol inhibited basal and 

stimulated ACE production in human endothelial cells81 and 

exhibited beneficial effects on ACE activity and plasma renin 

activity levels in chronic heart failure patients.82 In addition, 

proliferating infantile hemangioma expressed two essential 

components of the RAS, namely ACE and the AT II recep-

tor, that accounted for the propranolol-induced accelerated 

involution of large proliferating infantile hemangioma.83–85 

Thus, taken together, these findings suggest that the RAS is 

activated in cancer patients and β-adrenergic blockers may 

play a role in cancer by modulating the RAS.

The transcription factor NF-κB is a hetero-dimeric, 

sequence-specific transcription factor that is expressed in 

many cell types. NF-κB has been implicated in chronic 

inflammatory diseases and is a key regulator of genes that are 

involved in responses to infection, inflammation, and stress. 

The NF-κB family of transcription factors plays a crucial role 

in inflammation as well as in the development and progression 

of cancer. The NF-κB pathway is dysregulated in prostate 

cancer and has been implicated in the progression to the 

androgen-independent state that ultimately leads to patient 

death.86 NF-κB activity has been correlated with the progres-

sion and prognosis of pancreatic cancer in a mouse model.87 

NF-κB expression was higher in renal cancer specimens than 

in a control group,88 and NF-κB is known to play an important 

role in endometrial cancer pathogenesis.89 NF-κB signaling is 

important for medulloblastoma tumor growth, and the inhibi-

tion of NF-κB reduced tumor size and viability in vivo.90 It 

has been reported that the association of the RE-1-silencing 

transcription factor with NF-κB increases risks of CRC, colon 

cancer, and rectal cancer.91 NF-κB alleles are associated with 

oral carcinogenesis.92 NF-κB
1
 and NF-κBIA polymorphisms 

are associated with an increased risk for sporadic colorectal 

cancer in a southern Chinese population.93 A homozygous 

NFκBα rs17103265 deletion is a novel genetic risk factor 

for gastric carcinogenesis, particularly for the development 

of certain subtypes of gastric cancer in a southern Chinese 

population.94 NF-κB
1
 insertion/deletion promoter poly-

morphism increases the risk of advanced ovarian cancer in 

Chinese populations.95 The functional NF-κB
1
-94 insertion/

deletion ATTG (adenine-thymidine-thymidine-guanine) 

polymorphism was associated with cervical squamous-cell 

carcinoma, particularly in individuals who were 35 years of 

age or younger.96 A meta-analysis revealed that a common 

insertion/deletion (NF-κB
1
-94 insertion/ deletion ATTG, 

rs28362491) polymorphism in the NF-κB
1
 gene might be 

associated with a decreased cancer risk, especially in Asian 

populations.97 Moreover, cardiac collagen volume fraction 

and apoptotic cell numbers were elevated in ketamine-

treated rats compared with control animals; these effects 

were prevented by the co-administration of metoprolol. The 

NF-κB cells were increased after ketamine treatment and 

sharply reduced after metoprolol administration.98 Carvedilol 
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blocked in vitro human peripheral blood T-cell activation by 

downregulating NF-κB activity.99 Propranolol repressed gas-

tric cancer cell growth through downstream NF-κB.21,32 Beta
2
-

adrenergic antagonists suppressed the activation of NF-κB100 

and potentiated the antiproliferative effects of gemcitabine 

by inducing apoptosis in pancreatic cancer cells.30 Taken 

together, the evidence indicates that β-adrenergic antagonists 

may suppress NF-κB activation in cancer.

Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear 

protein that contributes to both cell death and survival under 

stressful conditions. PARP-1 catalytic activity is stimulated 

by DNA strand breaks. Parp-1-deficient cells exhibited 

enhanced sensitivity to the lethal effects of ionizing radia-

tion and alkylating agents,101 whereas Parp-1 knock-out mice 

developed spontaneous mammary and liver tumors.102,103 The 

overexpression of PARP-1 has been reported in Ewing’s 

sarcoma,104 malignant lymphomas,105 CRC,106 HCC,107 

breast cancer,108 pediatric central nervous system tumors,109 

and ovarian cancer.110 In a meta-analysis, PARP-1 mRNA 

expression was correlated with higher grades, medullary 

histological types, tumor sizes, worse metastasis-free survival 

rates, and decreased overall survival rates in human breast 

cancer.111 PARP-1 polymorphisms have been associated with 

gastric cancer,112 prostate cancer,113 esophageal squamous-cell 

carcinoma,114 and lung cancer115 in Han Chinese individuals 

but with a reduced risk of non-Hodgkin lymphoma in Korean 

males.116 PARP-1 polymorphism reduced PARP-1 catalytic 

activity by 30%–40%.117 A meta-analysis found no significant 

association between PARP-1 V762 polymorphism and can-

cer risk. However, the A variant allele of the PARP-1 V762 

polymorphism was associated with an increased risk of can-

cer among the Asian population but a decreased risk among 

Caucasians, particularly with respect to glioma.118 Moreover, 

 rabbits treated with ketamine exhibited decreased left ven-

tricular ejection fractions, reduced ventricular conduction 

 velocity, and increased susceptibility to ventricular  arrhythmia. 

Metoprolol treatment prevented these pathophysiological 

alterations. The expression of PARP-1 and apoptosis-inducing 

factor were increased after ketamine treatment and sharply 

reduced after metoprolol administration.98 Propranolol treat-

ment markedly suppressed PARP activation in the skeletal 

muscle biopsies of pediatric burn patients.119 Propranolol also 

protected against staurosporine-induced DNA fragmentation 

and PARP cleavage in SH-SY5Y neuroblastoma cells.120 The 

nonselective β-blocker carvedilol significantly inhibited apop-

tosis and suppressed activated PARP-1 cleavage in human 

cardiac tissue.121  Carvedilol significantly decreased ischemia-

reperfusion-induced poly- and mono(ADP-ribosyl)ation in 

heart perfusion and in a  rheological model.122  Carvedilol also 

decreased PARP activity in the hippocampus and protected 

neurons against death after transient forebrain ischemia.123 

Metipranolol blunted sodium nitroprusside-induced break-

down of PARP-1 in rat eyes and retinas.124 These findings 

suggest that PARP-1 is activated in cancer patients and 

β-adrenergic antagonists may have an effect on cancer by 

suppressing PARP-1.

Angiogenesis is a complex process that involves the 

coordinated steps of endothelial cell activation, prolifera-

tion, migration, tube formation, and capillary sprouting and 

requires the participation of many intracellular signaling 

pathways. VEGF is a key mediator of angiogenesis.  Vascular 

changes associated with angiogenesis typically occur in 

cancer, but they have also been reported in inflammatory 

diseases. Statistically significant increases in VEGF expres-

sion relative to normal tissue have been reported in gastric 

cancer tissue,125 urothelial cell carcinoma of the urinary 

bladder,126 pancreatic cancer,87 thyroid cancer,127 esophago-

gastric cancer,128 gastric cancer,129 osteosarcoma,130 HCC,131 

inflammatory breast cancer,132 and ovarian cancer.133 VEGF 

polymorphisms were found to be a critical risk factor for 

genetic susceptibility to lung cancers in the ethnic Han 

Chinese of North China.134 VEGF-A-1154GG genotype 

was considered to be a prognostic marker of poor survival 

in advanced-stage oral squamous-cell carcinoma patients.135 

A meta-analysis has suggested that the VEGF-460T/C, 

VEGF-634G/C, and VEGF-2578C/A gene polymorphisms 

are associated with CRC.136 A weak association between the 

VEGF+405G/C polymorphism and malignancy susceptibil-

ity was reported in an African population.137 VEGF-A and 

VEGF-D overexpression suggested poor prognosis in patients 

with gastric cancer138 and VEGF was identified as a marker of 

poor prognosis for patients with head and neck cancer.139 NE 

and isoproterenol significantly enhanced VEGF production 

in the ovarian cell lines and cultured NPC tumor cells. 

These effects were blocked by the β-adrenergic antagonist 

propranolol, supporting a role for β-adrenergic receptors in 

these effects. NE also induced the invasiveness of all NPC 

cell lines in a dose-dependent manner, which was blocked 

by propranolol.140,141 Propranolol significantly decreased 

VEGF activity in a phorbol myristate acetate-activated human 

leukemic cell line.142 Further, propranolol repressed gastric 

cancer cell growth through downstream effects on VEGF.21,31 

NE increased the expression of VEGF and this effect was 

inhibited by propranolol in pancreatic cancer cells.100,143 In 

addition, epinephrine enhanced the expression of VEGF 

in colon adenocarcinoma cells. The stimulatory action of 
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adrenaline on colon cancer growth was blocked by atenolol 

and ICI-118,551, which are β
1
- and β

2
-selective antagonists, 

respectively.143 These findings suggest that β-adrenergic 

antagonists may modulate VEGF expression in cancer.

The reduced form of nicotinamide adenine dinucleotide 

phosphate (NADPH) oxidase (NOX) enzyme complex 

mediates critical physiological and pathological processes 

including cell signaling, inflammation, and mitogenesis 

through the generation of reactive oxygen species (ROS) 

from molecular oxygen. It has been demonstrated that NOX1 

is required for Ras oncogene-induced cell transformation.144 

The NOX subunit p22phox was reported to inhibit the function 

of the tumor suppressor protein tuberin in renal carcinoma 

cells.145 The activation of NOXs has been demonstrated in the 

development of numerous cancers, including melanoma,146 

leukemia,147 esophageal adenocarcinoma,148 HCC,149 prostate 

cancer,150 colon cancer,151 glioblastoma multiforme,152 and 

multiple myeloma.153 NADPH polymorphisms were report-

edly associated with myelodysplastic syndrome, de novo 

acute myeloid leukemia,154,155 esophageal cancer,156 lung 

cancer,156,157 non-Hodgkin lymphoma,158,159 childhood acute 

leukemia,160 postmenopausal breast cancer,161 and gastric 

cancer.162 Moreover, nebivolol, a third-generation selective 

β-adrenoreceptor, improved left ventricle dysfunction and 

survival early after myocardial ischemia and inhibited cardiac 

NOX activation.163 Treatment with nebivolol was associated 

with improvement in insulin resistance, reduced proteinuria, 

and decreased NOX activity/levels of ROS in kidney and 

skeletal muscle tissue in the transgenic TG(mRen2)27 rat.164,165 

Nebivolol also improved diastolic relaxation, fibrosis, and 

remodeling in Zucker obese rats, with reductions in NOX-

dependent superoxide.166 Carvedilol attenuated the increased 

protein expression of NOX subunits in the heart and kidney 

in daunorubicin-induced cardiotoxicity and nephrotoxicity in 

rats.167 NOX activity in whole blood and isolated neutrophils 

was inhibited in a dose-dependent manner by nebivolol, 

whereas atenolol, metoprolol, and carvedilol were markedly 

less effective in Watanabe heritable hyperlipidemic rabbits.168 

Celiprolol, a specific β
1
-antagonist with weak β

2
-agonistic 

action, suppressed NOX p22phox, p47phox, gp91phox, and NOX1 

expression in the left ventricle of deoxycorticosterone acetate-

salt hypertensive rats.169 Thus, taken together, findings suggest 

that β-adrenergic antagonists may have a role in cancer by 

suppressing NADPH expression.

The role of β-adrenergic  
blockers in cancer
Matrix metalloproteinases (MMPs) are proteolytic enzymes 

that are responsible for extracellular matrix remodeling and 

the regulation of leukocyte migration through the extracel-

lular matrix, an important step in inflammatory and infec-

tious pathophysiology. MMPs are produced by many types 

of cells, including lymphocytes, granulocytes, astrocytes, 

and activated macrophages. Activation of MMPs contributes 

to tumor angiogenesis and metastasis. MMP-1 expression 

has been linked to sarcoma cell invasion.170 MMP-2 expres-

sion has been found increased in gastric cancer cells125 and 

CRC.171 MMP-9 was shown to be expressed in many cancer 

cells, including those associated with NSCLC,172 lymph 

node metastasis in human breast cancer,173 ovarian cancer 

invasion and metastasis,174 glioblastoma multiforme,175 

and adamantinous craniopharyndioma.176 The secretion of 

MMP-2 and MMP-9 by leukemic cells increased the per-

meability of the blood–brain barrier of the central nervous 

system by disrupting tight junction proteins.177 In gastric 

cancer, MMP-2 and MMP-9 were shown to play important 

roles in tumor invasion and metastasis.178 The risks for 

the development of hypophyseal adenoma and cervical 

neoplasia were greater in patients with MMP-1 polymor-

phisms179,180 than in those with the wild-type allele. The 

MMP-2 polymorphism contributed to prostate cancer sus-

ceptibility in Northern India181 and to the clinical outcomes 

of Chinese patients with NSCLC treated with first-line 

platinum-based chemotherapy.182 The MMP-7 polymor-

phisms were associated with esophageal squamous-cell 

carcinoma, gastric cardiac adenocarcinoma, NSCLC, and 

CRC.115,160,183 The single-nucleotide polymorphisms (SNPs) 

in the MMP-2 and MMP-9 region are associated with sus-

ceptibility to head and neck squamous-cell carcinoma in an 

Indian population.184 The SNPs of genes encoding MMPs 

(MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, 

MMP-12, MMP-13, and MMP-21) were shown to be related 

to breast cancer risk, progression, and survival.185 Based on 

a meta-analysis, an MMP-2 allele (-1306T) may be a pro-

tective factor against digestive cancer risk.186 The MMP-9 

polymorphism was associated with a lower risk of CRC187 

and polymorphisms in the promoter regions of MMP-1, 

MMP-3, MMP-7, and MMP-9 were associated with metas-

tasis in certain cancers.188 A meta-analysis revealed that 

polymorphisms of MMP-1 (-1607) and MMP-3 (-1612) 

increase the risk of CRC.189 Moreover, propranolol inhibited 

tubulogenesis of human brain endothelial cells and MMP-9 

secretion.190 A selective β
3
-adrenoceptor agonist prevented 

human myometrial remodeling and the activation of MMP-2 

and MMP-9 in an in vitro model of  chorioamnionitis.191 NE 

treatment increased MMP-2 and MMP-9 levels in cultured 

NPC tumor cells, which was inhibited by propranolol. 

NE also induced the invasiveness of all NPC cell lines in 
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a dose-dependent manner, which could be blocked by an 

MMP inhibitor and propranolol.141 Propranolol significantly 

decreased MMP-2 activity in a phorbol myristate acetate-

activated human leukemic cell line.142 Propranolol-induced 

growth inhibition was associated with G
0
/G

1
 arrest, G

2
/M 

arrest, and repressed gastric cancer cell growth through 

the downstream inhibition of MMP-2 and MMP-9.21 NE 

increased the expression of MMP-2 and MMP-9 and these 

effects were inhibited by propranolol in pancreatic cancer 

cells.100,192 Epinephrine upregulated MMP-9 activity in 

human colon adenocarcinoma HT-29 cells, which was 

blocked by atenolol, a β
1
-selective adrenergic antagonist, or 

ICI-118,551, a β
2
-selective adrenergic antagonist.143 These 

studies suggested that β-adrenergic antagonists may play 

an important role in the pathological process of cancer by 

downregulating the level of MMPs and regulating the level 

of tissue inhibitors of metalloproteinases.

The MAPK pathways provide a key link between the 

membrane-bound receptors that receive these cues and 

changes in the pattern of gene expression, including the 

ERK cascade, the stress-activated protein kinases/c-jun 

N-terminal kinase (JNK) cascade, and the p38 MAPK/high 

osmolarity glycerol HOG cascade.193 MAPK activation 

was higher in renal cancer specimens than in control group 

specimens. Renal tumor diameter and grade increase were 

directly correlated with p38 MAPK expression.90 The p38 

levels were significantly higher in the HCC patients with 

a larger tumor ($3 cm) and satellite tumors, and were sig-

nificantly correlated with p-JNK levels. High p38 and low 

p-JNK expression was associated with poor survival in HCC 

patients.194 Increased MAPK activity and mitogen-activated 

protein kinase phosphatase-1 overexpression were associ-

ated with the carcinogenesis of human gastric adenocar-

cinoma.195 Overexpression of the Ras and MAPK proteins 

(Ras p21, ERK-1, JNK-1, and p38) conferred a progressive 

tendency toward invasive growth, advanced-stage cancer, and 

decreased levels of estrogen receptor-α protein in advanced-

stage human breast cancer.196 The MAPK pathway was 

shown to be critical to oncogenic signaling in the majority 

of patients with malignant  melanoma.197 The tumor suppres-

sive actions of transforming growth factor beta-1 decreased 

cell viability and induced apoptosis in invasive prostate 

cancer and bladder cancer cells via the Akt- independent, 

p38 MAPK, and stress-activated protein kinases/JNK-

mediated activation of caspases.198 Genetic variation in the 

MAPK-signaling pathway influenced colorectal cancer risk 

and survival after diagnosis.199  Expression of the MAPK 

phosphatase DUSP4 was associated with microsatellite 

instability in CRC and caused increased cell proliferation.200 

Moreover, the stimulation of β-adrenoceptors can activate 

cyclic adenosine monophosphate (cAMP)/protein kinase 

A (PKA) and mitogen-activated protein kinase (MAPK) 

pathways in pancreatic cancer cells. Pathways in pancreatic 

cancer cells. The β
2
-adrenergic antagonists suppressed inva-

sion and proliferation by inhibiting both cAMP/PKA and 

Ras, which regulate activation of the MAPK pathway.100 NE 

stimulates pancreatic cancer cell proliferation, migration 

and invasion via β-adrenergic receptor-dependent activation 

of the p38 MAPK pathway. These stimulatory effects were 

completely stopped by propranolol or p38 MAPK-inhibitor 

SB203580.201 Propranolol was shown to exert its suppres-

sive effects on hemangiomas through the hypoxia-inducible 

factor-1α–VEGF-A–angiogenesis axis, with effects medi-

ated by the phosphoinositide 3-kinase/Akt and p38 MAPK 

pathways.202 Thus, these findings suggest that β-adrenergic 

antagonists may have a role in cancer by suppressing the 

MAPK pathway.

Prostaglandins play a role in inflammatory processes. 

COX participates in the conversion of arachidonic acid into 

prostaglandins. Tumor inflammation is now recognized as one 

of the hallmarks of cancer. The overexpression of COX-2 is 

associated with resistance to apoptosis, increased angiogen-

esis, and increased tumor invasiveness in various cancers. 

Increased COX-2 expression was reported in endometrial 

adenocarcinoma,203 breast cancer,204 reno-medullary intersti-

tial cell tumor,205 CRC,206 gastric cancer,207 carcinoma of the 

cervix,208 and familial adenomatous polyposis.209 The dele-

tion of COX-2 in mouse mammary epithelial cells delayed 

breast cancer onset.210 COX-2 inhibitors also decreased the 

growth and induced regression of human esophageal adeno-

carcinoma xenografts in nude mice211 and retarded murine 

mammary tumor progression by reducing tumor cell migra-

tion, invasiveness, and angiogenesis.212 Genetic variability in 

enzymes could have an impact on the disease risk. COX-2 

polymorphisms were reported to be associated with bladder 

cancer,213 biliary tract cancer,214 lung cancer,215 nonmela-

noma skin cancer after organ transplantation,216 esophageal 

squamous-cell carcinoma,217 NPC,218 pancreatic cancer,219 

invasive ovarian carcinoma,220 breast cancer,221 gastric carci-

noma,222 acute myeloid leukemia,223 prostate cancer,224 head 

and neck cancer,225 colorectal adenoma,226 and HCC.227 In 

a meta-analysis, the COX-2 1195G.A polymorphism was 

significantly associated with an increased risk for digestive 

system cancers, particularly in Asian populations.228 In addi-

tion, the COX-2 -765G.C polymorphism may have caused 

an increased risk of CRC and esophageal cancer in patients 

of Asian descent, whereas the 8473T.C polymorphism may 

have caused a decreased risk of breast and lung cancer.229 In 
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addition, prostaglandin E
2
 (PGE

2
) has been reported to be 

associated with colorectal adenoma,230 pancreatic tumor,231 

and childhood neuroblastoma.232  Suppression of PGE
2
 

receptors inhibited human lung carcinoma cell growth.233 

Moreover, adrenaline increased PGE
2
 release in human 

colon adenocarcinoma HT-29 cells, which can be blocked 

by COX-2 inhibitor or by atenolol, a β
1
-selective adrener-

gic antagonist, or ICI-118,551, a β
2
-selective adrenergic 

 antagonist.143 The β
2
-adrenergic antagonists suppressed 

COX-2 expression in pancreatic cancer cells.100 Propranolol 

inhibits cell proliferation and represses gastric cancer cell 

growth through the downstream COX-2 pathway.21,32 In addi-

tion, propranolol and COX-2 inhibitor administration, which 

can be applied perioperatively in most cancer patients with 

minimal risk and at low cost, counteracted several immu-

nologic and endocrinologic perturbations and improved 

 recurrence-free survival rates in mice undergoing primary 

tumor excision.234,235 Celiprolol activates endothelial nitric 

oxide synthase (NOS) through the phosphatidylinositol 

3-kinase/Akt pathway via NF-ĸB induced by oxidative 

stress.169 These findings suggest that β-adrenergic antagonists 

may play a role in modulating the inflammatory process in 

cancer.

ROS play a major role in various cell-signaling pathways. 

ROS activate various transcription factors and increase the 

expression of proteins that control cellular transformation, 

tumor cell survival, tumor cell proliferation and invasion, 

angiogenesis, and metastasis. ROS have been shown to 

play an important role in the initiation and progression of 

many cancers.236–241 SNPs of antioxidant defense genes 

may significantly modify the functional activity of encoded 

proteins. Women with genetic variability in the iron-related 

oxidative stress pathways may be at increased risk for post-

menopausal breast cancer.242 The ala variant of superoxide 

dismutase was associated with a moderately increased risk 

of prostate cancer.243 Based on a meta-analysis, manganese 

 superoxide dismutase polymorphisms may contribute to 

cancer  development (Val-9Ala)244 and prostate cancer suscep-

tibility (Val-16Ala)245 but not to breast cancer susceptibility246 

(Val-16Ala). Moreover, myocardial tissue sections revealed 

increased ROS after traumatic brain injuries. Treatment with 

propranolol decreased ROS levels.247 Carvedilol can modulate 

ROS-induced signaling. Carvedilol significantly decreased 

the ischemia-reperfusion-induced free-radical production and 

nicotinamide adenine dinucleotide catabolism, and decreased 

the lipid peroxidation and red blood cell membrane damage 

as determined by free malondialdehyde production in heart 

perfusion and in a rheological model.120 Nebivolol improved 

diastolic dysfunction and myocardial remodeling through 

reductions in oxidative stress in the transgenic (mRen2) rat.248 

These findings suggest that β-adrenergic antagonists modu-

late oxidative stress in cancer.

NOS is an enzyme that is involved in the synthesis of 

nitric oxide (NO), which regulates a variety of important 

physiological responses including cell migration, immune 

response, and apoptosis. NO and calcium were reported 

to regulate mitochondrial biogenesis in follicular thyroid 

carcinoma cells.249 There is a link between NO and the 

induction of apoptotic cell death in head and neck squamous-

cell carcinoma.250 Cytokines, especially interferon-gamma, 

induced apoptosis in acute leukemia via the NO and cas-

pase-3 pathways.251 The reduction of NO levels enhanced 

the radiosensitivity of hypoxic NSCLC.252 Increased NO 

may be a sign of subclinical cardiotoxicity of doxorubicin.253 

High NO concentrations at the periphery of a melanoma 

may contribute to metastasis by stimulating cell prolifera-

tion, inhibiting apoptosis, or acting as a lymphangiogenic 

factor.254 Inducible NOS mRNA expression was consider-

ably higher in glioblastoma specimens than in meningioma 

specimens.255 Inducible NOS expression has been correlated 

with angiogenesis, lymphangiogenesis, and poor prognosis 

in gastric cancer patients256 and estrogen receptor-negative 

breast cancer patients.257 NOS inhibition enhanced the 

antitumor effect of radiation in the treatment of squamous 

carcinoma xenografts.258 NOS polymorphisms were 

reported to be associated with bladder cancer,259 urothelial 

carcinoma,260 gastric cancer,261 colorectal cancer,262 and non-

Hodgkin’s lymphoma.263 In a meta-analysis, endothelial NOS 

894G.T polymorphism was associated with breast cancer.264 

Moreover, metipranolol blunted NO-induced lipid peroxida-

tion in rat eyes and retinas.114 Nebivolol prevented vascular 

NOS III uncoupling in experimental  hyperlipidemia.168 

 Propranolol suppressed hemangioma growth by inhibiting 

the expression of endothelial NOS protein and the subsequent 

production of NO.265 These findings suggest that β-adrenergic 

antagonists may have a role in cancer by inhibiting the 

expression of NOS.

Conclusion
Beta-adrenergic blockade may play a role in the prevention 

and treatment of cancer. Genetic studies have provided the 

opportunity to determine the proteins that link β-adrenergic 

antagonism to cancer pathology. Beta-adrenergic inhibition 

also exerts its effect on cancer via non-genomic  mechanisms. 

Further investigation of the relationship between β-adrenergic 

antagonists and cancer is required.
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