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Abstract: Microsoft Kinect, a low-cost motion capture device, has huge potential in applications that
require machine vision, such as human-robot interactions, home-based rehabilitation and clinical
assessments. The Kinect sensor can track 25 key three-dimensional (3D) “skeleton” joints on the
human body at 30 frames per second, and the skeleton data often have acceptable accuracy. However,
the skeleton data obtained from the sensor sometimes exhibit a high level of jitter due to noise
and estimation error. This jitter is worse when there is occlusion or a subject moves slightly out of
the field of view of the sensor for a short period of time. Therefore, this paper proposed a novel
approach to simultaneously handle the noise and error in the skeleton data derived from Kinect.
Initially, we adopted classification processing to divide the skeleton data into noise data and erroneous
data. Furthermore, we used a Kalman filter to smooth the noise data and correct erroneous data.
We performed an occlusion experiment to prove the effectiveness of our algorithm. The proposed
method outperforms existing techniques, such as the moving mean filter and traditional Kalman
filter. The experimental results show an improvement of accuracy of at least 58.7%, 47.5% and 22.5%
compared to the original Kinect data, moving mean filter and traditional Kalman filter, respectively.
Our method provides a new perspective for Kinect data processing and a solid data foundation for
subsequent research that utilizes Kinect.
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1. Introduction

The development of robotics technology is driving the application of robots from industrial
production to the military, medical, and service fields [1–3]. In industrial production lines, industrial
robots can replace workers in various tasks, such as assembly, handling, pick-up and welding, which can
greatly improve work efficiency [4]. In the military, robots can be operated to perform dangerous tasks,
such as bomb and mine defusing [5]. However, in the service field, robots are often used to handle
more complex tasks that require people’s involvement [6]. Therefore, the combination of robot control
technology and human-computer interaction technology can effectively improve the working ability
and intelligence of civil robots [7,8].

At present, the control of civilian robots has been transformed from the traditional manual control
mode, such as remote control and operation handling, to the vision-based robot control mode [9].
Visual-based robotic somatosensory control methods are gaining increasing applications, such as the
treatment of children with autism, robot classroom teaching, and assisting robots [10–12]. This type of
control mode is simple to operate, more in line with the human mindset and easy to perform by even
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children and elderly people. However, how to obtain human motion information as a control signal
for somatosensory operation of the robot is an urgent problem that needs to be solved. Marker-based
motion capture settings (such as VICON, https://www.vicon.com) are a potential solution in this
area because of their proven accuracy [13,14], but they are very expensive and cumbersome to use.
Robot control based on color image information is the current main somatosensory robot control
method [15]. This control method is simple, natural and convenient, but it is subject to environmental
lighting, background complexity and human skin color. Thus, an inexpensive, environmentally
unaffected system is essential for robot control.

Kinect is a somatosensory sensor from Microsoft that is low-cost and mainly used in the civilian
field [16]. Kinect uses an infrared (IR) projector, an IR sensor and an RGB (Red Green Blue) camera to
track human joints in three-dimensional (3D) space, which enables it to analyze joint kinematics [17–19].
However, the skeleton data obtained from the Kinect exhibit a high level of jitter due to noise and
estimation error. This jitter worsens when there is occlusion or a subject moves slightly out of the
field of view of the sensor for a short period of time [20]. Nonetheless, researchers have shown great
interest in Kinect and applied it to home-based rehabilitation, clinical assessments and ergonomics.
Wochatz et al. [21] think that the Kinect system can reliably assess lower limb joint angles and positions
during simple rehabilitation exercises. Sarsfield et al. [22] present a clinical qualitative and quantitative
analysis of the pose estimation algorithms of Kinect to assess its suitability for technology-supervised
rehabilitation and to guide the development of future pose estimation algorithms for rehabilitation
applications. Manghisi et al. [23], Xu et al. [24] and Plantard et al. [25] suggest a Rapid Upper
Limb Assessment (RULA) assessment using the Kinect v2 sensor, where an ergonomic assessment is
performed by computer processing and skeleton tracking. However, if the data obtained by Kinect are
inaccurate, it will seriously affect these studies, thus, it is necessary to process Kinect skeleton data.

Various approaches are employed to stabilize joint coordinates. The main approaches are filter
algorithms, such as the amplitude-limited filter, moving mean filter and Kalman filter. Edwards and
Green [26] compared four different filter-based approaches to obtain smooth joint coordinates: the Kinect
SDK’s built-in Holt double exponential smoothing filter, an averaging filter, a Kalman filter with a
constant-value model, and a Kalman filter with a Wiener Process Acceleration (WPA) model. Du and
Zhang [27] proposed an innovative amplitude-limited algorithm of over-damping to solve the problem
of error extraction and dithering due to the noncontact measure. Rosado et al. [28] improved the
accuracy of the motions captured by Kinect from both static and dynamic aspects. Static calibration was
used to obtain the average static distance of adjacent joints, and the joint position was optimized in the
dynamic calibration using this static distance. Wang et al. [29] proposed a kinematic filtering algorithm
based on the Unscented Kalman Filter and kinematic model of the human skeleton. The proposed
algorithm can obtain a smooth kinematic parameter with reduced noise compared to the kinematic
parameter generated from the raw motion data from Kinect. The traditional time series filter method has
real-time performance and low algorithm complexity, which can partially remove jitter and noise from
the Kinect joint data. However, abnormal joint data with large errors cannot be completely eliminated.

Researchers have adopted various approaches for dealing with abnormal joint data with large
errors, for example, the joint estimation algorithm. Shen et al. [30] proposed an exemplar-based method
to learn to correct the initially estimated joint-based skeleton, and observed a significant improvement
compared to the approaches delivered by the current Kinect system. Shum et al. [31] proposed a set of
erroneous data identification methods and established a human joint posture database to find the best
substitute data from erroneous data. Liu et al. [32] proposed a posture reconstruction method based
on a local mixture of Gaussian process models that Plantard et al. [33] adopted to filter pose graphs
for efficient Kinect pose reconstruction. Approaches for abnormal joint data with large errors mostly
use the real joint as a reference to learn the relationship between Kinect joint data and real joint data
through machine learning, thus, they have high complexity and require real joint data as a reference.
Moreover, different models have been developed for different types of motion learning, so they are not
suitable for practical applications.

https://www.vicon.com
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In the present paper, the advantages of the two methods are combined. We proposed a
reliability index to identify abnormal joint data with large errors. Then, we improved the traditional
Kalman filter according to various human movement constraints to realize the low-complexity joint
correction algorithm. In the rest of the paper, Section 2 describes the proposed method. In Section 3,
the experimental setup is explained, which also includes the experiment results. The conclusions and
scope of future work are discussed in Section 4.

2. Methodology

2.1. Reliability Measurement

An incorrect skeleton joint in a motion capture system is even more damaging than a missed
joint since it incorrectly guides the system to infer posture. Therefore, we applied an index called the
vibration degree to evaluate the reliability of the joint [28].

When Kinect cannot accurately track a joint, there is a high-frequency vibration of the joint.
Assuming pi( f ) = (x1, y1, z1) and pi( f + 1) = (x2, y2, z2) to be the 3D position of skeleton i in two
successive frames, we can calculate the displacement vectors as:

di( f ) = pi( f + 1) − pi( f ) = (x2 − x2, y2 − y1, z2 − z1) (1)

The angle between continuous displacement vectors can be described as:

θi( f ) =

arccos( di( f )•di( f+1)
|di( f )||di( f+1)|

) i f
∣∣∣di( f )

∣∣∣ > dmin,
∣∣∣di( f + 1)

∣∣∣ > dmin

0 otherwise
(2)

where dmin is the minimum distance value of an acceptable displacement vector. dmin is used to avoid
a large change in angle caused by small changes when the joint position is basically stationary. In our
experiment, the distance value of a displacement vector is approximately 0.01 m when the joint position
is basically stable. By contrast, when the joint position is unstable, the distance of the displacement
vector increases. Therefore, the dmin value is set to 0.02 m in our experiment.

The vibration degree reliability is defined as:

Ri( f ) = 1−
max(min(θi( f ),θmax) − θmin, 0)

θmax − θmin
(3)

where θmax and θmin are the extremities of human body movement. θmin is the lower limit of the
angle change when there is jitter between each frame, and θmax is the upper limit of the angle change
that we consider. Based on Morasso [34], which is concerned with kinesiology, we set θmin=45◦ and
θmax=135◦. However, the setting of the threshold values here are empirically determined, and this
limitation is expected be overcome in our future research.

2.2. Reliability Threshold

The main advantages of Kinect sensors are their low price, ease of use and adaptability to the
environment. However, all sensors produce measurement errors and noise when measuring physical
quantities. The Kinect sensor is an inaccurate system that provides joint measurement data with certain
measurement errors and noise [35]. These errors and noise are generated by various factors, which can
be classified into two main types. The first type is the lack of joint position information caused by
occlusion and the part of the human body that leaves the measurement range. The Kinect sensor
estimates the missing joint using the estimation algorithm and can obtain erroneous data. The second
type is the systematic error introduced by quantization noise and sensor stability. The first type of data
error may cause joint data to significantly deviate from the true value, which affects the accuracy of the
joint data; the second type of error has a small amplitude but appears more frequently, which results in
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uneven joint data [36]. Therefore, this paper classifies the two types of joint data and performs the
corresponding processing after classification. We applied the vibration degree introduced in Section 2.1
to evaluate the reliability of the joint and determine the reliability threshold to divide the two types of
joint data. Joint data with lower reliability than the threshold are recognized as abnormal data and
are called erroneous data, and data with higher reliability than the threshold are identified as data
to be optimized and are called noise data. This paper used the common approximation method in
mathematics to obtain the joint reliability threshold, as follows.

First, the occlusion marker was artificially set in the experimental scene. Second, we obtained
the motion data through occlusion from the Kinect and calculated the joint reliability. Third,
we simultaneously collected the human motion color image information to manually mark wrong
joint data frame by frame, as shown in Figure 1. Finally, we used the approximation idea to determine
the joint reliability threshold. When the current threshold identification error data are lower than
the manual labeling, the current threshold is set to the lower threshold. When the current threshold
identification error data are higher than the manual labeling, the current threshold is set to the upper
threshold. The approximation algorithm stops when the threshold judgment and manual labeling
error are within 10 percent of each other.
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Figure 1. Visualization of skeleton tracking.

In the present paper, wrist joint motion data of five subjects were collected. Each subject repeated
five experiments, and each experiment collected 150 frames of data. We manually marked the number
of frames of wrong joint and used the approximation algorithm to determine the reliability threshold.
The results are shown in Table 1. Generally speaking, the data difference is not big enough, which may
lead to doubts about the rationality of classification. However, in our opinion, the difference is a relative
concept. Whether the difference is significant or not depends on the specific application. For example,
if the proposed method in this paper is applied in the simulation of physical exercise such as table
tennis playing, the data difference we provided is not big enough since the amplitude of the arm of
the player in such kind of motion is quite big. In contrast, if the proposed method in this paper is
applied in the simulation of rehabilitation training of patients with Parkinson’s, the data difference
we provided is very big since the amplitude of the arm of the patients in such kind of motion is quite
small. Therefore, we determined the reliability threshold is the average value of the experimental data
from 25 groups of 0.70 based on the results in Table 1 eventually. We defined erroneous data as joint
data with a reliability threshold below 0.70 and noise data as joint data with a reliability threshold
above 0.70.
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Table 1. Reliability threshold results.

Experiment
Reliability Threshold

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

1 0.69 0.68 0.74 0.72 0.79
2 0.70 0.73 0.65 0.77 0.75
3 0.72 0.69 0.64 0.76 0.66
4 0.75 0.74 0.63 0.73 0.73
5 0.66 0.65 0.66 0.69 0.69

2.3. Algorithm to Handle Noise Data

Joint data with a reliability threshold above 0.70 are defined as noise data, and a Kalman filter is
used to smooth the noise of the data. Except for separately obtaining each joint coordinate, we used
Kinect to collect the sound source angle of the subject. Therefore, the state vector is taken to be the
true 3D coordinates of the skeleton joint and their velocities and is written as X = [x, y, z,

.
x,

.
y,

.
z]T.

The measurement vector is taken to be the true 3D coordinates of the skeleton joint and sound source
angle and is written as Y = [x, y, z, arctan(x/z)]T. The state transition process is modeled as a linear
dynamic system, and the measurement is modeled as a nonlinear dynamic system, where the next state
at time instance k+1 is expressed in terms of the previous state at the kth instance and mathematically
represented as:

Xk+1 = FXk + Qk (4)

Yk = h(Xk) + Rk (5)

where Xk and Yk are the state vector and measurement vector, respectively, at time instant k; Qk and Rk
are the process noise and measurement noise, respectively; F is the state transition matrix; and h is the
state transformation function.

Matrix F is given in block form by:

F =



1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


(6)

For state transformation function h, we adopted the extended Kalman Filter to linearize h and
replace matrix H in the filter with the Jacobian of h, which is evaluated at the current state estimate as:

Hk =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

1/ẑ−k
1+(x̂−k /ẑ−k )

2 0
x̂−k /(ẑ−k )

2

1+(x̂−k /ẑ−k )
2 0 0 0

 (7)

Kalman filter estimates X̂k from Xk with the knowledge of measurement vector Yk in two steps:
prediction and update. The standard Kalman filtering prediction step can be written as:

X̂−k = FX̂k−1 (8)

P−k = FP−k−1FT + Qk (9)
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where P−k is the covariance matrix associate with prediction X̂−k for an unknown true state Xk and is
expressed as:

P−k = E[(Xk − X̂−k )(Xk − X̂−k )
T
] (10)

The updated state based on the measurement is expressed as:

Kk = P−k HT(HP−k HT + R)
−1

(11)

X̂k = X̂−k + Kk(Yk −HX̂−k ) (12)

Pk = (I −KkH)P−k (13)

where Kk is the Kalman gain matrix. The Kalman filter minimizes the mean square error between the
estimated X̂k and true Xk, providing smoother coordinates.

2.4. Algorithm to Handle Erroneous Data

We define erroneous data as joint data with a reliability threshold below 0.70, and a Kalman filter
with human model constraints is used to correct the error of the data. To illustrate the algorithm to
handle erroneous data, we assume that the wrong joint is wrist joint B at the kth frame and that its
parent joint is elbow joint A (X1, Y1, Z1), as shown in Figure 2.
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First, the Kalman filter algorithm was used to estimate the motion trend between frames to obtain
the error joint position estimate P(X̃, Ỹ, Z̃). Then, we established the constraint equation. Since the
length of the human skeleton is constant, it is estimated that the error joint should be on the spherical
surface with radius lAB at the center of the parent node. The constraint equation is as follows:

(X −X1)
2 + (Y −Y1) + (Z−Z1) = lAB

2 (14)

Finally, the estimated joint position (X̃, Ỹ, Z̃) is optimized. By establishing a spatial linear equation
between P(X̃, Ỹ, Z̃) and A(X1, Y1, Z1), we can acquire optimized joint position B(X̂, Ŷ, Ẑ), which is on
the constraint equation and closest to the estimated joint position P(X̃, Ỹ, Z̃), as shown in Figure 3.

The constraint equation intersects the linear equation at two points. The solution with the smallest
coordinate distance from the joint estimated position point P is selected as the final estimated error of
the joint optimization estimated position.

X̂ = ±

√√√
lAB

2(X̃ −X1)

(X̃ −X1)
2
+ (Ỹ −Y1)

2
+ (Z̃−Z1)

2
+ X̃ (15)
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Ŷ = ±

√√√
lAB

2(Ỹ −Y1)

(X̃ −X1)
2
+ (Ỹ −Y1)

2
+ (Z̃−Z1)

2
+ Ỹ (16)

Ẑ = ±

√√√
lAB

2(Z̃−Z1)

(X̃ −X1)
2
+ (Ỹ −Y1)

2
+ (Z̃−Z1)

2
+ Z̃ (17)Sensors 2019, 19, x FOR PEER REVIEW 7 of 13 
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3. Experimental Setup

Our experiment is based on Kinect version 2.0, which provides pose estimations for 25 “skeleton”
joints at 30 Hz and enables the tracking of a user’s skeleton on a subset of joints [21]. A schematic of
the Kinect, its sensor locations and its right-handed coordinate system is shown in Figure 4. The Kinect
base sits parallel to the (x, z) plane, and the origin of the coordinate is at the center of the infrared camera.
The X-axis runs parallel through the video and audio sensor arrays, the Y-axis runs perpendicular to
the Kinect base, and the Z-axis defines the illumination direction. The coordinate unit is meter (m).
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In general, the accuracy of Kinect is evaluated by comparing data collected by Kinect with data
acquired by optical motion capture devices (such as VICON). However, as described in Section 2.2,
all sensors produce a few measurement errors when measuring physical quantities. Thus, we may not be
able to obtain the most accurate joint position trajectory. Since the precise trajectory is difficult to measure,
this paper abandoned the use of an optical motion capture instrument to obtain human skeleton joint
positions as the ground truth. Instead, we adopted the trajectory acquisition method presented in [19],
which first set the fixed point on the ground as the center of the special motion trajectory in the (X, Z)
plane. The present paper selected the quarter circular trajectory. First, we determined a point as the
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center of the quarter circular trajectory, which implies that we fixed the Y-direction coordinate of the
human joint position. Then, we took a piece of a tape measure and attached it to the fixed point. Finally,
we instructed the subject to face the Kinect at all times and move along the quarter circular path while
holding the other end of the tape at the skeleton wrist joint. The obtained quarter circular trajectory of
the wrist joint is considered to be the ground truth. Unlike [19], we added an obstruction to the joint
trajectory to generate incorrect data. In this experiment, a total of five subjects’ upper limb movement
data were collected, and the experiment was repeated five times for each subject with 120 frames of
experimental data. The experimental scene is shown in Figure 5.
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4. Results and Discussion

Figure 6 below shows the performance of tracking the wrist trajectory using the original Kinect,
the moving mean filter algorithm, the traditional Kalman filter algorithm and our method compared
to the ground truth. The trajectory shown in the black circle in Figure 6 is erroneous data caused
by occlusion.

From Figure 6, it is observed that the algorithm proposed in this paper is superior to the other
algorithms. The idea of our method is to separate erroneous data from noise data, perform targeted
processing of the identified erroneous data, discard the original erroneous data and estimate the
new joint position by combining the human constraint and filtering prediction as the current joint
position. Therefore, the algorithm presented in this paper is less affected by external measurement
data and maintains a similar trend to the real trajectory near the erroneous data. The ordinary filtering
method applies the erroneous data to the smoothing process, which is greatly affected by the external
measurement data. Therefore, the movement trend of the measurement data will remain in the vicinity
of the erroneous data, and the deviation is large.
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Figure 6. Accuracy comparison of different algorithms and the true trajectory.

To measure accuracy, the average error of the estimated joint position and the true trajectory were
calculated using the following formula:

E =

n∑
i=1

√
(x(i) − x0(i))

2 + (z(i) − z0(i))
2

n
(18)

where x(i) and z(i) are the x and z components of the human joint position coordinate of the i th
frame processed by different algorithms, respectively; x0(i) and z0(i) are the x and z components of the
human joint position coordinate of the i th frame in the true trajectory, respectively.

Table 2 shows the error of the original joint movement trajectory acquired by Kinect; the joint
trajectories processed by the moving mean filter algorithm, the traditional Kalman filter algorithm and
the algorithm proposed in this paper; and the true geometric trajectory. Table 2 shows that the joint
data processing algorithm proposed in this paper is superior to the other algorithms in regard to the
overall average error comparison. Based on the original Kinect data, the data accuracy was improved
by 21.3% after moving mean filter. After the traditional Kalman filter processing, the data accuracy is
increased by 46.7%, and after the algorithm proposed in this paper processing, the data accuracy is
increased by 58.7%.

As for computational efficiency, though the algorithm complexity of our method is higher than
other algorithm like moving mean filter algorithm, it is not obvious in terms of the difference. Since the
moving mean filter algorithm is simple, we observed that it takes roughly 0.975 s to process one
experiment sample, whereas it takes roughly 1.248 s for traditional Kalman filter to process one sample.
Our proposed method adds classification algorithm before extend Kalman filter so that it takes roughly
1.592 s to adapt one sample. All the algorithms are performed on the MATLAB 2016b platform with
3.1 GHz Intel Core i5 Processor.
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Table 2. Comparison of the error of different algorithms (unit: m).

Kinect Moving Mean
Filter Kalman Filter Our Method

Error SD Error SD Error SD Error SD

1 0.081 0.008 0.065 0.007 0.043 0.003 0.032 0.003
2 0.076 0.004 0.061 0.005 0.041 0.002 0.031 0.003
3 0.071 0.004 0.054 0.010 0.036 0.003 0.028 0.005
4 0.069 0.007 0.051 0.009 0.039 0.002 0.030 0.002
5 0.078 0.005 0.062 0.004 0.042 0.004 0.036 0.004

Mean 0.075 0.006 0.059 0.007 0.040 0.003 0.031 0.003

SD=Standard Deviation.

5. Conclusions and Future Work

Regarding the accuracy of Kinect, few studies have focused on improving the inherent skeleton
tracking accuracy of Kinect. These studies simply intended to show that applications based on Kinect
could be significantly improved by applying optimal techniques. In this process, the researchers ignored
the generalization of methods to improve the accuracy of Kinect. This tendency is susceptible to the
embarrassing situation that the method is suitable for posture assessment but not home rehabilitation.
We proposed a novel algorithm to improve the accuracy of Kinect skeletal joint coordinates for
improving the inherent accuracy of Kinect. Our method introduced a skeletal joint data classification
algorithm to divide noise data and erroneous data. Furthermore, we proposed two different algorithms
to smooth noise data and correct erroneous data to accurately the track dynamic trajectory joint center
location over time. Our method can potentially expand the way to process Kinect data in applications
based on Kinect because we separate Kinect data processing from applications. Thus, our method is
suitable for most applications related to Kinect.

The present paper evaluated the algorithm in an occlusion experiment. The results of these
experiments are significant. The results show that the algorithm substantially smooths the skeleton
joint position estimates of Kinect; more importantly, the experiments demonstrate that the tracking
accuracy is significantly increased. In this study, we compared the results of our method with the
original Kinect data, the moving mean filter algorithm and the traditional Kalman filter algorithm and
obtained an accuracy improvement of 58.7%, 47.5% and 22.5%, respectively. As a result, using the
skeletal joint data classification algorithm and two different data-processing algorithms to smooth
noise data and correct erroneous data reduce the average estimation error for tracking human dynamic
skeleton joints.

However, there are limitations to this study. Our proposed algorithm for Kinect skeletal joint data
classification only considers the vibration between frames. However, there is also a limited relationship
between the coordinates of each joint point in the same frame. For future work, we plan to enrich
the skeletal joint data classification algorithm by incorporating the limit relationship. Furthermore,
the setting of the values like reliability threshold is a shortcoming. We should consult with expertise
from physiology, rehabilitation or even neuroscience to determine the reference threshold, and we
should have conducted some preliminary experiments to verify the rationality of the data difference.
In addition, we only considered the tracking of the (x, z) coordinate of the wrist joint of the subject
with a known quarter circular trajectory. The results must be verified based on more complex motions.
However, the true trajectories are difficult to measure and may require more sophisticated and
expensive equipment, which will be conducted in possible future research.
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