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ABSTRACT Here, we present the complete genome sequence of a Shewanella iso-
late, TH2012, from a shrimp pond in which shrimp exhibited early mortality syn-
drome (EMS)/acute hepatopancreatic necrosis disease (AHPND). The complete ge-
nome of TH2012 has a prophage-like element and a number of potential virulence
factors, making TH2012 a possible contributing factor to EMS outbreaks.

Early mortality syndrome (EMS) and its component acute hepatopancreatic necrosis
disease (AHPND) have caused massive production losses in farmed shrimp since

2009 (1, 2). Unique Vibrio parahaemolyticus isolates that produced Photorhabdus insect-
related-like toxins in V. parahaemolyticus (Pirvp toxins) were found to be the cause of
AHPND (termed VPAHPND isolates) (3–5), and such toxins have recently been found in
other Vibrio species (6–8). Along with other Thai VPAHPND isolates, the bacterium
Shewanella sp. strain TH2012 was obtained from hepatopancreatic tissue of diseased
shrimp in an EMS/AHPND outbreak pond in 2012 (9). TH2012 was tentatively identified
as a member of the genus Shewanella on the basis of both high sequence similarity of
its partial 16S rRNA gene to matching sequences from the genus and highly matching
biochemical profiles of API 20E stripe tests (bioMérieux). Found predominantly in
aquatic environments, several Shewanella species are opportunistic pathogens of
aquatic species and humans (e.g., references 10 through 12). It is not currently known
whether TH2012 is pathogenic to shrimp. The isolate was revived directly from cryo-
preserved glycerol stocks for aerobic overnight culturing at 30°C in tryptic soy broth
(TSB) supplemented by 1.5% (wt/vol) NaCl, and the overnight culture was used as the
inoculum for the subsequent culture before total genomic DNA extraction using the
standard phenol-chloroform method (13). DNA concentration and purity were mea-
sured by the PicoGreen method (Invitrogen, USA) and by gel electrophoresis before
construction of a 20-kb library for sequencing with PacBio RS II technology on one
single-molecule real-time (SMRT) cell (Macrogen, South Korea). The high-quality filtered
subreads (with subread lengths of �500 bp, polymerase read lengths of �100, and
polymerase read qualities of �0.8) were assembled de novo by Hierarchical Genome
Assembly Process 3 (HGAP3) (14) using default parameter settings (with a seed read
length of �6,000 bp). Complementary ends of assembled contigs were joined and
trimmed to form circularized contigs that were subsequently polished with Quiver
using a default parameter setting (14). Basic Local Alignment with Successive Refine-
ment (BLASR) (version 1.3.1.124201; – bestn of 1 and minSubreadLength of �1,000 bp)
(15) was used to map subreads against the circular polished contigs with two different
positions of the first base pair location for each contig. To verify contig circularity,
relatively even read coverages within the joined regions and along the contigs were
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observed with the Integrative Genomics Viewer (IGV; version 2.4.18) (16). Prokka
(version 1.11) (17) was used to predict open-reading frames (ORFs), tRNAs, and rRNAs,
relying on Prodigal (version 2.6) (18), ARAGORN (version 1.2) (19), and barrnap (version
0.7; https://github.com/tseemann/barrnap). Pfam domains were predicted by an
hmmscan search against Pfam-A.hmm with an E value of �0.01 (20), whereas clusters
of orthologous groups (COGs) were obtained by a BLASTP (21) search against the
UniProt database of eggNOG (version 3.0) (22), with top hits for E values of �10�3.
Transmembrane helices were predicted by TMHMM (version 2.0c) (23) with default
parameter settings. ORFs were additionally annotated by BLASTP and BLASTX searches
(21) against the NCBI nonredundant (nr) database (21). PhiSpy (version 2.3) (24) was
used to detect prophages with a default parameter setting, using either the generic test
set or Shewanella oneidensis and Escherichia coli as closely related organisms. Similarly,
genome annotation was performed using the Integrated Microbial Genomes Expert
Review (IMG/ER) platform (DOE Joint Genome Institute) (25).

The sequencing resulted in 157,485 high-quality filtered subreads with an average
length and an N50 value of 7,967 and 12,011 bp, respectively. The assembled genome
contained 4,858,998 bp (258� coverage; 54.81% G�C content) with a single circular
chromosome of 4,808,629 bp (204� coverage; 54.88% G�C content) plus a circular
plasmid, pSTH1, of 50,369 bp (750� coverage; 48.1% G�C content) (Table 1). The
whole genome contained 4,303 predicted genes, 4,176 ORFs, and 127 RNA genes, with
4,109 ORFs on the chromosome (88.04% coding density) and 67 on plasmid pSTH1
(89.67%). The majority of the ORFs were assigned putative functions, leaving 1,038
genes (24.86%) coding for hypothetical proteins. No Pirvp sequences of VPAHPND (3, 26,
27) or Pirvp-like sequences of Shewanella violacea (GenBank accession numbers
WP_013050436 and WP_013050437) were found by exhaustive searches, and there was
no significant nucleotide similarity of pSTH1 to the Pirvp toxin-carrying plasmids, pVA1
(3), pVA1-3 (26), and pVHvo (27). On the other hand, the genome contained one
putative prophage-like element of 3.76 kb, in addition to several putative hemolysins,
chitinases, and proteases that have been implicated in the virulence of some She-
wanella isolates (12, 28). Based on the genomic information, further investigation is
needed on the TH2012 isolate’s pathogenicity to shrimp, on the possibility that it can
act synergistically to potentiate the virulence of VPAHPND, and on development of
specific detection methods to determine its prevalence in shrimp ponds.

Data availability. This whole-genome shotgun project has been deposited at

GenBank/EMBL/DDBJ under the accession number CP020373 and BioProject number
PRJNA378141 and at IMG/ER under Genomes OnLine Database (GOLD) identifier
Gp0206473. The version described in this paper is the first version, CP020373.1. The
associated PacBio RS II subreads are available under the SRA accession number
SRR8549885.

TABLE 1 Genome statistics of Shewanella sp. strain TH2012

Attribute Value % of total

Genome size (bp) 4,858,998 100
DNA coding genes (bp) 4,322,791 88.96
DNA G�C content (bp) 2,663,040 54.81
No. of DNA scaffolds 2
Total no. of genes 4,303 100
No. of protein-coding genes 4,176 97.05
No. of RNA genes 127 2.95
No. of genes in internal clusters 775 18.01
No. of genes with function prediction 3,138 75.14
No. of genes assigned to COGsa 2,902 67.46
No. of genes with Pfam domains 3,722 89.13
No. of genes with signal peptides 616 14.32
No. of genes with transmembrane helices 1,088 26.05
a COGs, clusters of orthologous groups.
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