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Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common skin cancer with an increasing incidence. As a pre-cancerous condition,
actinic keratosis (AK) has an up to 20% risk of progression to cSCC. This study aims to define the potential genes that associated with
genesis and progression of cSCC, thereby further identify critical biomarkers for the prevention, early diagnosis, and effective
treatment of cSCC.
Two datasets GSE42677 and GSE45216 were downloaded from the GEO. Microarray data analysis was applied to explore the

differentially expressed genes (DEGs) between cSCC samples and AK samples. Then functional enrichment analysis, protein-protein
interaction (PPI) network, and drug-gene interaction analysis were performed to screen key genes.
A total of 711 DEGs, including 238 upregulated genes and 473 downregulated genes, were screened out. DEGsmainly involved in

pathways as extracellular matrix (ECM)-receptor interaction, hematopoietic cell lineage, phosphatidylinositol 3-kinase (PI3K-Akt)
signaling pathway, and focal adhesion. Candidate genes, including upregulated genes as JUN, filamin A (FLNA), casein kinase 1 delta
(CSNK1D), and histone cluster 1 H3 family member f (HIST1H3F), and downregulated genes as androgen receptor (AR), heat shock
protein family Hmember 1 (HSPH1), tropomyosin 1 (TPM1), pyruvate kinase, muscle (PKM), LIM domain and actin binding 1 (LIMA1),
and synaptopodin (SYNPO) were screened out. In drug-gene interaction analysis, 13 genes and 44 drugs were identified.
This study demonstrates that genes JUN, FLNA, AR, HSPH1, and CSNK1D have the potential to function as targets for diagnosis

and treatment of cSCC.

Abbreviations: AK = actinic keratosis, AR = androgen receptor, BP = biological processes, cSCC = cutaneous squamous cell
carcinoma, CSNK1D = casein kinase 1 delta, DAVID = database for annotation visualization and integrated discovery, DEGs =
differentially expressed genes, DGIdb = drug gene interaction database, DNA = deoxyribonucleic acid, ECM = extracellular matrix,
FLNA= filamin A, GEO= gene expression omnibus, GO= gene ontology, HIST1H3F= histone cluster 1 H3 family member f, HSPH1
= heat shock protein family H member 1, IL = interleukin, KEEG = kyoto encyclopedia of genes and genomes, LIMA1 = LIM domain
and actin binding 1, MAPK = mitogen-activated protein kinase, MCODE = molecular complex detection, MMP = matrix
metalloproteinases, NCBI = national center of biotechnology information, PI3K = phosphatidylinositol 3-kinase, PKM = pyruvate
kinase muscle, PPI = protein-protein interaction, RMA = robust multi-array average, SYNPO = synaptopodin, TPM1 = tropomyosin
1.
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1. Introduction

Cutaneous squamous cell carcinoma (cSCC) is the second most
frequent skin cancer, accounting for approximately 20% of all
skin cancers.[1,2] The morbidity of cSCC is steadily increasing,
posing a significant threat to public health.[3] The most significant
risk factor for cSCC is actinic keratosis (AK), a precancerous
lesion developed from the damage effects of chronical ultraviolet
radiation.[4,5] Although it is difficult to determine whether an AK
will evolve into cSCC, up to 65% to 97% of cSCCs are reported
to originate in lesions previously diagnosed as AKs.[6] Defining
critical molecular biomarkers to help identify which AKs are
more likely to progress to cSCC is an urgent research need, which
will contribute to the prevention, early diagnosis, and effective
treatment of cSCC.
It is reported that the karyotypic profile of AK is similar to that

of cSCC, but the degree of complexity is reduced, representing an
earlier stage of tumor formation development.[7] Multiple genetic
abnormalities have been observed in cSCC and important roles of
some genes contributing to the progression of AK to cSCC as
TP53, CDKN2A, and NOTCH have been proven.[8–11] Up-
regulation of matrix metalloproteinases (MMP) has been
validated in many different types of tumors, and in particular
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the expression and production of MMP-7 proves to be enhanced
in cSCC specifically.[12] In addition, overexpression of interleukin
(IL-24) was found in cSCC lesions via promoting focal expression
of MMP7.[13] Besides, the mitogen-activated protein kinase
(MAPK) pathway is reported to be vital in the transition fromAK
to cSCC.[14] However, current knowledge about the underlying
molecular pathogenesis is poorly characterized and the develop-
ment of molecular biomarkers for early diagnosis, treatment, and
prognosis prediction of tumor remain underexplored.
Deoxyribonucleic acid (DNA) microarray is now widely used

in clinical research to identify differentially expressed genes
(DEGs) between normal samples and tumor specimens. Second-
ary analysis of exiting DNA microarray data provides a
comprehensive and responsible comparison of gene expression
among different tissues.[15] In this study, we tried to investigate
the possible molecular mechanism of progression from AK to
cSCC and to identify the key genes associated with cSCC and thus
potentially provide novel treatment targets for cSCC manage-
ment. DEGs of cSCC samples compared with controlled AK
samples were screened out to explore the molecular biological
mechanisms of cSCC.
2. Methods

2.1. Microarray data source

Microarray data containing both cSCC samples and AK samples
were retrieved in the Gene Expression Omnibus (GEO), a
database for gene expression managed by the National Center of
Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.
gov/geo/). Two datasets with the accession number of GSE42677
andGSE45216were selected for the following analysis.[16,17] The
dataset GSE42677 included 10 cSCC samples and 5 AK samples
and the platform employed was GPL571 (HG-U133A_2)
Affymetrix Human Genome U133A 2.0 Array. The dataset
GSE45216 contained 30 cSCC samples and 10 AK samples and
the platform used was GPL570 (HG-U133_Plus_2) Affymetrix
HumanGenome U133 Plus 2.0 Array. The data used in this study
were downloaded from the openly available GEO dataset and
ethical approval was waived.
2.2. Data pre-processing and identification of DEGs

The affy package (http://bioconductor.org/packages/release/bioc/
html/affy.html, version 1.60.0), which contained functions for
exploratory oligonucleotide array analysis, was used to perform
the background adjustment and normalization so as to ensure the
comparability and integrity of data.[18] The Robust Multi-array
Average (RMA) method was used for normalizing and calculat-
ing expression measures.[19] The limma package (http://biocon
ductor.org/packages/limma/, version 3.38.3) was used to identify
the DEGs between cSCC and AK.[20] Genes with an absolute
value of log 2 (fold change) greater than 1 and P< .05 were
screened out as DEGs. To discard probes that did not match any
gene symbol, probes were annotated with corresponding
platform annotation file.
2.3. Functional enrichment analysis of DEGs

The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEEG) enrichment analysis of DEGs was performed
using the online analysis tool the Database for Annotation
2

Visualization and Integrated Discovery (DAVID) (https://david.
ncifcrf.gov/, version 6.8), a database providing investigators tools
to comprehend biological meaning behind a number of genes.[21]

Given a gene list, the DAVID could identify enriched biological
terms and detect enriched functional-related gene groups through
standard accumulative hypergeometric statistical test. Signifi-
cance threshold P< .05 together with the enriched gene number
≥2 were regarded as the threshold of significant enrichment
analysis.
2.4. Protein network analysis

Protein networks provide a complementary means to dynami-
cally identify protein groupings that are functionally relevant.
Proteins connected within a protein-protein interaction (PPI)
network are likely to collaborate to perform various related
biological processes (BP). PPI networks were constructed with the
Metascape (http://metascape.org/gp/index.html) and Cytoscape
software (https://cytoscape.org/, version 3.7.3).[22,23] In Meta-
scape, PPI enrichment analysis was carried out with databases
BioGrid, InWeb IM, and OmniPath.[24] The Molecular Complex
Detection (MCODE) plugin (http://apps.cytoscape.org/apps/
mcode, version 1.5.1) of Cytoscape was used to cluster the PPI
network to recognize the most densely connected network
neighborhoods, where such neighborhood components were
more likely to associate with a particular complex or functional
unit.[25] The threshold score was set at ≥10. Pathway and process
enrichment analysis was performed and the best-scoring terms
appraised by P value were regarded as the functional description.
2.5. Drug-gene interaction analysis

The Drug Gene Interaction Database (DGIdb, http://www.dgidb.
org/) collects and integrates genomic resources and therapeutic
resources to search genes against the existing compendia of
known or potential drug-gene interactions.[26] In this study,
DGIdb 3.0 was used to identify possible effective drugs based on
the above obtained module genes. All the gene-drug interactions
related were predicted.
3. Results

3.1. DEGs screening

Data processing was applied on the raw data by affy and limma
packages in R software. According to the above-mentioned
screening criteria, we identified 302 DEGs from GSE42677
dataset, containing 137 upregulated genes and 165 down-
regulated genes. At the same time, 619 DEGs were screened out
from GSE45216 dataset, the number of genes upregulated was
194 while 425 genes were downregulated. Figure 1 showed the
clustering heatmaps of the top 200 DEGs. To avoid loss of
disease-associated DEGs, DEGs from two datasets were
combined. After removal of duplicate genes and genes with
self-contradictory expression trends, 711 genes altogether were
included in the next analysis, of which 238 were upregulated and
473 were downregulated.

3.2. Functional enrichment analysis of DEGs

The KEEG pathway enrichment analysis results demonstrated
that upregulated genes were enriched in 10 pathways, for
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Figure 1. Heatmaps of the top 200 DEGs. (A) Heatmaps of DEGs in GSE42677. (B) Heatmaps of DEGs in GSE45216. DEGs = differentially expressed genes.
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example, transcriptional misregulation in cancer, rheumatoid
arthritis, focal adhesion, and amoebiasis. Downregulated genes
were enriched in 18 pathways, like extracellular matrix (ECM)-
receptor interaction, hematopoietic cell lineage, phosphatidyli-
nositol 3-kinase (PI3K-Akt) signaling pathway, and focal
adhesion. The KEEG pathway terms enriched by DEGs were
shown in Table 1. In terms of GO BP, genes upregulated were
enriched in 62 GO BP terms, while the downregulated genes were
enriched in 55 terms. The bubble plot showed themost significant
20 GO BP terms (Fig. 2). The results indicated that upregulated
genes mainly participated in BP such as extracellular matrix
organization, cell proliferation, inflammatory response, and
blood coagulation. At the same time, genes downregulated
mainly involved in BP such as epidermis development, cell
adhesion, sphingolipid biosynthetic process, and skin develop-
ment.

3.3. PPI network analysis

Figure 3A showed the PPI network analysis results, which
contained 369 nodes and 862 edges. Nodes with higher
topological scores were key nodes of PPI network. The key 10
gene nodes included JUN (also known as Jun proto-oncogene or
activator protein 1 transcription factor subunit, upregulated,
degree=52), filamin A (FLNA, upregulated, degree=34),
androgen receptor (AR, downregulated, degree=29), heat shock
protein family H member 1 (HSPH1, downregulated, degree=
28), casein kinase 1 delta (CSNK1D, upregulated, degree=27),
tropomyosin 1 (TPM1, downregulated, degree=26), pyruvate
kinase, muscle (PKM, downregulated, degree=24), histone
cluster 1 H3 family member f (HIST1H3F, upregulated,
degree=23), LIM domain and actin binding 1 (LIMA1, down-
regulated, degree=23), and synaptopodin (SYNPO, downregu-
lated, Degree=19). Pathway and process enrichment analysis
3

showed that these genes mainly involved in transmembrane
receptor protein tyrosine kinase signaling pathway, extracellular
matrix organization, and regulation of cell adhesion. The
MCODE algorithm were applied to identify densely connected
network components and the MCODE networks identified for
individual gene lists were gathered and shown in Figure 3B. The
biggest 10 nodes of the PPI network were also hub genes in the
MCODE networks.

3.4. Drug-gene interaction analysis

By searching the DGIdb for the module genes identified by the
MCODE networks, 52 gene-drug interactions were obtained,
containing 13 genes (4 upregulated genes: NOTCH1, CXCL8,
JUN, CYP27B1; 9 downregulated genes: CYP3A5, AR, MAP2,
EDNRB, CYP7B1, LRRK2, PTGER3, SAA1, MMP7) and 44
drugs (preset filters: FDA approved and antineoplastic). The
drug-gene interaction results were shown in Figure 4.

4. Discussion

cSCC usually arises from interfollicular epidermal keratinocytes
and are characterized by different degrees of keratosis.[27] In the
year 2015, up to 2.2 million people were troubled with cSCC.[28]

Although prognosis of cSCC is generally favorable, its five-year
survival rate reduces to only 34% when invasion and distant
metastasis occurs.[1,29] Until now, the biomarker study of cSCC
was insufficient and the identification of biomarkers indicating
progression from AK to cSCC was significant and urgent, which
might be beneficial in the prevention, earlier diagnosis and
prognostic management of cSCC.
In this study, 53 samples, 40 cSCC samples and 13 AK samples

from datasets GSE42677 and GSE45216, were used for
bioinformatics analysis, aiming to explore the potential molecu-
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Table 1

The main KEEG pathways enriched by DEGs.

Expression
Change KEEG Pathway

Gene
count Genes P value

Up Transcriptional misregulation in cancer 11 CXCL8, MEIS1, CDKN2C, HIST1H3B, HIST1H3F, HIST1H3G, HIST1H3I, IGF1R,
ITGAM, JUP, PLAT

1.0E�4

Rheumatoid arthritis 7 ATP6V0E2, CCL20, CXCL6, CXCL8, JUN, IL1A, IL1B 1.4E�3
Focal adhesion 10 JUN, ACTN1, COL11A1, FLNA, IGF1R, LAMC2, PXN, PDGFC, SPP1, VAV3 2.2E�3
Amoebiasis 7 CXCL8, ACTN1, COL11A1, ITGAM, IL1B, LAMC2, SERPINB1 3.5E�3
Pertussis 6 CXCL6, CXCL8, JUN, ITGAM, IL1A, IL1B 3.8E�3
Cytokine-cytokine receptor interaction 9 CCL20, CCL6, CCL8, TNFRSF12A, TNFRSF25, BMPR1B, INHBA, IL1A, IL1B 2.0E�2
Salmonella infection 5 CXCL8, JUN, FLNA, IL1A, IL1B 2.8E�2
Systemic lupus erythematosus 6 ACTN1, HIST1H3B, HIST1H3F, HIST1H3G, HIST1H3I, HIST4H4 3.9E�2
Chemokine signaling pathway 7 CCL20, CXCL6, CXCL8, GNG4, PARD3, PXN, VAV3 4.5E�2
Signaling pathways regulating

pluripotency of stem cells
6 MEIS1, SOX2, BMPR1B, FZD10, INHBA, IGF1R 4.6E�2

Down ECM-receptor interaction 11 CD36, COMP, COL5A2, ITGA3, ITGA5, ITGA6, ITGB5, LAMA3, LAMB3, LAMB4,
LAMC1,

1.2E�4

Hematopoietic cell lineage 10 CD1B, CD1E, CD36, CD59, KIT, ITGA3, ITGA5, ITGA6, IL7R, IL7 6.0E�4
PI3K-Akt signaling pathway 21 KIT, CREB3L2, COMP, COL5A2, FGF14, FGFR2, GHR, ITGA3, ITGA5, ITGA6,

ITGB5, IL7R, IL7, LAMA3, LAMB3, LAMB4, LAMC1, LPAR1, NOS3, PRLR,
PPP2R2B

1.2E�3

Focal adhesion 15 CAPN2, COMP, CAV1, COL5A2, ITGA3, ITGA5, ITGA6, ITGB5, LAMA3, LAMB3,
LAMB4, LAMC1, PARVA, PRKCB, RAC2

1.5E�3

African trypanosomiasis 6 HBB, IDO1, IL18, PLCB1, PRKCB, SELE 1.9E�3
Dilated cardiomyopathy 9 ADCY2, ADRB1, CACNB4, DMD, ITGA3, ITGA5, ITGA6, ITGB5, TPM1 2.0E�3
Melanogenesis 9 KIT, ADCY2, CREB3L2, DCT, PLCB1, EDNRB, PRKCB, TYRP1, TYR 6.0E�3
Amoebiasis 9 ARG1, COL5A2, LAMA3, LAMB3, LAMB4, LAMC1, PLCB1, PRKCB, SERPINB13 8.5E�3
Salivary secretion 8 ADCY2, ADRB1, ITPR2, LYZ, NOS1, PLCB1, KCNMA1, PRKCB 9.1E�3
Pathways in cancer 20 BID, CXCL12, KIT, ADCY2, AR, EDNRB, FGF14, FGFR2, ITGA3, ITGA6, LAMA3,

LAMB3, LAMB4, LAMC1, LPAR1, MMP9, PLCB1, PTGER3, PRKCB, RAC2
1.1E�2

Cytokine-cytokine receptor interaction 14 CCL19, CXCL12, TNFRSF19, TNFRSF21, BMP7, GHR, IL18, IL20RA, IL6ST, IL7R,
IL7, LIFR, LTB, PRLR

1.6E�2

Sphingolipid signaling pathway 9 BID, GCER1A, ACER1, NOS3, PLCB1, PRKCB, PPP2R2B, RAC2, SGPP2 1.7 E�2
Hypertrophic cardiomyopathy (HCM) 7 CACNB4, DMD, ITGA3, ITGA5, ITGA6, ITGB5, TMP1 2.0 E�2
Arrhythmogenic right ventricular

cardiomyopathy (ARVC)
6 CACNB4, DMD, ITGA3, ITGA5, ITGA6, ITGB5, 3.6 E�2

Thyroid hormone synthesis 6 ADCY2, CREB3L2, GPX3, ITPR2, PLCB1, PRKCB 4.3 E�2
Malaria 5 CD36, COMP, HBB, IL18, SELE 4.5 E�2
Amyotrophic lateral sclerosis (ALS) 5 BID, GRIN2A, NEFL, NEFM, NOS1 4.8 E�2
Arginine and proline metabolism 5 ARG1, GATM, NOS1, NOS3, P4HA2 4.8 E�2

Figure 2. The bubble plot of the 20 most remarkable GO terms of genes upregulated and genes downregulated. (A) The 20 most remarkable GO terms of genes
upregulated. (B) The 20 most remarkable terms of downregulated genes. GO = gene ontology.
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Figure 3. PPI network and theMCODE networks. (A) PPI network. (B) MCODE networks. The network contains proteins that form physical interactions with at least
one other member. The densely connected network components were identified with the MCODE algorithm. Node size was decided by the degree, higher degree
represented a larger node. MCODE = molecular complex detection, PPI = protein-protein interaction,.

Figure 4. Drug-gene interaction diagram, yellow squares represents the DEGs and blue squares represents the drugs. DEG = differentially expressed gene.

Zheng et al. Medicine (2020) 99:39 www.md-journal.com
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lar mechanism of cSCC. Finally, 238 upregulated genes and 473
downregulated genes were identified. All the 711 DEGs were
subjected to following gene annotation, enrichment analysis and
PPI analysis. Upregulated genes JUN, FLNA, CSNK1D, and
HIST1H3F, and down regulated genes AR, HSPH1, TPM1,
PKM, LIMA1, and SYNPOwere identified as the potential target
genes. JUN, FLNA, AR, HSPH1, and CSNK1D were the genes
most differentially expressed in cSCC and AK.
JUN, otherwise known as activator protein 1 transcription

factor subunit, is a transcription factor that regulates gene
expression to respond to a variety of stimuli, such as cytokines,
stress, and viral or bacterial infections.[30] JUN governs many
cellular processes like cell proliferation, cell differentiation, and
apoptosis.[31] It is overexpressed in a variety types of human
tumors, including cSCC.[32] The activated state of JUN in answer
to extracellular signals can bemodified under conditions in which
the balance of keratinocyte proliferation and differentiation is
rapidly changed.[33] Therefore, JUN was investigated as a
possible target for cancer prevention and treatment.[34] As an
actin-binding protein encoded by the FLNA gene, FLNA
crosslinks actin filaments and attaches actin filaments to
membrane glycoproteins. FLNA not only participates in
remodeling the cytoskeleton to influence migration and cell
shape, but also interacts with integrins and second messen-
gers.[35] It is reported that regulation of epidermal growth factor
dependent inactivation of a5b1 integrin is by FLNA phosphor-
ylation and cellular contractility.[36] As a member of the casein
kinase I gene family, CSNK1D mainly participates in the control
of cytoplasmic and nuclear processes, including DNA replication
and repair.[37] The upregulation of CSNK1D has been verified in
squamous carcinoma.[38]

The AR has 3 major functional domains: the N-terminal
domain, the androgen binding domain, and the DNA binding
domain.[39] To act as a DNA-binding transcription factor and
regulate gene expression is the main function of the AR. One of
the known AR activation target genes is the insulin-like growth
factor receptor (IGFR).[40] HSPH1, also known as HSP105, acts
as a nucleotide exchange factor for the molecular chaperone heat
shock cognate 71 kDa protein (Hsc70).[41] Furthermore, HSPH1
plays a unique but related role as a holdase that inhibits the
aggregation of misfolded proteins, including the cystic fibrosis
transmembrane conductance regulator (CFTR) protein.[42]

However, the specific role of HSPH1 in the genesis and invasion
of cSCC was still undefined, which warrants more studies.
Interestingly, JUN and AR were also of significance in drug-gene
interaction network.
Altogether, our study indicates that genes JUN, FLNA, AR,

and HSPH1 may play vital roles in the occurrence and
development of cSCC and may be used as potential biomarkers
of cSCC, indicating an application in the improvement of
prognostic tools and treatments of cSCC. However, it should be
noted that the lack of experimental verifications of identified
genes is a limitation of this study, which will be focused in future
study.
5. Conclusion

Our study identified several candidate genes whichmay be closely
related to the occurrence and progression of cSCC from AK via
comprehensive analysis of microarray data. These genes may
function as the biomarkers of cSCC and will contribute to the
development of novel targeted therapies for cSCC.
6

Author contributions

Conceptualization: Yi Zheng, Chengxin Li.
Data curation: Yi Zheng, Sumin Chi.
Formal analysis: Yi Zheng, Sumin Chi.
Funding acquisition: Chengxin Li.
Investigation: Chengxin Li.
Methodology: Yi Zheng, Sumin Chi.
Project administration: Chengxin Li.
Resources: Chengxin Li.
Software: Yi Zheng, Sumin Chi.
Supervision: Chengxin Li.
Validation: Sumin Chi, Chengxin Li.
Writing – original draft: Yi Zheng.
Writing – review & editing: Yi Zheng, Sumin Chi, Chengxin Li.
References

[1] Rogers HW, Weinstock MA, Feldman SR, et al. Incidence estimate of
nonmelanoma skin cancer (keratinocyte carcinomas) in the U.S.
population, 2012. JAMA Dermatol 2015;151:1081–6.

[2] Waldman A, Schmults C. Cutaneous squamous cell carcinoma. Hematol
Oncol Clin North Am 2019;33:1–2.

[3] Karia P. Cutaneous squamous cell carcinoma: estimated incidence of
disease, nodal metastasis, and deaths from disease in the United States,
2012. J Am Acad Dermatol 2013;68:957–66.

[4] Brantsch K. Analysis of risk factors determining prognosis of cutaneous
squa- mous cell carcinoma: a prospective study. Lancet Oncol
2008;9:713–20.

[5] de Berker D, McGregor JM, Hughes BR. British Association of
Dermatologists Therapy Guidelines and Audit Subcommittee. Guidelines
for themanagement of actinic keratoses. Br J Dermatol 2007;156:222–30.

[6] Rosen T, Lebwohl MG. Prevalence and awareness of actinic keratosis:
barriers and opportunities. J AmAcadDermatol 2013;68(1 Suppl 1):S2–9.

[7] Ashton KJ, Weinstein SR, Maguire DJ, et al. Chromosomal aberrations
in squamous cell carcinoma and solar keratoses revealed by comparative
genomic hybridization. Arch Dermatol 2003;139:876–82.

[8] Jonason AS, Kunala S, Price GJ, et al. Frequent clones of p53-mutated
keratinocytes in normal human skin. Proc Natl Acad Sci U S A
1996;93:14025–9.

[9] Durinck S, Ho C, Wang NJ, et al. Temporal dissection of tumorigenesis
in primary cancers. Cancer Discov 2011;1:137–43.

[10] Brown VL, Harwood CA, Crook T, et al. p16INK4a and p14ARF tumor
suppressor genes are commonly inactivated in cutaneous squamous cell
carcinoma. J Invest Dermatol 2004;122:1284–92.

[11] Wang NJ, Sanborn Z, Arnett KL, et al. Loss-of-function mutations in
Notch receptors in cutaneous and lung squamous cell carcinoma. Proc
Natl Acad Sci U S A 2011;108:17761–6.

[12] Kivisaari A, Kähäri VM. Squamous cell carcinoma of the skin: emerging
need for novel biomarkers. World J Clin Oncol 2013;4:85–90.
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