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Abstract

Inclusion body myositis (IBM) is the most common cause of primary myopathy in individuals 

ages 50 years and over, and is pathologically characterized by protein aggregates of p62 and 

mislocalized cytoplasmic TDP-43 as well as mitochondrial abnormalities in affected muscle 

fibers. Our recent studies have shown the accumulation of TDP-43 in mitochondria in neurons 

from patients with amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD), 

and revealed mitochondria as critical mediators of TDP-43 neurotoxicity. In this study, we 

investigated the association between mitochondria and TDP-43 in biopsied skeletal muscle 

samples from IBM patients. We found that IBM pathological markers TDP-43, phosphorylated 

TDP-43, and p62 all coexisted with intensively stained key subunits of mitochondrial oxidative 

phosphorylation complexes I-V in the same skeletal muscle fibers of patients with IBM. Further 

immunoblot analysis showed increased levels of TDP-43, truncated TDP-43, phosphorylated 

TDP-43, and p62, but decreased levels of key subunits of mitochondrial oxidative phosphorylation 

complexes I and III in IBM patients compared to aged matched control subjects. This is the first 

demonstration of the close association of TDP-43 accumulation with mitochondria in degenerating 

muscle fibers in IBM and this association may contribute to the development of mitochondrial 

dysfunction and pathological protein aggregates.
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Introduction

Inclusion body myositis (IBM) is the most common acquired myopathy in adults over 50 

years of age, with a varied prevalence reported as 24.8–45.6 per million and a 2–3 times 

higher incidence rate in males compared with females1–3. IBM is characterized by slow 

progression, and there is often a delay of 5–10 years between disease onset and diagnosis4–6. 

The incidence of IBM appears to be increasing, which is likely a result of both improved 

diagnosis and the increasing ageing population2. Currently, there is no effective therapy for 

IBM1. Even with current immunotherapies, most patients become wheelchair dependent, 

affecting their quality of life and causing a high economic burden with a likely 

underestimated annual overall healthcare cost to IBM patients more than twice that of age-

matched non-IBM counterparts7–10.

IBM patients largely present with progressive, often asymmetrical, muscle weakness that 

predominantly affects the quadriceps muscles and finger flexors but also commonly involves 

biceps, triceps, facial and swallowing muscles with dysphagia11–13. Disease pathogenesis is 

poorly understood, but both inflammatory and degenerative mechanisms may play a primary 

role14, 15. Histopathologically, IBM is characterized by inflammatory changes with 

endomysial inflammation, myofiber invasion by CD8+ T cells and cN1A autoantibodies, 

and myodegenerative pathologies including protein aggregates, rimmed vacuoles and 

mitochondrial abnormalities11, 14–16. Accumulation of these protein aggregates, especially 

TAR DNA-binding protein 43 (TDP-43), within muscle fibers appears analogous to protein 

accumulations believed to be of pathophysiological importance in several central nervous 

system neurodegenerative disorders such as ALS and FTD17–23, suggesting the possibility 

that IBM may be pathogenetically related to these neurodegenerative diseases19. The 

pathogenic role of TDP-43 aggregates in IBM is unclear, though sarcoplasmic aggregation 

of TDP-43 has been shown to result in myofiber degeneration via endoplasmic reticulum 

stress and possibly calcium dysregulation24.

Cells or mice expressing either wild type or mutant TDP-43 usually demonstrated abnormal 

mitochondrial morphology25–27, transport26, 27 and even function26, 28, 29, suggesting 

mitochondria as likely targets of TDP-43. This notion is further supported by evidence 

showing that TDP-43 or truncated forms of TDP-43 can be present either inside or outside 

of mitochondria30–36. We and others have independently found that the portion of full-length 

TDP-43 inside of mitochondria can bind mitochondria-transcribed messenger RNAs 

(mRNAs) encoding subunits (ND3/6) of oxidative phosphorylation (OXPHOS) complex I to 

specifically impair its assembly and function30, 36, whereas truncated TDP-43 lacking the 

M1 mitochondrial localization sequence36 is restricted to the intermembrane space and has 

no effect on ND3/6 expression or mitochondrial function30.

In this study, we sought to investigate the relationship between TDP-43 and mitochondria in 

IBM in an effort to elucidate the likely role of mitochondrial dysfunction in the IBM muscle 

degeneration.
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Materials and Methods

Fixed paraffin and frozen muscle samples

Frozen and formalin-fixed paraffin embedded skeletal muscle tissues from diagnostic 

quadriceps muscle biopsies were obtained from University Hospitals Cleveland Medical 

Center under an approved Institutional Review Board protocol. Muscle tissue samples 

included 10 patients with IBM and 10 control subjects whose quadriceps muscle biopsy 

revealed no histopathological or histochemical abnormalities. All patients and controls were 

between ages 59 to 78 at the time of the biopsy. See Table 1 for information on the tissues 
used in this study. Archival paraffin embedded samples from previously characterized cases 

of IBM with rimmed vacuoles and mitochondrial abnormalities were also used for validation 

of the immunohistochemistry analyses37.

Immunohistochemistry

Serial adjacent sections of cross-sectioned muscle fibers were used to compare the same 

muscle fibers in both IBM and control samples. Slides that contained paraffin embedded 

tissue sections were deparaffinized using xylene and rehydrated using graded ethanol. Slides 

were then incubated in Tris Buffered Saline (TBS buffer, 50mM Tris·HCl and 150mM NaCl, 

pH = 7.6) for 10 minutes before antigen retrieval in 1x antigen decloaker (BioSB, cat#BSB 

0021) using a TintoRetriever pressure cooker. Slides were then rinsed with running distilled 

water and incubated in TBS buffer for 10 minutes. Tissues were then incubated in 10% 

normal goat serum (NGS) in TBS for 30 minutes at room temperature in order to block 

nonspecific antibody binding sites. Primary antibodies were applied on tissues for incubation 

overnight at 4°C. The next day, the slides were rinsed and incubated with 1% and 10% NGS 

in TBS respectively followed by immunostaining via the peroxidase-antiperoxidase method 

and developing using DAB chromogen (BioCare Medical, cat#DB801L). Finally, slides 

were rinsed with distilled water, dehydrated using graded ethanol and xylene, and mounted 

with Permount. Antibodies used include TDP-43 (1:100, ProteinTech, cat#10782), 

phosphorylated TDP-43 at Serine 409/410 (1:200, ProteinTech, cat#22309–1-AP), p62 

(1:50, Cell Signaling Technology, cat#5114S), and OXPHOS antibody cocktail (1:1,000, 

Abcam, cat#ab110413). Total OXPHOS contains 5 mouse monoclonal antibodies, with each 

against complexes I-V: CI subunit NDUFB8, CII subunit SDHB, CIII subunit UQCRC2, 

CIV subunit CoxII, and CV subunit ATP5A.

Immunofluorescence

Slides were prepared similar as immunohistochemistry through antigen retrieval. Slides were 

then rinsed with running distilled water and incubated in phosphate buffered saline (PBS) for 

10 minutes. Tissues were incubated in 10% NGS in PBS for 45 minutes at room temperature 

in order to block nonspecific antibody binding sites followed by primary antibody 

incubation overnight at 4°C. The next day, the slides were also rinsed with 1% and 10% 

NGS respectively in PBS, and incubated with secondary fluorescent antibodies for 2 hours at 

room temperature in the dark. Finally, tissues were washed 3 times with PBS, stained with 

DAPI, and mounted with Fluoromount-G mounting medium (Southern Biotech, cat#0100–

01). Additional antibodies used include Alexa Fluor 488 and 568 (1:250, Invitrogen, 

cat#A11034 and A11031). Sections were stained with DAPI (5μg/mL) to visualize nuclei.
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Immunoblot analysis

Immunoblot analysis of the frozen quadriceps muscle samples from IBM and control 

patients was performed. Frozen tissue samples were homogenized in 1x cell lysis buffer 

(Cell Signaling Technology, cat#9803S) with 1mM phenylmethylsulfonyl fluoride 

(Millipore, cat#7110), protease inhibitor cocktail (Sigma Aldrich, cat#P8340), and 

phosphatase inhibitor (Sigma Aldrich, cat#P2805) on ice. After centrifugation at 14,000g, 

supernatants were collected as Triton X-100 soluble fraction. The pellets were further 

solubilized in 1% SDS buffer (50mM Tris pH 7.5, 150mM NaCl, 1%SDS) with protease and 

phosphatase inhibitors on ice for 30 minutes, centrifuged at 14,000g and the supernatants 

were collected as SDS-soluble fraction. The resulting pellets were solubilized in Urea buffer 

(7 M urea, 2 M thiourea, 4% CHAPS, 30 mM Tris, 5 mM magnesium acetate, pH 8.5). After 

centrifugation, the supernatant was collected as urea-soluble fraction. The protein 

concentration was determined by BCA assay or Pierce™ 660nm protein assay. Equal 

amounts (20μg) of total protein extract were run on SDS-PAGE and transferred to 

Immobilon-P (EMD Millipore, IPVH 00010.) Blots were blocked with 10% nonfat dry milk 

and primary and secondary antibodies were applied as previously described36. The blots 

were developed using Immobilon Western Chemiluminescent HRP Substrate (EMD 

Millipore, WBKLS0500) and imaged by the ChemiDoc Imaging System (BioRad.) GAPDH 

(Cell Signaling Technology, 2118), HSP60 (Abcam, ab46798), and Actin (EMD Millipore, 

MAB1501) were used as a loading control for blot development.

Quantification

Quantification of immunoblots was performed using Image Lab (BioRad, CA.) Statistical 

analysis was done with student t-test using GraphPad Prism (GraphPad, CA.) Data are 

means ± SEM. p < 0.05 was considered to be statistically significant.

Results

Immunohistochemical analysis of skeletal muscle tissue sections from IBM patients revealed 

the coexistence of TDP-43, pTDP-43, p62, and mitochondria using total OXPHOS antibody 

cocktail which stains for mitochondrial oxidative phosphorylation (OXPHOS) complexes I, 

II, III, IV and V in the same affected muscle fiber groups of IBM patients (Fig. 1). Of note, 

IBM muscle fibers positive for TDP-43, pTDP-43 or p62 exhibited strong immunoreactivity 

to OXPHOS mitochondrial markers (Fig. 1). Samples from control subjects all showed 

negative staining for p62 and pTDP-43 and weak staining for TDP-43 and OXPHOS 

mitochondrial markers (Fig.1).

To investigate the likely colocalization between TDP-43 pathology and mitochondria, we 

performed double immunofluorescent analysis using skeletal muscle tissue sections from 

IBM patients. There was substantial overlap between pTDP-43 and OXPHOS mitochondrial 

markers (Fig. 2). Remarkably, high magnification and linescan analysis found some 

mitochondria to be completely colocalized with pTDP-43. However, due to low intensity of 

immunofluorescent staining for TDP-43, we were not able to assess the colocalization 

between TDP-43 and mitochondria (data not shown).
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Immunoblot analysis of soluble quadriceps muscle tissue lysates prepared from IBM 

patients was further performed. Consistent with increased p62, pTDP-43 and the 

pathological forms of truncated TDP-43 (35kD and 25kD forms) were all found to be 

increased in IBM cases, when compared with age-matched control subjects (Fig. 3). 

However, immunoblots of IBM skeletal muscles using the OXPHOS antibody cocktail 

demonstrated decreased levels of complex I and III but unchanged complex II, IV, and V 

(Fig. 3). To test whether there are biochemical differences in the soluble and insoluble pools 

of proteins from IBM skeletal muscles, we carried out immunoblot analysis of SDS and urea 

solubilized skeletal muscle extracts from Triton X-100 insoluble pellets. Consistent with 

immunoblots of the Triton X-100 soluble fraction, compared with age-matched control 

subjects, IBM cases showed greatly increased full-length and truncated TDP-43 or pTDP-43 

in the SDS-soluble protein fraction (Fig. 4). Notably, truncated TDP-43 was only found in 

the urea solubilized SDS-insoluble protein fraction in IBM cases (Fig. 4).

Discussion

TDP-43 proteinopathy and mitochondrial abnormalities are two prominent pathological 

features of IBM. However, despite intensive effort devoted to understanding the underlying 

cause(s) of these two prominent IBM pathological features, limited study has been 

undertaken to identify their association. Here, we reported that pathological TDP-43 is 

highly colocalized with mitochondria in IBM affected myofibers. It is still unclear whether 

TDP-43 proteinopathy and mitochondrial abnormalities are interdependent IBM lesions. Of 

note, the intense mitochondrial staining was noted in muscle fibers negative for TDP-43, 

pTDP-43 or p62, suggesting that mitochondrial alterations may occur before TDP-43 

inclusions or other pathological features of IBM. Noteworthily, although the mitochondrial 

staining by the OXPHOS antibody cocktail is increased in IBM, the levels of individual 

proteins recognized by the OXPHOS antibody cocktail were either decreased or unchanged, 

indicating that the enhanced mitochondrial staining in IBM muscle fibers should be 

attributed to increased mitochondria mass. As our patient samples are derived from 

pathologically confirmed cases of IBM 5–10 years after disease onset, future studies will be 

interesting to investigate the spatiotemporal relationship between TDP-43 proteinopathy and 

mitochondrial abnormalities during disease progression.

A growing body of evidence indicates mitochondria as important targets of TDP-4330–36. 

However, there are considerable discrepancies as to its exact sub-mitochondrial localization. 

Full-length TDP-43 or truncated forms of TDP-43 have been reported either inside or 

outside of mitochondria30–36. The sub-mitochondrial localization of TDP-43 in IBM is still 

unknown. Consistent with our previous study reporting TDP-43 inside of mitochondria as 

highly phosphorylated TDP-43 in ALS and FTD36, our results suggest that the species of 

TDP-43 highly associated with mitochondria are largely pTDP-43. Despite controversy on 

the effect of TDP-43 on mitochondrial function, we and other groups consistently 

demonstrated that TDP-43 overexpression caused mitochondrial abnormalities and neuronal 

dysfunction26, 27, 29, 30, 32, 34, 36, 38. The most recent independent study showed that 

truncated TDP-43 lacking the M1 motif was not present inside of the inner mitochondrial 

membrane and had no effect on mitochondrial function30. Consistently, we reported that the 

inhibition of mitochondrial TDP-43 by PM1 or the genetic deletion of PM1 alleviated 
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TDP-43 toxicity on mitochondria and neurons, together suggesting that the mitochondrial 

localization likely plays an important role in mediating TDP-43 toxicity. Nevertheless, 

considering recent discrepant studies reporting the interaction of TDP-43 with different 

mitochondrial function and pathways, mitochondria-associated TDP-43 or truncated TDP-43 

fragments noted in IBM may synergistically mediate toxicity on mitochondria and muscle 

fibers through multiple pathways involving but not limited to bioenergetics, mitochondrial 

dynamics, and ER/mitochondria tethering.

Similar to the previous study showing downregulated expression of complex I of 

mitochondrial respiratory chain as the initial feature39, this study found that key subunits of 

complex I and III were significantly decreased in IBM muscles. These findings are indeed 

consistent with our and other studies reporting complex I as the major target of TDP-43 

inside of mitochondria30, 36. Therefore, it is possible that the changed assembly or 

dysfunction of OXPHOS complex I caused by mitochondrial-associated TDP-43 may play 

an unexpected but critical role in the onset and progression of IBM. The interplay between 

TDP-43 and OXPHOS complex I in IBM needs further detailed investigation. Of course, 

other OXPHOS complexes as well as mtDNA have also reported changed in IBM patients, 

suggesting the possible presence of other targets. Nevertheless, as mitochondria-encoded 

CoxII remains unchanged in IBM, the intact overall mitochondrial transcription and 

translation machineries or mitochondrial tRNAs and rRNAs should not be affected.

In this study, we provide timely evidence showing the close association between TDP-43 

pathology and mitochondria in IBM affected skeletal muscles and suggest mitochondria-

associted TDP-43 as a likely contributor to mitochodnrial and muscle dysfunction. Like 

mitochondiral dysfunciton, TDP-43 proteinopathy is a prominent common pathological 

feature in various major neurodegenerative diseases including AD40, 41, FTD42, 43 and 

ALS42, 43. We believe that the further detailed investigation of the interplay between these 

two pathological features and their contribution to disease progress will provide new insights 

into these devastating diseases. Importantly, the suppression of TDP-43 mitochondrial 

association is sufficient to greatly prevent TDP-43-mediated neuronal toxicity36, suggesting 

that targeting mitochondria-associted TDP-43 can be a novel therapeutic approach for IBM 

worthy of further translational exploration.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Representative immunocytochemistry of TDP-43, pTDP-43, p62, and OXPHOS key 

subunits in affected muscle fibers in IBM. Adjacent sections show that the same affected 

IBM muscle fibers positively stained with TDP-43, pTDP-43, and p62 all exhibit intense 

mitochondrial staining using the OXPHOS antibody cocktail. In contrast, all age-matched 

control muscle fibers demonstrate relatively weak staining for all proteins. Cytoplasmic 

TDP-43 or pTDP-43 accumulation is only noted in IBM fibers.
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Figure 2. 
Representative double immunofluorescent staining of pTDP-43 and mitochondria in affected 

muscle fibers in IBM. The large-field and enlarged images show the colocalization between 

pTDP-43 and mitochondria in IBM muscle biopsy. The line-scan analysis along the solid 

white line depicted in the merged large-field image to the left is also shown. Green: 

pTDP-43; Red: mitochondria (stained by the OXPHOS antibody cocktail); Blue: DAPI.
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Figure 3. 
Representative immunoblot analysis and quantification of TDP-43, pTDP-43, p62 and 

OXPHOS key subunits in the soluble protein pool of affected muscle fibers in IBM. 

Pathogenic pTDP-43 or truncated TDP-43 were significantly increased in the Triton X-100 

soluble fraction derived from biopsied muscle fibers from IBM patients, while complex I 

and III were significantly reduced (n=10 per group). The levels were adjusted by GAPDH. 

Data are means ± s.e.m. Statistical analysis was done with student t-test. *P < 0.05, **P < 

0.01, ns, not significant.

Huntley et al. Page 11

Lab Invest. Author manuscript; available in PMC 2019 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Representative immunoblot analysis and quantification of TDP-43 and pTDP-43 in the 

insoluble protein pools of affected muscle fibers in IBM. Pathogenic pTDP-43 or truncated 

TDP-43 were greatly increased in both SDS and urea solubilized skeletal muscle extracts 

from Triton X-100 insoluble pellets from IBM patients (n=10 per group). Data are means ± 

s.e.m. Statistical analysis was done with student t-test. *P < 0.05, **P < 0.01.
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Table 1.

Information about the frozen tissue samples used for western blot analysis

Diagnosis Age (yr) Gender Tissue

Control 59 Male Quadriceps

Control 60 Male Quadriceps

Control 66 Female Quadriceps

Control 66 Male Quadriceps

Control 68 Male Quadriceps

Control 71 Female Quadriceps

Control 73 Male Quadriceps

Control 74 Male Quadriceps

Control 78 Female Quadriceps

Control 78 Female Quadriceps

Inclusion body myositis 62 Female Quadriceps

Inclusion body myositis 67 Male Quadriceps

Inclusion body myositis 68 Female Quadriceps

Inclusion body myositis 69 Male Quadriceps

Inclusion body myositis 69 Male Quadriceps

Inclusion body myositis 72 Female Quadriceps

Inclusion body myositis 72 Male Quadriceps

Inclusion body myositis 73 Female Quadriceps

Inclusion body myositis 73 Male Quadriceps

Inclusion body myositis 76 Female Quadriceps
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