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Abstract

Motivation: Annotation of genomic variants is an increasingly important and complex part of the anal-

ysis of sequence-based genomic analyses. Computational predictions of variant function are routinely

incorporated into gene-based analyses of rare-variants, though to date most studies use limited infor-

mation for assessing variant function that is often agnostic of the disease being studied.

Results: In this work, we outline an annotation process motivated by the Alzheimer’s Disease

Sequencing Project, illustrate the impact of including tissue-specific transcript sets and sources of

gene regulatory information and assess the potential impact of changing genomic builds on the

annotation process. While these factors only impact a small proportion of total variant annotations

(�5%), they influence the potential analysis of a large fraction of genes (�25%).

Availability and implementation: Individual variant annotations are available via the NIAGADS

GenomicsDB, at https://www.niagads.org/genomics/ tools-and-software/databases/genomics-database.

Annotations are also available for bulk download at https://www.niagads.org/datasets. Annotation proc-

essing software is available at http://www.icompbio.net/resources/software-and-downloads/.

Contact: wsb36@case.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Multiple large-scale whole-exome (WES) and whole-genome

sequencing (WGS) campaigns are currently underway to identify

genetic variants that associate to a variety of traits, including

studies of schizophrenia (Genovese et al., 2016), type 2 diabetes

(Fuchsberger et al., 2016), height (Marouli et al., 2017), myocardial

infarction (Do et al., 2015) and others. While the designs and scope

of sequencing for these studies vary, previous similar studies have

routinely identified millions of genetic variants that were novel

(at the time of publication). The targeted sequencing of 82 pharma-

cogenes using the PGRN-seq platform identified 48.5% novel var-

iants (Bush et al., 2016), and a prior sequencing study of known

pharmacogenes reported 90% novel variants (Nelson et al., 2012).

The Exome Aggregation Consortium (ExAC), which compiled WES

data from multiple studies reported 72% novel variants (Lek et al.,

2016), and the UK10K study used WES and reported 57% novel

variants (UK10K Consortium et al., 2015). As such, any sequencing-

based study will likely report several million variants that are not
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previously described in the scientific literature. With no published

information about these variants available, the genomics community

has increasingly relied on computational approaches for predicting

variant function (Cingolani et al., 2012; De Baets et al., 2012; Wang

et al., 2010; Yourshaw et al., 2015).

A major goal of sequencing studies is to statistically examine the

impact of low-frequency genetic variation on a trait of interest.

Methods for the assessment of this rare-variant hypothesis now

increasingly rely on biological information to group or bin variants

together, improving the statistical power to detect an effect. Gene-

based burden, collapsing and kernel-based tests are the most com-

monly applied (Bansal et al., 2010; Lee et al., 2012; Li and Leal,

2008; Liu and Leal, 2010; Madsen and Browning, 2009;

Moutsianas et al., 2015; Neale et al., 2011; Price et al., 2010; Sun

et al., 2013; Wu et al., 2011). In addition to grouping variants by

gene, multiple modifications to this strategy have been proposed

that incorporate the predicted impact or consequence of genetic var-

iants on the molecular function of the gene being tested (Ng et al.,

2009, 2010; Wu et al., 2011). Because of these technological and

analytical advancements, bioinformatic annotation of variant func-

tion plays an increasingly critical role in the analysis of whole-

genome and whole-exome sequence data.

Prior large-scale sequencing efforts have employed a variety of

annotation strategies. The UK10K project (UK10K Consortium

et al., 2015) from the Wellcome Trust Sanger Institute is annotated

with RSIDs from dbSNP138 (Smigielski, 2000) and functional anno-

tations through the Ensembl Variant Effect Predictor (VEP; version

75) (Yourshaw et al., 2015). The ExAC similarly used VEP (version

81), along with the Loss-of-Function Transcript Effect Estimator

(LOFTEE) plugin to evaluate protein-truncating variants. They

further annotated variant impact using Polymorphism Phenotyping

version 2 (PolyPhen2), Scale-Invariant Feature Transform (SIFT)

and Combined Annotation Dependent Depletion (CADD) scores

(Adzhubei et al., 2010; Kircher et al., 2014; Kumar et al., 2009).

Notably, these studies employed exome sequencing in their design,

shifting the annotation focus onto coding variation.

In this work, we describe variant annotation efforts motivated

by the Alzheimer’s Disease Sequencing Project (ADSP), a collabora-

tive effort between the National Institutes on Aging and the

National Human Genome Research Institute, along with members

of the Alzheimer’s disease genetics research community, designed to

study the genetics of late-onset Alzheimer’s disease (LOAD). The

ADSP discovery-phase datasets consist of 578 individuals from 111

densely affected LOAD families selected for WGS as well as 5778

LOAD cases and 5136 controls selected for WES from the

Alzheimer’s Disease Genetics Consortium (ADGC) and the neurol-

ogy phenotype working group of the Cohorts for Heart and Aging

Research in Genomic Epidemiology (CHARGE) consortium

(Beecham et al., 2017). Analytical efforts within the ADSP are div-

ided into multiple working groups focused on data flow, quality

control (Malamon et al., 2016), structural variant calling, family-

based analyses (Ahmad et al., 2016; Beecham et al., 2016; Jaworski

et al., 2016), case/control analyses and protective variant analyses.

The annotation working group is tasked with providing broad, con-

sistent variant annotation resources for all workgroups, across all

datasets and genomic builds, and with specific emphasis on func-

tional effects of variants within AD-related tissues.

To date, most sequencing studies have generated ad hoc, mini-

mal annotation sets, which provide insight into only basic biological

function and largely ignores the biological complexity of tissue-

specific effects variants may have. Furthermore, on a project-level,

there has been no described attempt to generate and maintain a

consistent set of comprehensive annotations as a resource for all

analyses. In this work, we describe an in silico annotation approach,

offering guidance and resources to other ADSP investigators, and

providing a common base for testing functional hypotheses in their

analyses. We provide a summary of annotated variant consequences,

illustrate the impact of using a tissue-specific transcript reference

set, examine the annotation impact of including regulatory elements

and provide an overview of issues arising from an anticipated transi-

tion from build 37 to build 38.

2 Materials and methods

2.1 The Alzheimer’s Disease Sequencing Project and

the annotation pipeline
Details of the sample selection criteria and AD phenotyping are

described in detail elsewhere (Beecham et al., 2016, 2017). In brief,

�1400 LOAD families were reviewed for potential inclusion in the

project, excluding families with known Mendelian mutations for

AD. Families were prioritized based on the number of affected indi-

viduals, the number of generations affected, age of onset and

absence of apolipoprotein E (APOE) e4 risk alleles. Cases met the

National Institute of Neurological and Communicative Disorders

and Stroke—the Alzheimer’s NINCDS-ADRDA (Alzheimer’s

Disease and Related Disorders Association) criteria for possible,

probable or definite AD (McKhann et al., 1984). Case/control sam-

ples were selected from a pool of over 30 000 samples under a bal-

anced risk/protection design; cases were selected with low a priori

risk (younger and lacking APOE e4 alleles), and control samples

selected based on low rates of expected conversion to AD. Using

these two sample sets, the ADSP pursued two complementary

sequencing efforts—WGS on multiplex families, and WES on a large

dataset of unrelated cases and controls.

Details of the sequencing, capture design and quality control

procedures for the ADSP data are described elsewhere (Malamon

et al., 2016) and here described briefly. Extracted genomic DNA

was sent to one of three Large-Scale Sequencing and Analysis

Centers for sequencing using Illumina WGS technology, the Broad

Institute Genomics Service (Broad), the Baylor College of Medicine

Human Genome Sequencing Center (Baylor) or the McDonnell

Genome Institute at the Washington University in St. Louis

(WashU). Resulting sequence reads were aligned to GRCh37 1000

Genomes reference (human_g1k_v37.fasta.gz within GATK resour-

ces) and genotype calling of both bi-allelic single nucleotide variants

(SNVs) and insertion–deletion variants (indels) was performed cen-

trally on the entire sample set using GATK-HaplotypeCaller and

Atlas V2. The ADSP QC working group then applied pipeline-

specific variant-level and sample-level quality control criteria, and a

consensus call set was generated by including high-certainty geno-

type calls that were identical across the two calling pipelines.

Multiple algorithms are also being applied to call structural variants

from WGS data. As the ADSP progresses to the replication phase,

sequencing centers are shifting their sequencing and alignment pro-

tocols to use GRCh38.

A visual overview of the ADSP annotation pipeline is shown in

Figure 1. Variants (SNVs) are first annotated to all Ensembl tran-

scripts, producing multiple possible functional consequence predic-

tions per variant. Variant consequences are then ranked by a custom

ranking process based on Ensembl’s severity ranking, but that up-

weights consequences of protein-coding transcripts (to produce an

overall most-damaging consequence per gene for each variant) rela-

tive to non-coding or nonsense mediated decay transcripts. We also
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produce rankings using tissue-specific transcripts based on RNA-

sequencing isoform data (to produce a tissue-specific most-

damaging consequence per gene for each variant). These variant

annotations are released as flat-files allowing one variant to have

multiple annotated consequences. Attributes that are specific to a

single variant agnostic of transcript information, such as external

allele frequency data, variant scores etc. are generated and stored as

a single flat annotation (with one entry per variant). While the

primary unit of analysis for ADSPs is currently SNVs, structural

variants of various sizes are also being called for analysis and are

processed by our annotation pipeline with some limitations

[SPIDEXTM and Contextual Analysis of TF Occupancy (CATO)

scores are not available for structural variants].

2.2 Comparisons to other variant sets
For the purposes of both validating variant calling, and to annotate

known variants with additional frequency information, we accessed

multiple sources of allele frequency information. We report minor

allele frequencies (MAF) for variants called within two major geno-

typing projects, the 1000 Genomes Project (Abecasis et al., 2012)

[including AFR (African), AMR (American), ASN (Asian) and

EUR (European) populations] and the NHLBI-ESP [AA (African-

American) and EA (European-American) populations]. Together,

these two sources reflect exome variation and low coverage sequenc-

ing of the remainder of the genome. We also included variant infor-

mation from the ExAC representing exome variants called from

�60 000 samples.

We accessed additional variant allele frequencies from the

Known Variants (Kaviar) database (Glusman et al., 2011), com-

prised of SNVs, small insertions and deletions, and complex variants

discovered in humans. It contains 162 million SNV sites, of which

25 million were not reported in dbSNP, and data from 35 projects

spanning 77 781 individuals (13.2 K whole genome, 64.6 K exome).

The database also includes 50 million short indels and substitutions

from a subset of the data sources. Kaviar excludes cancer genomes

but includes some data from cell lines and individuals affected by

disease.

Given the importance of age on AD phenotypes, we also

accessed WGS data from the Wellderly study (Erikson et al., 2016).

The Wellderly study investigates a cohort of elderly individuals with

an age range of 80–105 years and who have no diagnosed chronic

medical diseases. Using genomic sequencing, the whole genomes of

600 participants were analyzed and correlated with genetic data

collected by Inova Translational Medicine Institute (ITMI) from

1507 adults, representing the general population.

2.3 Variant consequence prediction and tissue-specific

consequences
The starting point of our annotation strategy, VEP (Yourshaw et al.,

2015), overlays variant positions with extensive resources from the

Ensembl database, and algorithmically assigns a predicted conse-

quence to a variant based on where it falls with genes, transcripts

and protein sequence, and further assigns a Sequence Ontology (SO)

term (Mungall et al., 2002) for every variant consequence. Variant

consequences are reported with respect to each transcript and pro-

tein within the Ensembl database, meaning that a single variant can

have multiple consequences, relative to the multiple distinct tran-

scripts it affects. Additional identifiers are reported from various

data sources, including from dbSNP (Smigielski, 2000), consensus

coding sequence (CCDS) (Pruitt et al., 2009), Uniprot (Magrane and

Consortium, 2011) and HGVS (den Dunnen et al., 2016).

Because multiple variant consequences are reported for each

transcript/protein affected by a variant, Ensembl VEP provides an

option (‘–per_gene’) to generate a ‘most damaging consequence’ for

each gene–variant relationship. Using this option, when a variant

overlaps multiple possible transcripts for a gene, the consequences

are ranked according to multiple criteria within the VEP logic,

including the canonical status of the transcript, an Ensembl estimate

of transcript support level, the biological type of transcript (prefer-

ring protein-coding transcripts) and translated transcript length.

For the specific purposes of ADSP analyses, we constructed a

custom ranking table (Supplementary Table S1) that down-weights

transcripts undergoing nonsense mediated decay and RNA-based

transcripts. Using this approach, we generate both full variant anno-

tation and a ‘most damaging consequence’ annotation. To provide a

tissue-specific set of variant annotations, we accessed RNA-seq

based transcript expression data from a study of 276 samples of

temporal cortex and 275 samples of cerebellum (Allen et al., 2016),

generated as part of the Accelerating Medicines Partnership for

Alzheimer’s Disease (AMP-AD). Normalized transcripts were

accessed from the AMP-AD Portal (AMPAD Knowledge Portal,

2016; Hodes and Buckholtz, 2016). Based on prior assessments of

RNA-seq data (Hebenstreit et al., 2011), transcripts were considered

‘highly expressed’ within a tissue if the average normalized tran-

script count>1 (corresponding to log2 > 0).

2.4 Additional annotations for coding variants
VEP also provides SIFT and PolyPhen predictions for each variant.

These scores assess the impact of amino acid substitution based on

sequence homology and the physical properties of amino acids

(Kumar et al., 2009) and impact on structure and function of a

human protein (Adzhubei et al., 2010). We also employ external

scoring metrics including CADD (Kircher et al., 2014) and SPIDEX

(Xiong et al., 2015). These metrics gauge how damaging a variant

might be, and thus whether the variant would be a potential candi-

date for subsequent investigation.

The CADD score (Kircher et al., 2014) evaluates the deleterious-

ness of SNVs as well as indels in the human genome. CADD is based

on allelic diversity, pathogenicity of both coding and non-coding

variants, experimentally measured regulatory effects, and quantita-

tively prioritizes variants across a wide range of functional catego-

ries, effect sizes and genetic architectures. While CADD was

designed to provide uniform variant pathogenicity scoring across

both coding and non-coding regions, some comparisons indicate

Fig. 1. Overview of ADSP annotation pipeline. The process begins with VCF

input (left). Solid square items represent pipeline workflow processes, cylin-

der items are external data sources, and open items are intermediate files or

outputs (right)
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that CADD may be best suited for scoring coding variants (Shihab

et al., 2015). CADD also relies on evolutionary conservation as a

predictive feature, and it is unclear the extent to which risk alleles

for a late-onset condition like AD will be conserved. The CADD

score is presented on a PHRED-based scale, with scores from 0 to

20 generally considered as non-deleterious and scores >20 generally

considered as deleterious, with an accuracy of above 99.0% (the

variant is amongst the top 1% of deleterious variants).

SPIDEX (Xiong et al., 2015) assesses whether a SNV causes a

dysregulation of a splicing event. The score covers all synonymous,

missense and nonsense exonic SNVs, as well as intronic SNVs that

are in proximity of splice junctions. It evaluates exons on RefSeq

transcripts for predefined features and uses a prediction model to

infer whether the exon was spliced into the transcript given the

reference genome and the given variant with respect to 16 human

tissues. The SPIDEX scores exhibit substantial predictive perform-

ance, especially for deleterious mutations, such as intronic muta-

tions that are far from splice sites. SPIDEX scores are available as

transformed z-scores, with values >3 indicating a high likelihood of

splicing.

2.5 Additional annotations for non-coding variants
Unlike coding variants, VEP provides only minimal annotation of

non-coding variants, indicating only intron-exon boundaries or

overlap with a known regulatory feature, often a sequence motif or

epigenetic state. We expanded this set of annotations to include

expressed enhancers and predictions of transcription factor occu-

pancy genome-wide.

Using capped analysis of gene expression (CAGE) data, we iden-

tified expressed enhancer elements from the FANTOM5 project

(Andersson et al., 2014). Elements were used from all available cel-

lular contexts, and were matched (by the most relevant tissue) to

expression quantitative trait loci (eQTL) associations from the

genotype tissue expression (GTEx) project (Mele et al., 2015) (anal-

ysis by tissue v6) to identify enhancer–gene relationships. Because

eQTL data were only used to establish a linkage between known

enhancer elements and the genes they regulate, we used a nominal

significance level (P < 0.05). After compiling data, we identified

WGS-based variants that were in or withinþ/�500 bases from

20 220 enhancer elements and tied these elements to the genes they

putatively impact.

We also included CATO scores (Maurano et al., 2015) to pro-

vide a recalibrated probability of affecting the binding of any tran-

scription factor. CATO also provides a quantitatively ranked list of

transcription factor families where binding might be altered. CATO

scores can only be applied to variants in regulatory regions and

therefore are only applicable to a specific subset of the ADSP data.

CATO scores above 0.1 are generally considered indicative of var-

iants that significantly alter transcription factor binding.

2.6 LiftOver-based annotation
Because of the multi-stage nature of the ADSP, the project data will

migrate to build 38 between the discovery and replication phases.

This migration will raise many issues, most imminently, how to

compare statistical results from the discovery phase (build 37) to

those of the replication phase (build 38). Variants mapped within

build 37 were transitioned to build 38 using LiftOver, part of the

UCSC Genome Browser toolset (Karolchik et al., 2007). For known

variants (those with RSIDs), the resulting LiftOver build 38 coordi-

nates were compared to the build 38 coordinates from the Ensembl

Variant database (version 80), which were mapped to build 38 using

the Ensembl pipeline.

Variants called by the ADSP QC working group were assigned

unique variant identifiers consisting of chromosome, position, refer-

ence allele, alternate allele and genomic build. Additional variant

identifiers (such as reference sequence RS numbers) are assigned as

part of our annotation process from external data sources, including

Ensembl (version 80) and dbSNP (build 144). To facilitate the com-

parison of statistical results and to support annotation-based repli-

cation analyses, we have also constructed a single unique variant

index to identify variants in a build-agnostic manner.

3 Results

3.1 Allelic discovery in the ADSP
At the completion of the Discovery Phase of the ADSP, a total of

578 individuals from 111 families were whole-genome sequenced,

and 10 913 unrelated cases and controls were whole-exome

sequenced. An overview of variant annotations and frequencies is

shown in Table 1. Following QC, WGS generated 27 896 774 called

variants, with just over 5 million novel variants (18.16%) not previ-

ously reported by dbSNP (b144) or ExAC (v0.3). The majority of

variants (84%) are annotated as intronic or intergenic. Based on

Ensembl VEP, variants were annotated to an average of 3.5 features,

including transcripts and regulatory motifs. Crude allele frequency

estimates (not accounting for family structure) show the majority of

identified variants are rare (MAF < 0.01) with �25% observed on

only one or two chromosomes. Compared to other published studies

of exome-sequence variants, we observe a larger number (22.4%) of

common variants (MAF > 0.05).

In contrast, WES revealed 1 586 703 called variants, of which

38.32% were previously unreported. Over all variants, an average

of 7.75 transcripts were impacted per variant, illustrating the enrich-

ment of coding variants. The categories of predicted variant conse-

quence are shown relative to the allele frequency spectrum of WES

variants in Figure 2. The frequency spectrum of captured variants is

heavily shifted toward low-frequency alleles (MAF < 0.01), with

only 3.5% of variants having a larger frequency. We observe an

expected enrichment for missense and synonymous variants relative

to other consequence types. CADD scores are highest on average for

stop-gained variants, followed by splicing-associated variants. There

is also a notable relative lack of overlap with variants identified in

the Wellderly cohort in the WES versus WGS, suggesting a relative

lack of coding alleles in this successfully aged cohort.

3.2 Non-coding variant annotation
�3% of WGS-identified variants are annotated to a regulatory

region. Regulatory annotations are shown by variant frequency in

Figure 3. VEP reported regulatory consequences for many variants,

including 438 461 variants within a CTCF binding site, 295 603 var-

iants within an open chromatin region, 707 302 within predicted

enhancer regions, 437 642 within predicted promoter regions,

1 719 607 within predicted promoter flanking regions and 247 701

within transcription factor binding sites. Of these, variants within

predicted promoter regions have the highest CADD scores (avg. 7.7,

SD 4.98). In contrast, CATO score predictions of transcription fac-

tor occupancy are highest in transcription factor binding sites and

CTCF binding sites, as expected (avg. 0.05, SD 0.06).

We also expanded our annotation set by including regulatory

enhancers identified from FANTOM5 and matched to nearby

genes using eQTL from the GTEx) project (Mele et al., 2015).
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Mapping distant regulatory elements to the genes they regulate pro-

vides a biology-based means to include additional variants into a

gene unit-based association test. Including FANTOM5-based

enhancers, we annotate an additional 86 789 variants from the WGS

dataset to 31 351 genes. Variants are an average of 380 KB (SD

298 KB) from the transcription start or end site when they fall out-

side gene bounds, and add an average of 35 variants to each gene-

unit. Variants also have an average CADD score of 6.2 (SD 4.5),

and an average CATO score of 0.042 (SD 0.048), showing similar

properties to the VEP predicted promoter regions. Of these variants,

1576 have CADD scores >20 (indicating a predicted damaging

impact), which likely influence 10 528 genes. In total, 1111 regula-

tory variants potentially impacting 8375 genes have CATO score-

s>0.2, indicating a high probability of transcription factor

occupancy.

3.3 Tissue-specific transcript reference changes

annotations
Given the relevance of brain tissues for AD risk, we examined

the impact of selecting brain-specific transcript references on variant

annotation. Using both the full transcript reference and a

cerebellum-specific transcript reference, we generated a ‘most dam-

aging consequence per gene’ for each variant. With the full Ensembl

transcript set, 1 586 703 variants had 2 812 045 predicted conse-

quences ultimately affecting 30 121 genes. In this context, the

Ensembl definition of ‘gene’ includes immunoglobulin, RNA-based

and pseudo genes.

Restricting annotations to only genes highly expressed in the cer-

ebellum based on RNA-sequencing, we annotate 1 230 598 variants

with 1 574 165 predicted consequences affecting 14 312 genes. The

RNA-seq dataset notably reduced annotations to mostly (90.8%)

protein-coding transcripts. Of variants annotated using both tran-

script references, 95% of variant annotations were identical, with

63 010 annotations (4%) having a different predicted consequence

relative to cerebellum-specific transcripts. Figure 4 illustrates the

change in variant consequence relative to total variant annotations.

These differences were largely due to alternative splicing, with 27%

annotated as intron variants. Most other changes are due to alter-

nate transcription start sites, annotated as upstream gene variants

(10.8%) and 50-UTR variants (4%), and alternate transcription end

Table 1. Overview of ADSP variant annotations

Whole exome (case/control) Whole genome (family-based)

Variants called 1 586 703 — 27 896 774 —

Variants annotated 1 586 703 — 27 674 996 —

Variants unannotated 0 — 221 778 —

Variants in ExAC v0.3 933 318 58.82% 361 205 1.29%

Variants in dbSNP 936 417 59.02% 22 837 563 81.86%

Variants in ClinVar 17 860 1.13% 10 960 0.04%

Variants in Wellderly 163 733 10.31% 10 304 395 36.93%

Novel variants 608 092 38.32% 5 065 664 18.16%

Average transcripts per variant 7.75 — 3.494 —

AF>0.05 35 377 2.23% 6 247 716 22.40%

0.01<AF< 0.05 20 566 1.30% 4 795 467 17.19%

Two observations<AF<0.01 1 000 280 63.04% 9 187 863 32.94%

Two observations 152 770 9.63% 3 554 970 12.74%

One observation 377 555 23.79% 4 110 758 14.74%
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Fig. 2. Allele frequency spectrum by variant annotation (whole-exome

sequencing). Total variant counts from the ADSP WES case/control dataset

are shown by VEP predicted consequence and dataset minor allele frequency

(inset legend). CADD score averages (center point) 61 SD are shown as

embedded lines
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Fig. 3. Allele frequency spectrum by regulatory annotation (whole-genome

sequencing). Total variant counts from the ADSP WGS family-based dataset

are shown by either VEP predicted regulatory consequence or FANTOM5

enhancer annotation, and crude minor allele frequency estimates (inset

legend) from the dataset. CADD score averages (center point) 61 SD are

shown as embedded lines
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sites, annotated as downstream gene variants (4.46%) and 30-UTR

variants (8.58%).

Because a likely application of variant annotations is to weight

or prioritize variants for gene-based burden tests, we also examined

the impact that transcript references have to the collection of conse-

quences by gene. While only 4% of variant annotations are altered

when using a cerebellum-based transcript reference, those annota-

tions impact 4490 genes. Of the genes affected, 3973 (88.4%) con-

tained at least one annotation with a different predicted impact on

the gene function, indicating that for gene-based tests that use var-

iant impact (such as loss-of-function analyses) may be significantly

altered by selecting a tissue-specific transcript reference.

3.4 LiftOver accuracy assessments
We examined the impact of using LiftOver by first quantifying var-

iants that are unmapped by the LiftOver process (only 148 from

WES and 3831 from WGS), and by comparing the resulting

GRCh38 coordinates for known variants (identified by RSIDs) to

those reported in the Ensembl Build 38 database. From the WES

data, 15 751 variants (1% of all mapped variants) showed discrep-

ancy between the LiftOver coordinates and the Ensembl coordi-

nates, with an average of 55 808 bases away from the Ensembl

position. From the WGS data, this proportion slightly increased

with 360 459 variants (1.29%) showing discrepancy with an average

of 831 512 bases away from the Ensembl position. As expected from

WES data, the majority of these coordinate mismatches affect mis-

sense (53.3%) and synonymous (33.58%) variants. Within the WGS

data, most variants are intronic (46.63%) and intergenic (29.39%),

with a small number of downstream (6.625) and upstream variants

(8.72%).

4 Discussion

A growing list of annotation resources are now available for the pri-

oritization and filtering genomic variants. Due to the density of

available data, a key hurdle of sequencing projects is to precisely

define a priori what annotation resources will be used to test various

functional hypotheses within the data. In this paper, we describe a

variant annotation pipeline developed for the ADSP, and the result-

ing annotations for over 30 million distinct variants, over 5 million

of which are novel. As expected, the vast majority of variants identi-

fied are low-frequency events, with WES of AD cases and controls

identifying mostly missense and synonymous variants, and WGS of

AD-affected family members identifying intergenic, intronic and reg-

ulatory variants. While the general practice in genomic analysis is to

assume a single, most-damaging biological consequence per variant,

it is important to note that variants have a variety of effects across

biological contexts—94% of all annotated WES variants impact

two or more transcripts. Due to tissue-specific splicing and expres-

sion, this implies that no variant has a singular effect.

As others have noted (Frankish et al., 2015), the choice of tran-

script reference can have a significant impact on predicted variant

consequences, however this work explores changes to the global

transcript reference set (Ensembl versus RefSeq). Given the specific

relevance of the central nervous system for AD pathogenesis, we

explored how tissue-specific splicing changes variant annotation.

Restricting annotations to transcripts within tissues of interest

(cerebellum and temporal cortex) showed only a modest change to

individual variant annotations; however, these changes can have a

large impact on the downstream gene-based analyses that use them.

With nearly one-fourth of protein-coding genes harboring variants

that change their consequence and impact, statistical analyses using

tissue-specific annotation could result in dramatically different asso-

ciation test results. Generating a definitive conclusion on what is

‘expressed’ in any given tissue however is difficult, and introduces

new algorithm thresholds that may influence the resulting

annotation.

Applying regulatory annotations from the FANTOM5 project in

conjunction with eQTL data from the GTEx project provides a

tissue-specific set of long-range enhancers tied to the genes they

potentially regulate. Including these annotations for variants identi-

fied in WGS of families extends the traditional concept of gene-

based unit tests to include variants within their regulatory elements,

adding on average 35 variants to each gene-unit. Average CADD

scores for FANTOM5 enhancer elements are increased relative to

other regulatory annotations, and incorporating these along with

promoter elements should greatly improve the interpretation of reg-

ulatory rare-variant hypothesis tests.

Ideally, all annotation resources would be regenerated for

GRCh38, however this would require extensive effort to reconsti-

tute the enormous training data resources for prediction algorithms

such as CADD. Anticipating the need to use LiftOver for GRCh37-

mapped annotation resources, we explored how well LiftOver

mapped our own variants into GRCh38 by comparing the coordi-

nates of known variants to the GRCh38 version of Ensembl. While

only a fraction of a percentage of variants were unmapped by the

LiftOver process, roughly 1% of known variants had discrepant

positions between LiftOver and Ensembl. The majority of these

were localized to chromosome 6, likely owing to the complexity of

0

Fig. 4. Transitions between WES annotation consequences when using full

versus cerebellum-expressed transcript references. The total number of var-

iant consequences from the ADSP WES case/control dataset is shown in the

inner ring. Transitions between variant consequences when shifting from the

full transcript set to cerebellum-expressed transcripts are shown via internal

lines, with proportions shown in the outer ring. For example, the most com-

mon transition was from missense to intron due to differential splicing in the

cerebellum

Annotation of LOAD study variants 2729

Deleted Text: prime 
Deleted Text: , 
Deleted Text: , 
Deleted Text: A
Deleted Text: A
Deleted Text:  
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text: , 
Deleted Text: se
Deleted Text:  Alzheimer&hx2019;s Disease Sequencing Project
Deleted Text: five
Deleted Text:  
Deleted Text: whole-exome sequencing 
Deleted Text: whole-genome sequencing
Deleted Text: ,
Deleted Text:  &hx2013; 
Deleted Text: C
Deleted Text: T
Deleted Text: C
Deleted Text: &hx201C;
Deleted Text: &hx201D;
Deleted Text: whole-genome sequencing


the major histocompatibility complex region, but also to chromo-

somes 15 and 17. These mapping errors were not insignificant, with

LiftOver coordinates an average of 50 KB from the reported

Ensembl position. This result indicates that while LiftOver is an

important stop-gap approach for mapping annotation resources into

GRCh38, post-hoc checks for annotation accuracy will be needed to

ensure that the biological implications of GRCh38 variants are

properly portrayed, and whenever possible, resources constructed

based on GRCh38 should be used instead.

All together, we show that annotation is more than ever a critical

component of genetic data analysis. Regardless of the annotation

strategy employed, it is critical to be aware that variant annotation

injects biological assumptions into the statistical analysis of genomic

data. Providing a uniform set of annotation resources for all ADSPs

will ease comparisons between analyses and informs the interpreta-

tion of results.
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