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Abstract

Longitudinal magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) stud-

ies reveal significant changes in brain structure and structural networks that occur together

with cognitive and behavioral maturation in childhood. However, the underlying cellular

changes accompanying brain maturation are less understood. Examining regional age-

related changes in metabolite levels provides insight into the physiology of neurodevelop-

ment. Magnetic resonance spectroscopy (MRS) measures localize brain metabolism. The

majority of neuroimaging studies of healthy development are from the developed world. In

a longitudinal MRS study of 64 South African children aged 5 to 10 years old (29 female;

29 HIV exposed, uninfected), we examined the age-related trajectories of creatine (Cr

+PCr), N-acetyl-aspartate (NAA), the combined NAA+N-acetyl-aspartyl-glutamate

(NAAG), choline (GPC+PCh), glutamate (Glu) and the combined Glu+glutamine (Glu

+Gln) in voxels within gray and white matter, as well as subcortically in the basal ganglia

(BG). In frontal gray matter, we found age-related increases in Cr+PCr, NAA, NAA+NAAG

and Glu+Gln levels pointing to synaptic activity likely related to learning. In the BG we

observed increased levels of Glu, Glu+Gln and NAA+NAAG with age that point to subcorti-

cal synaptic reorganization. In white matter, we found increased levels of Cr+PCr, NAA,

NAA+NAAG, Glu and Glu+Gln with age, implicating these metabolites in ongoing myelina-

tion. We observed no sex-age or HIV exposure-age interactions, indicating that physiologi-

cal changes are independent of sex during this time period. The metabolite trajectories

presented, therefore, provide a critical benchmark of normal cellular growth for a low

socioeconomic pediatric population in the developing world against which pathology and

abnormal development may be compared.
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Introduction

Characterizing typical age-related growth patterns in the maturing brain allows for the identi-

fication of neurodevelopmental abnormalities or delays from disorders such as attention defi-

cit disorder (ADD) and autism, as well as exposure to toxins or viruses such as HIV. While

pediatric neuroimaging studies have described growth trajectories of volumes, cortical thick-

ness, metabolism and brain connectivity, much is still unknown about the physiology under-

pinning synaptic restructuring and myelination. Studies of metabolites related to synaptic

organization and myelination during childhood can provide a deeper understanding of the

associated cellular changes.
1H magnetic resonance spectroscopy (MRS) measures local brain metabolism, providing

information about biochemical aspects of brain maturation. The metabolites typically measured

with 1H MRS include creatine (Cr+PCr), N-acetyl-aspartate (NAA), choline (GPC+PCh) and

glutamate (Glu), which are associated with energy metabolism, neuronal and cellular integrity

and neurotransmission. Cross sectional MRS studies have examined age-dependent regional

metabolic changes from birth to adulthood, establishing that the most significant changes are

in infancy [1–5]. Within studies encompassing ages 5–10 years, some age-related changes in

NAA levels as well as NAA/GPC+PCh or NAA/Cr+PCr ratios are reported in gray and white

matter [4–8], with one study [5] finding accompanying Cr+PCr levels increasing in gray mat-

ter. It is surprising that more metabolites are not implicated in ongoing myelination and synap-

tic restructuring occurring during this period [9,10]. Possible reasons for the lack of age-related

metabolite changes reported include: wide age ranges, small sample sizes, cross-sectional analy-

sis and study of metabolite ratios only. In addition, only one MRS study [6] examined the

effects of sex on maturational trajectories, despite sex differences being observed in structural

studies [11–14]. Recent neuroimaging studies also found socioeconomic impacts on brain vol-

ume development [15,16]. Considering almost all neuroimaging studies on typical brain devel-

opment in childhood are conducted in the United States, studies of normally developing

children from diverse socioeconomic communities in the less developed world are essential.

Neuronal activity modulates how experience and environment shape neural circuit devel-

opment in childhood [17,18], leading to measurable changes in cognitive and behavioral capa-

bilities. There is growing research relating functional and structural network development to

increased cognitive and behavioral abilities [19–21]. The changes in gray matter observed in

childhood [11,13,14,22] may be related to synaptic density restructuring [23,24]. Peak synapse

formation occurs from about 34 weeks gestation through 2 years of age [9], with the total num-

ber of synapses beginning to decrease at puberty [25]. The timeline between 2 years and the

onset of puberty, representing when synaptogenesis ends and synaptic pruning starts, is still

unclear and is likely to vary regionally [9,10]. Subcortical structures, such as the basal ganglia,

are used by the cerebral cortex to process new information. Cognition involves numerous cor-

tical loops through the basal ganglia that involve the prefrontal association cortex and limbic

cortex. The basal ganglia (BG) help transform sensory input and cognitive processes into

behavior [26]. In white matter, maturation changes are related to ongoing myelination. Even

though white matter volume and organization develop well into adulthood [27], the greatest

increases in measurements of white matter organization occur by 10 years of age [12,28,29].

To explore cellular changes related to brain maturation in children we describe the longitu-

dinal trajectories of absolute metabolite levels in gray matter, white matter and BG voxels in a

typically developing pediatric population aged 5 to 10 years from a low socioeconomic com-

munity. From previous studies, we hypothesize age-related increases in NAA levels in all

regions, as well as Cr+PCr increases in gray matter. In addition, we investigated the interaction

between sex and metabolite levels with age.
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The impact of HIV-exposure on trajectories was investigated due to the high rates of

HIV infection in the region. Highly successful prevention of mother-to-child transmission

(PMTCT) programs have reduced the number of infants acquiring HIV from their mothers.

There were 1.3 million women living with HIV in 2013 who gave birth to 199,000 HIV-

infected infants and approximately 1 million HIV-exposed, uninfected (HEU) babies [30]. The

latter represent a growing population concentrated in Sub-Saharan Africa. Therefore, the local

pediatric population includes many HEU children.

Methods

Participants

The children presented are a subset of controls from a longitudinal multimodal neuroimaging

study addressing the effects of HIV at ages 5, 7 and 9 years. Inclusion criteria for the study

were: birth weight > 2000g, no central nervous system problems or dysmorphic syndromes.

HIV negative status was confirmed using Roche Amplicor polymerase chain reaction in young

infants and negative HIV-1 antibody test in older children. We acquired both magnetic reso-

nance imaging (MRI) and MRS data in 64 children (29 female; 29 HEU). Half of the children

received a single scan, twenty children were scanned twice and twelve children had three scans

for a total of 108 time points.

HEU children were exposed to treatment for PMTCT, mostly zidovudine antenatally from

28 to 34 weeks and a single dose of nevirapine (NVP) to the mother and zidovudine for a week

and a single dose of NVP to the infant.

All children had similar sociodemographic backgrounds and came from low-income com-

munities in Cape Town, South Africa. Table 1 summarizes the available sociodemographic

data from a subset of children representative of the sample.

Neuroimaging

Children received neuroimaging without sedation according to protocols approved by the

Human Research Ethics Committees of the Universities of Cape Town and Stellenbosch.

Parents/guardians provided written informed consent. Children provided oral assent at 5 and

7 years and written assent at 9 years. A senior radiologist reviewed all structural scans, and

children with abnormalities were excluded from analysis.

The protocol included a high-resolution T1-weighted 3D EPI-navigated [31] multi echo

magnetization prepared rapid gradient echo (MEMPRAGE) [32] acquisition (FOV 224 x 224

mm2, TR 2530 ms, TI 1160 ms, TE’s = 1.53/3.19/4.86/6.53 ms, bandwidth 650Hz/px, 144

sagittal slices, 1.3 x 1.0 x 1.0 mm3) and single voxel 1H-MRS in the midfrontal gray matter

(MFGM), peritrigonal white matter (PWM) and right BG with a real-time motion and B0

corrected [33] point resolved spectroscopy (PRESS; 1.5 x 1.5 x 1.5 cm3 voxel; TR 2000 ms, TE

30 ms, 64 averages, 2:16 min) sequence performed on a 3T Allegra Head Scanner (Siemens,

Erlangen, Germany) in Cape Town, South Africa.

SPM12 (http://www.fil.ion.ucl.ac.uk/spm) was used for voxel segmentation to determine

tissue type percentages for partial volume calculations and water concentration. Frequency/

phase correction and eddy current compensation were performed. Absolute metabolite levels

(in institutional units) were calculated with LCModel using water scaling [34–36].

The MFGM voxel (Fig 1a) is comprised primarily of gray matter. The BG voxel (Fig 1b)

anatomically represents the frontal limb of the internal capsule and part of the caudate nucleus,

putamen and globus pallidus. The PWM voxel (Fig 1c) is mainly white matter. Table 1 summa-

rizes tissue segmentation percentages across ages and voxels.
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Table 1. Summary of sociodemographics for a subset of children scanned.

Socioeconomic demographics

Housing (n = 55)

Housing 1

Shack 20%

Wendy 11%

Brick 69%

Electricity (Yes or No) Yes (100%)

Water location (Inside or outside) Inside (65%)

Toilet location (Inside or outside) Inside (60%)

Parent income and mortality (n = 55)

Deceased parent

Father 16%

Mother 2%

Main breadwinner

Father 40%

Mother 33%

Grandparent 11%

Sibling 2%

Other 15%

Total monthly income 2

< $36 2%

$36 - $72 7%

$72 - $144 16%

> $144 75%

Social grants (Yes or No) 3 Yes (75%)

Parental education

Highest maternal education (n = 52)

Did not complete through grade 10 33%

Grade 10 52%

Grade 12 6%

Technicon/College diploma 10%

Highest paternal education (n = 41)

Did not complete through grade 10 43%

Grade 10 17%

Grade 12 24%

Technicon/College diploma 15%

1 A shack is defined as an informal dwelling constructed of found materials. A Wendy is a formal housing

structure typically made of wood that can be relocated. A brick house is a formal housing structure.
2 Amount includes social grants, if received. Amounts converted from South African Rand (ZAR) values to

United States dollars (USD) using the current exchange rate of 1 USD = 13.95 ZAR. While no upper income

was collected, we note that in a typical recruitment suburb (Khayelitsha) the 2011 census report that 74% of

households have a monthly income of $227 or less (www.capetown.gov.za/en/stats/Pages/Census2011).
3 The economic qualification for social grants is less than $9894/year ($825/month) for a married couple and

$4947/year ($412/month) for a single parent.

https://doi.org/10.1371/journal.pone.0180973.t001
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To ensure quality data, we excluded spectra with full width half maximum (FWHM) >

0.075 and signal-to-noise ratio (SNR) < 7. Within each metabolite, we excluded data points

that were more than three standard deviations from the mean for the group.

Metabolites analyzed

We present developmental trajectories for six metabolites. Total creatine, Cr+PCr, is synthe-

sized in the liver and provides energy to brain cells. NAA is synthesized in neurons and

associated with neuronal and axonal integrity [36]. N-acetyl-aspartyl-glutamate (NAAG) is

synthesized from NAA and acts as a neuroprotector by modulating the release of glutamate in

the synapse [37]. The metabolism of NAA is also considered important in maintaining the

integrity of myelinating oligodendrocytes [38]. We report NAA alone and also total NAA lev-

els (NAA+NAAG) which may give insight into the overall state of neuronal integrity and

axonal maintenance. Total choline, GPC+PCh, is a marker of cell membrane density and

integrity. Glu is the most abundant excitatory neurotransmitter in the brain and is also impor-

tant in synapse formation, dendrite pruning, cell migration, differentiation and death [39].

Glu is stored as glutamine (Gln) in glia and the cyclical equilibrium of these two metabolites is

Fig 1. Images of voxel placement. Sagittal, coronal, and axial views are shown from left to right. Location of

(a) midfrontal gray matter voxel, (b) basal ganglia voxel, and (c) peritrigonal white matter voxel.

https://doi.org/10.1371/journal.pone.0180973.g001
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critical for normal functioning of brain cells [40]. We present trajectories of both Glu and

combined Glu+Gln levels.

Statistical analyses

The R-programming language [41] was used for all statistical analyses. We used a linear mixed

effects regression model to study the relationship between age (from 5.1 to 9.5 years) and

observed metabolite levels, while accounting for repeated measures in some children.

Sex, ethnicity, and an HIV-exposure variable indicating whether children were exposed to

HIV through their mothers, were included as additional covariates in the models examining

developmental trajectories of metabolite levels. We included the standard errors of the metab-

olite estimates to adjust for the differences in measurement accuracy of the different metabo-

lites. The reported standard error estimates, Cramér Rao lower bounds, represent a lower

bound of the fitting error by LCModel [33] accounting for both SNR and FWHM parameters

to provide an assessment of accuracy of the concentration estimate of each metabolite. In addi-

tion, we included gray or white matter tissue percentage of the total tissue (gray + white mat-

ter) from segmentation to account for variations in tissue composition. To account for false

positives due to hypothesis testing among multiple metabolites and regions, we report adjusted

as well as raw p-values. Adjustments for multiple comparisons were performed using the false

discovery rate method of Benjamin, Hochberg and Yekutieli [42]. HIV-exposure was included

as a covariate due to the high rates of HIV infection in the region. Sex and HIV-exposure inter-

actions with age were examined.

Results

Participants

One child was excluded due to an abnormal structural MRI (ex vacuo-dilatation of lateral ven-

tricles) suggestive of a prenatal central nervous system insult. After FWHM and SNR exclusion

criteria were applied, the following number of scans were used for analysis in each region:

eighty-nine in the MFGM, seventy-seven in the PWM and seventy-five in the BG. Table 2

summarizes the characteristics of children included in analyses in each region.

In the BG, one outlier was excluded in the model for Cr+PCr and for Glu. In the MFGM,

one outlier was excluded in the GPC+PCh statistical model.

Developmental metabolite trajectories

Table 3 summarizes the association between age and the metabolite levels in each region. The

effect of age is estimated by the slope of a linear regression line and measures the change in the

metabolite level associated with a one year increase in age. Plots of their metabolite trajectories

in all children are shown for each region in Fig 2.

Fig 2 illustrates the observed mean trajectories of the metabolite levels with increasing age,

together with the 95% confidence intervals as indicated by the gray regions.

In the midfrontal gray matter voxel, we found Cr+PCr, NAA, NAA+NAAG and Glu+Gln

metabolite levels increased significantly with age (unadjusted and adjusted p-values<0.02.

The increase in Glu levels with increasing age were not statistically significant (unadjusted p-

value = 0.07, adjusted p-value = 0.400), There was no significant change in metabolite GPC

+PCh levels with increasing age (unadjusted and adjusted p-values>0.1).

In the basal ganglia voxel, no significant changes in NAA, Cr+PCr and GPC+PCh levels

were found with increasing age (unadjusted and adjusted p-values > 0.07). NAA+NAAG, Glu

and Glu+Gln levels showed strong increases with age (unadjusted P<0.01, adjusted p<0.06).

Longitudinal increases of brain metabolite levels in 5-10 year old children

PLOS ONE | https://doi.org/10.1371/journal.pone.0180973 July 11, 2017 6 / 14

https://doi.org/10.1371/journal.pone.0180973


In the white matter voxel, we observed significant increases with age in all metabolite levels

(unadjusted and adjusted p-values <0.02) except for GPC+PCh (unadjusted and adjusted

p>0.3).

Across regions and metabolites, we observed no significant interactions between sex or

HIV-exposure and age (at p< 0.05).

Discussion

This is the first longitudinal study to investigate metabolite trajectories in three different brain

regions of typically developing children from low-income communities. We find age-related

Table 2. Characteristics of children.

Midfrontal

GRAY MATTER

BASAL GANGLIA Peritrigonal

WHITE MATTER

5-year-olds

Total number, n 23 23 28

Age (mean ± standard deviation (sd)) 5.6 ± 0.4 years 5.6 ± 0.4 years 5.6 ± 0.5 years

Sex 12 boys/11 girls 12 boys/11 girls 16 boys/12 girls

Ethnicity 10 Cape Coloured/13 Xhosa 9 Cape Coloured/14 Xhosa 11 Cape Coloured/17 Xhosa

HIV exposure 11 HEU/12 HU 11 HEU/12 HU 16 HEU/12 HU

SNR (mean ± sd) 11 ± 2 10 ± 1 10 ± 1

FWHM (mean ± sd) 0.03 ± 0.006 0.03 ± 0.005 0.03 ± 0.006

Tissue fraction (mean ± sd) GM: 0.94 ± 0.06 GM: 0.64 ± 0.05 WM: 0.82 ± 0.11

7-year-olds

n 45 36 41

Age 7.2 ± 0.1 years 7.2 ± 0.1 years 7.2 ± 0.2 years

Sex 25 boys/20 girls 18 boys/18 girls 23 boys/18 girls

Ethnicity 9 Cape Coloured/36 Xhosa 7 Cape Coloured/29 Xhosa 7 Cape Coloured/34 Xhosa

HIV exposure 18 HEU/27 HU 15 HEU/21 HU 18 HEU/23 HU

SNR 10 ± 2 8 ± 1 8 ± 1

FWHM 0.03 ± 0.008 0.04 ± 0.008 0.04 ± 0.007

Tissue fraction GM: 0.96 ± 0.02 GM: 0.61 ± 0.06 WM: 0.81 ± 0.14

9-year-olds

n 21 16 8

Age 9.2 ± 0.1 years 9.2 ± 0.1 years 9.2 ± 0.1 years

Sex 14 boys/7 girls 12 boys/4 girls 7 boys/1 girl

Ethnicity 9 Cape Coloured/12 Xhosa 6 Cape Coloured/10 Xhosa 4 Cape Coloured/ 4 Xhosa

HIV exposure 10 HEU/11 HU 8 HEU/8 HU 2 HEU/6 HU

SNR 9 ± 2 9 ± 1 8 ± 1

FWHM 0.04 ± 0.01 0.04 ± 0.008 0.04 ± 0.009

Tissue fraction GM: 0.98 ± 0.02 GM: 0.61 ± 0.06 WM: 0.84 ± 0.06

n, single time point 33 34 40

n, two time points 16 16 14

n, three time points 8 3 3

Total number scans 89 75 77

HEU = HIV-exposed, uninfected. HU = HIV-unexposed, uninfected. GM = Gray matter; WM = White matter; SNR = signal to noise ratio; FWHM = full width

half maximum.

The Cape Coloured (mixed ancestry) community is composed primarily of descendants of white European settlers, Malaysian slaves, Khoi-San aboriginals,

and black African ancestors.

https://doi.org/10.1371/journal.pone.0180973.t002

Longitudinal increases of brain metabolite levels in 5-10 year old children

PLOS ONE | https://doi.org/10.1371/journal.pone.0180973 July 11, 2017 7 / 14

https://doi.org/10.1371/journal.pone.0180973.t002
https://doi.org/10.1371/journal.pone.0180973


changes in metabolite levels–Cr+PCr, NAA, NAA+NAAG, Glu and Glu+Gln–across white

and gray matter regions that are likely related to increased synaptic activity and myelination.

Our finding of age-related increases in several metabolites, not previously observed, provides a

more complex description of the physiology underpinning neurodevelopment.

Midfrontal gray matter

Between ages 5 and 10 years, neuroimaging studies report increasing total and frontal gray

matter volume [11,14,22], increasing and decreasing cortical thickness [43] and changes in

functional organization [44]. Previous cross-sectional pediatric studies of metabolism [4,5,7,8]

in various gray matter regions report increased NAA levels and NAA/GPC+PCh ratios in this

age group, with one study [6] reporting decreased NAA/GPC+PCh. One study [5] reported

increased Cr+PCr along with increased NAA levels. These studies implicate changing NAA

and Cr+PCr levels alongside structural and functional brain development in gray matter.

Unlike previous studies [4–8], in addition to the expected involvement of NAA and Cr

+PCr, our results implicate Glu and Gln in age-related gray matter maturation from ages 5–10

years. The age effects of NAA and the combined NAA+NAAG are similar, suggesting constant

NAAG levels. The rise in metabolite level with age of the combined Glu+Gln is larger than

Glu, suggesting growth in both glutamine and glutamate levels.

NAA is not only present in neuronal cell bodies, but also in axons, dendrites, and synap-

tic terminals [36]. The observed increases in NAA and Cr+PCr may be due to dendritic

Table 3. Summary of linear mixed effects (LME) model of metabolite levels with age.

Age effect (standard error) p-value Adjusted p-value

Midfrontal gray matter

Cr + PCr 0.13 (0.04) 0.003 0.020

NAA 0.20 (0.05) <0.001 0.004

NAA + NAAG 0.17 (0.05) 0.002 0.020

GPC + PCh 0.02 (0.01) 0.100 0.400

Glu 0.16 (0.09) 0.070 0.300

Glu + Gln 0.38 (0.11) 0.002 0.020

Basal Ganglia

Cr + PCr 0.06 (0.04) 0.200 0.600

NAA 0.07 (0.04) 0.080 0.300

NAA + NAAG 0.16 (0.04) 0.002 0.020

GPC + PCh 0.02 (0.009) 0.070 0.300

Glu 0.19 (0.07) 0.010 0.060

Glu + Gln 0.39 (0.10) 0.007 0.009

Peritrigonal white matter

Cr + PCr 0.10 (0.03) 0.003 0.020

NAA 0.14 (0.04) 0.005 0.030

NAA + NAAG 0.21 (0.04) <0.001 0.003

GPC + PCh 0.01 (0.01) 0.300 1.000

Glu 0.27 (0.06) <0.001 0.006

Glu + Gln 0.41 (0.09) <0.001 0.004

In addition to age at scan, the LME models include the following covariates: metabolite measurement

precision, gray or white matter tissue percentage, sex, ethnicity and HIV exposure (yes or no). Adjusted p-

value calculated using the false discovery rate method of Benjamin, Hochberg and Yekutieli.

https://doi.org/10.1371/journal.pone.0180973.t003
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arborizations and the formation of synaptic connections. The observed increase in both Glu

and Glu+Gln levels suggests increased demands on the glutamate-glutamine cycle where

Glu released from nerve terminals is taken up by surrounding glial cells (astrocytes) and

converted to Gln. The growing demand of Glu within the area may be a result of the

increased neuronal activity related to learning during the first years of primary school.

Additional glutamine reserves in astrocytes are needed to compensate for excess Glu, which

can result in unwanted synaptic crosstalk. The increased Cr+PCr may also be a result of the

higher neuronal and glial energy demands to support activity. NAA levels reflect not only

neuronal and axonal integrity, but also relate to neuronal energetics [36] possibly explaining

the similar effect size of the Glu trajectory with age.

Lastly, in MRS studies Cr+PCr is frequently used in metabolite ratios as the denominator

value because of its presumed constancy with respect to age. Our results indicate this presump-

tion does not hold in pediatric populations and may produce misleading results.

Fig 2. Age-related metabolite trajectories for each region.

https://doi.org/10.1371/journal.pone.0180973.g002
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Basal ganglia

In this age range, BG volume is observed to both increase [13] and decrease [14,22]. Differ-

ences in functional network organization are observed between children aged 7–9 years and

young adults, with subcortical regions identified as a major area of difference [44]. In particu-

lar, children had more subcortical-cortical connections and these connections were stronger

than in adults; the functional development of subcortical connectivity involves changes in wir-

ing and strength of connections [44]. Previous cross-sectional MRS studies [4,5,7] examined

similar voxels in the BG in this age range, with only one study [7] reporting an age-related

increase in the NAA/GPC+PCh ratio.

In contrast to previous studies, we report increasing levels of Glu, Glu+Gln, NAA and NAA

+NAAG. The age-related increase of NAA+NAAG levels with age is about twice that of NAA,

implying similar increases in NAAG levels. The age-related rise of both NAA and Glu levels

are likely related to the production of NAAG (NAA is combined with Glu to form NAAG). A

possible explanation for increased NAAG levels in the BG is its role regulating the release of

glutamate and dopamine [37], indicating an age-related increased demand to modulate neuro-

transmitters during this period. The growth of the combined Glu+Gln levels is greater than

Glu pointing to increases in Gln as well as Glu levels. The increased Gln levels may relate to

increased demands for Glu to produce NAAG.

For target neurons, Glu is related to two specific outcomes—depolarization and increased

cytosolic Ca2+. The age-related rise in Glu could also be related to an increase in intracellular

Ca2+ that triggers biochemical events involved in both functional and structural plasticity of

the synapses in childhood [45].

White matter

Between ages 5 and 10 years, neuroimaging studies have found increasing total white matter

volume [11,12,22] and significant changes in measures such as fractional anisotropy describing

white matter maturation [12,29], likely related to ongoing myelination. Previous cross-sec-

tional pediatric studies [4–8] in white matter regions report increased NAA and NAAG levels

as well as NAA/GPC+PCh ratios.

Contrary to our hypothesis and previous studies, our findings point to the involvement of

numerous metabolites—NAA, NAA+NAAG, Cr+PCr, Glu and Glu+Gln—in ongoing myeli-

nation from ages 5 to 10 years. Studies have shown both NAA and NAAG play a role in pro-

ducing and maintaining the myelin sheath, with NAA providing a critical source of acetate for

myelin lipid synthesis in oligodendrocytes [36]. Glu has been implicated in myelination, stim-

ulating oligodendrocytes to make myelin protein and begin the process of myelination [45].

Wake et al. (2011) [46] showed that receptors on the cell membrane of oligodendrocytes can

identify glutamate released by the axon, which stimulates the creation of signaling domains

allowing signals to be passed between oligodendrocytes and axons. Their experiments revealed

that without glutamate, myelin production was reduced, highlighting the critical role of gluta-

mate in myelination. The greater increase in Glu+Gln compared to Glu suggests Gln levels are

also rising, potentially related to making additional Glu from glutamate-glutamine cycling.

Conclusion

In infancy, dramatic age-related increases in NAA, Cr+PCr and Glu are observed [2,5]. Com-

bined with our results, these metabolites demonstrate continued alterations due to ongoing

brain development. The increases reported here provide evidence of the cellular changes

occurring between ages 5 and 10 years during synaptic restructuring and myelination. We find

more age-related metabolite level increases during this period than previous studies, likely due
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to their cross sectional nature and wide age ranges. Given the large individual variability in

metabolism during development, both the longitudinal nature of this study and the homoge-

nous sociodemographics of the cohort strengthen the validity of the results.

In summary, we find this is still an important time for influences on learning and develop-

ment as the 5–10 year old brain continues to undergo growth and development at the cellular

level. Therefore, an absence of metabolite level increases during this period may indicate devel-

opmental problems or delay. The children in this study were from low-income communities

in Cape Town, South Africa, extending knowledge of typical metabolite age-related trajectories

to children outside of the developed world. Lastly, these results are particularly relevant as a

baseline against which to identify the effects of pathology in pediatric populations.

Sex and HIV-exposure interactions with age

From ages 5–10 years, the age-related changes in brain metabolism we observed were sex-

independent, suggesting similar physiological changes occur across boys and girls even if

structural trajectories are different. The lack of HIV-exposure/age interactions in our results

implies HEU children are undergoing typical regional development during this period akin to

their unexposed peers.

Limitations

A larger population of children would allow for more statistical power to better study sex-age

interactions. We were unable to measure the metabolite levels of NAAG and Gln separately,

and have made inferences about their growth from combined measurements.

Future work

The results presented in this paper are part of an ongoing longitudinal multimodal neuroimag-

ing study in which MRI, DTI and RS-FMRI data were also acquired. Deeper insight into the

increases in metabolite levels with age in relation to global changes related to brain maturation

may be found by combining these results with morphometric trajectories as well as structural

and functional network measures within this cohort. Lastly, this work will be used a bench-

mark for healthy development against which to compare brain maturation in the HIV-infected

children also imaged in the study.

Supporting information

S1 File. Magnetic resonance spectroscopy (MRS) data plus demographic data used in lon-

gitudinal analysis for all three regions. The data in the supplemental file includes the absolute

metabolite level data for each child in all three regions (basal ganglia, midfrontal gray matter,

and peritrigonal white matter) at specific age points. In addition, the covariates used in the

model are included for each child, including sex, ethnicity and metabolite level standard error.

In addition, we’ve included full width half max (FWHM) and signal to noise ratio (SNR) for all

data that met the inclusion criteria. Lastly, we’ve included metabolite ratios (metabolite to Cr

+PCr ratio) in addition to the absolute metabolite levels.

(XLSX)
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