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Abstract

Single nucleotide polymorphisms (SNPs) are the most abundant type of genomic variation and the most accessible to genotype
in large cohorts. However, they individually explain a small proportion of phenotypic differences between individuals. Ancestry,
collective SNP effects, structural variants, somatic mutations or even differences in historic recombination can potentially explain
a high percentage of genomic divergence. These genetic differences can be infrequent or laborious to characterize; however, many
of them leave distinctive marks on the SNPs across the genome allowing their study in large population samples. Consequently,
several methods have been developed over the last decade to detect and analyze different genomic structures using SNP arrays,
to complement genome-wide association studies and determine the contribution of these structures to explain the phenotypic
differences between individuals. We present an up-to-date collection of available bioinformatics tools that can be used to extract
relevant genomic information from SNP array data including population structure and ancestry; polygenic risk scores; identity-by-
descent fragments; linkage disequilibrium; heritability and structural variants such as inversions, copy number variants, genetic
mosaicisms and recombination histories. From a systematic review of recently published applications of the methods, we describe
the main characteristics of R packages, command-line tools and desktop applications, both free and commercial, to help make the
most of a large amount of publicly available SNP data.
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Introduction
From a nucleotide change to a chromosome gain, genetic
variation encompasses a huge spectrum that has been
intensively studied for decades. Single nucleotide poly-
morphisms (SNPs) are the most abundant type of genetic
variability. SNPs can be genotyped by many sequencing
techniques from Sanger to Next Generation Sequencing
(NGS). Microarrays and DNA chips are popular tech-
niques that reduce cost by targeting a selected set of
SNPs that are easily scalable to large population sam-
ples [1]. The Whitehead Institute and Affymetrix, Inc.
developed the first SNP chip designed to genotype 1494
SNPs [2], giving birth to the first genome-wide asso-
ciation study (GWAS) that led to rapid growth of this
technology. Now, there are hundreds of different types
of chips, totally customizable depending on the research
objectives, and some with more than a million markers
to perform whole-genome SNP sequencing. Analysis and
storage of these data have been largely made available in
public repositories, such as Bioconductor and GitHub for

methods, and dbGaP and EGA for data. As a result, today
we have access to a great amount of freely SNP data from
large cohorts, including several small studies and large
consortia (Estonian Biobank, UK Biobank).

Before the GWAS explosion, it was soon realized
that high-density SNP arrays could be used to detect
structural variation, in addition to several other genomic
features, that would be otherwise expensive and labo-
rious to characterize in population samples. As a
consequence, several research groups have been working
on different methods to infer underlying genomic
structures in SNP genotypes, and thus add important
contributors to the genomic architecture of phenotypic
traits. These added features of GWAS include the analysis
of population structure and ancestry, the calculation of
polygenic risk scores (PRS), the detection of identity-
by-descent (IBD) fragments, the analysis of linkage
disequilibrium (LD) and the estimation of the heritability
of a trait. Algorithms have also been developed to detect
genomic variation, including copy number variants
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(CNV), inversions, recombination patterns and genetic
mosaicisms. SNP array genomic data in a large number
of individuals provide an unmatched scenario to study
the role of rare genomic variants in common phenotypes
with enough statistical power. Researchers can then,
for instance, enquire about the burden of rare variants
to common diseases, study disease etiology by the
identification of rare mutations in causal genes, or
explore the role of these variants in the link between
environmental exposures and phenotypes [3]. Recent
reviews have described some of the biological processed
that can be studied with high-density SNP data [4].
However, given the amount and diversity of methods
to exploit this type of data, a comprehensive systematic
review of the current methods in use is needed to help
researchers in their choice.

We assessed a total of 105 different methods to infer
underlying genomic structures in SNP data, including R-
packages, command-line tools and desktop applications,
both free and commercial. We selected the methods and
tools with a systematic search of scientific literature and
filtered those that were applied in at least one recent
study of 88 selected publications between January 2020
and September 2021. We reviewed the available options
to exploit SNP arrays, along with the methods and bioin-
formatics tools, that were used in those studies. Our aim
is to facilitate the decision on choosing a current tool in
use to extract relevant information from SNP array data,
depending on individual needs, limitations and research
interests.

References included in this review
We searched for relevant scientific literature following
a strict protocol with specific MeSH terms that were
chosen to obtain the most suitable articles for each
section (Supplementary Table S1). In total, eight distinct
queries were submitted to PubMed and, from each one,
papers mentioning in their title the introduction of new
software or method were selected. We filtered articles in
which specific methods on SNP data were described [69].
Additional articles were included that appeared in the
references of those from the initial selection and were
considered relevant [36]. We then retrieved recent studies
in humans applying at least one of the selected methods
between January 2020 and September 2021 [88].

SNP genotypes from NGS data
Several programs that are presented in this review can be
adapted to SNP genotypes obtained from NGS data, when
appropriate formatting is provided [5, 6]. There are mul-
tiple algorithms for calling SNP genotypes from FASTQ
files, either by applying heuristic (VarScan2, GSMapper,
CLC Genomic Workbench, DNSTAR Lasergene) or by
probabilistic methods (SAMtools, Beagle, GATK, Atlas-
SNP2, SOAPsnp, SNVer), which follow both single and
multi-sample approaches. The first step is usually to use
an alignment tool that converts de FASTQ/FASTA files
into SAM/BAM alignments, and then the variant calling

tool to produce a VCF or text file with the polymorphic
positions and genotypes. Different methods for analyzing
SNP data can directly use these files. Alternatively, the
VCF files can be further converted to other formats,
including PLINK, or R data-structures such as GDS or
snpMatrix objects, among others. While adaptation to
NGS data is possible for numerous methods, tools that
are based on BAF and/or LRR information (i.e. for CNVs
and mosaicism detection) are only suitable for SNP
arrays.

Quality control of SNP array data
Quality control (QC) of the SNP genotypes must be per-
formed before their analysis. Some programs, as the
Illumina BeadStudio, provide its own exhaustive QC steps
for genotype calling [7, 8]. For those tools that do not
include specific QC functions there are several special-
ized software options available, including the R packages
GWASTools [9], QCGWAS [10] and SNPRelate [11]. The aim
of QC functions is to filter out SNPs and samples with
unreliable data. For filtering SNPs, the most common
procedure is to discard those that have a high missing
frequency, are not in Hardy–Weinberg Equilibrium (HWE)
in the control group, or have a low minor allele frequency
(MAF) (<1%, or 5%) [12–14]. Additionally, more specific
controls can be applied depending on the available data
and the research objectives, such as strand consistency
[15]; detection of position mismatches, replicate errors
or Mendelian inconsistencies; and the exclusion of A/T,
G/C or non-HapMap SNPs [16–18]. Samples are usually
filtered out with low call rates (i.e. individuals with sev-
eral missing genotypes), high heterozygosity levels or a
large Mendelian error rate. Those showing sex and race
mismatch should be fixed or discarded. Moreover, popu-
lation structure can also be controlled [19]. Additionally,
if applicable, a correlation between samples is performed
to detect and remove highly genetically related individu-
als [20].

Some programs require additional preprocessing of the
SNP data such as phasing and imputation. For instance,
programs that analyze population structure, detect IBD
fragments or LD structures often start with phased hap-
lotypes as input. In addition, some PRS tools need a
previous imputation step, see the ‘Input Data’ column of
the Tables for details. The phasing of the haplotypes, that
is the separation between the maternally and paternally
inherited copies of each chromosome, can be performed
with tools like SHAPEIT 3, Eagle 2 and HAPI-UR [21, 22].
Genotype imputation, the estimation of missing geno-
types from a genotype reference panel, can be performed
with tools like Minimac 4 from the Michigan Imputation
Server, Impute 5, Beagle 5.2 or PBWT from Sanger Impu-
tation Server [23].

Enhance your gwas: the different ways to
exploit SNP array data
The value of a GWAS can be substantially increased
by studying additional genomic features that can be
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Table 1. Top-five tools (the most cited between January 2020 and September 2021 in PubMed) for the study of population structure
and ancestry with their characteristics

Tool Type Availability Input data Algorithm Characteristics Year Reference

STRUCTURE Desktop App
Command-line (C)

Free Text file with
genotypes and
other optional
fields

Bayesian with
multiple tunning
parameters

The first one Works
with any type of
multilocus genotype
data

2000 [24]

EIGENSOFT Command-line Free PLINK Principal
Components
Analysis (PCA)

Combination of
SMARTPCA and
EIGENSTRAT
Specific for
case/control studies

2006 [30, 31]

ADMIXTOOLS R Package
Command-line (C)

Free ‘ind’ file, ‘snp’ file
and ‘geno’ file

Several methods Infers proportion
and dates of
mixtures

2012 [33]

fastSTRUCTURE Command-line
(Python)

Free Binary PLINK
(BED/BIM/FAM)

Bayesian
framework

Fast 2014 [25]

fineSTRUCTURE Command-line Free Phased
Haplotypes

ChromoPainter
[38] (HMM-based)

Fine-scale
population structure

2012 [38]

Table 2. Top-five tools (the most cited between January 2020 and September 2021 in PubMed) for the study of identity by descent
fragments with their characteristics

Tool Type Availability Input data Algorithm Characteristics Year Reference

RefinedIBD Command-line
(JAVA) BEAGLE
Software

Free Phased Data VCF
file with genotypes

GERMLINE
Algorithm +
probabilistic
approach

Does not allow
genotype errors

2013 [57]

GERMLINE Command-line
(C++)

Free Phased Data PLINK
haplotype data

Dynamic
Programming

Allows genotype
errors

2009 [51]

fastIBD Command-line
(JAVA) BEAGLE
Software

Free Phased Data Text
file with genotypes

Estimation of
frequencies of
shared haplotypes

Fast 2011 [56]

Hap-IBD Command-line
(JAVA)

Free Phased Data VCF
file with genotypes
PLINK text files
(PED/MAP)

Positional
Burrows-Wheeler
transform PBWT

Fast and simple 2020 [54]

RaPID Command-line
(Python)

Free Phased Data VCF
file with haplotypes

Random
Projection (based
on the positional
Burrows-Wheeler
transform, PBWT)

Fast Configurable
parameters

2019 [53]

inferred from SNP array data, providing additional mech-
anisms, associations and insights into the genomic basis
of phenotypic differences between individuals. We have
identified the first group of methods that incorporate the
joint effects of multiple SNPs and include those aimed
at estimating population structure, ancestry, PRS and
narrow-sense heritability, and the detection of regions
with IBD and high LD. For each category, we have selected
the top-five methods, according to the number of cita-
tions on PubMed between January 2020 and September
2021; see Tables 1–5. For those categories with more than
five methods, all the tools are summarized in Supple-
mentary Tables S2–S5.

Population structure and ancestry
Most of the GWASs performed to date are biased towards
European populations, and tightly controlled for ancestry
differences because uncontrolled admixture in a study

is a confounding factor of single SNP associations.
However, as most global populations are admixtures,
researchers recognized that GWASs should be based
on more representative samples and, therefore, the
effect of ancestry on phenotypes needs to be better
characterized. Tools assessing population structure and
ancestry can be used to detect underlying admixed
population structures, see Table 1 and Supplementary
Table S2. One of the most popular and widely used
tools for the estimation of ancestry is the program
STRUCTURE [24], which assumes a model in which there
are K populations (where K may be unknown), each of
which is characterized by a set of allele frequencies
at each locus. Then, it infers population structure and
assigns individuals to subpopulations using a Bayesian
method with multiple tuning parameters. STRUCTURE
was remodeled in a command-line program named
fastSTRUCTURE [25] that uses a variational Bayesian

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac043#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac043#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac043#supplementary-data
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Table 3. Tools for the study of heritability with their characteristics

Tool Type Availability Input data Algorithm Characteristics Year Reference

LD Score
(LDSC)

Command-line
(Python)

Free GWAS summary
statistics

Linkage Disequilibrium
Score Regression

Suite of tools 2015 [67, 68]

LDAK Command-line
(Compiled)

Free PLINK Modified kinship
matrix Restricted
maximum likelihood
(REML) Haseman
Elston (HE) regression
Phenotype-correlation,
genotype-correlation
(PCGC) regression

Suite of tools 2012 [70]

HERRA R Code Free Matrix with
genotypes, disease
status and
covariates

Machine learning Continuous or
Dichotomous
outcomes

2017 [66]

RHE-mc Command-line
(C++)

Free PLINK Randomized algorithm
Method-of-moments
(MoM) estimator

Estimates the
variation that can
be attributed to
additive and
dominance
deviation

2021 [69]

Table 4. Top-five (the most cited between January 2020 and September 2021 in PubMed) tools for the study of PRS with their
characteristics

Tool Type Availability Input data Algorithm Characteristics Year Reference

PRSice Command-line
(C++, Compiled, R
for plotting)

Free Binary PLINK
BED/BIM/FAM) or
imputed (Oxford
.bgen)

Pruning and
Thresholding (P + T)

Visualization
options with R

2015 [72, 73]

PRS-CS Command-line
(Python)

Free GWAS summary
statistics External
LD reference panel

Continuous
shrinkage (CS) on
SNP effect sizes +
High-dimensional
Bayesian regression
framework

External LD
reference panel

2019 [84]

SBLUP/BLUP
GCTA

Command-line
(C++, Compiled)

Free Binary PLINK
BED/BIM/FAM) or
imputed (Oxford
.bgen v1.2)

Linear
mixed-effects
model

Analyses individual
chromosomes

2020
v1.93.2beta

[75, 76]

SBayesR
GCTB

Command-line
(C++, Compiled)

Free Binary PLINK
BED/BIM/FAM)

Bayesian mixture
model

Uses low
computational
resources

2019 [77]

lassosum R Package
bigstatsr

Free Binary PLINK
BED/BIM/FAM)

Regularized
regression model

External LD
reference panel
Pseudovalidation

2017 [81]

framework and is two orders of magnitude faster than
its predecessor. ADMIXTURE [26] is another widely used
software for the analysis of population structure that
adopted the likelihood model embedded in STRUCTURE
but is considerably faster. Other compiled programs
that run from the command line are HaploPOP [27],
which works by combining markers into haplotypes;
RENT and RENT+ [28], which can be used to infer local
genealogical trees from haplotypes with the presence of
recombination; and POPSTR [29] that applies a Bayesian
joint modeling framework that accepts both SNPs and
CNVs. EIGENSOFT combines SMARTPCA [30] and the
EIGENSTRAT [31] stratification correction method, which

can be used on disease studies to explicitly model
ancestry differences between cases and controls. Finally,
SNP2pop [32] is a specific tool for tumoral samples that
can classify individuals into 26 predefined population
groups.

Population stratification is also accessible in a num-
ber of R packages and MATLAB tools. There are several
options, which include ADMIXTOOLS [33], AWclust [34],
PC-AiR [35], IPCAPS [36]. The former is a suite of meth-
ods that can infer proportions and dates of the mixture
between populations, while the second one uses Ward’s
minimum variance to estimate sub-clusters and does
not require the markers to be unlinked. Additionally, it
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Table 5. Top-five tools (the most cited between January 2020 and September 2021 in PubMed) for the study of LD with their
characteristics

Tool Type Availability Input data Algorithm Characteristics Year Reference

Haploview Desktop App
Command-line
(JAVA)

Free Linkage format Phased
Haplotypes HapMap
Project Data Dumps
PHASE PLINK

Two marker
Expectation
Maximization (EM)

Suite of tools 2005 [91]

Big-LD R package gpart Free Text file with
genotypes

Interval graph
modeling of LD bins

Visualization
options

2018 [93]

ALO-
HOMORA

Desktop App
(Perl)

Free Genotype data
generated by GeneChip
DNA Analysis Software
(GDAS v3.0) from
Affymetrix For other
chips: MAP file, allele
frequency file and
genotype file in the
Alohomora format

Several Visualization
options

2005 [90]

VarLD Command-line
(JAVA)

Free Text file with
genotypes

Quantification of
the LD by the
signed r2 metric

Performs
inter-population
comparisons

2010 [92]

LDExplorer R Package Free Phased genotypes in
VCF or HAPMAP2
format

MIG Algorithms Deals with SNPs
at any distance

2014 [94]

can work with an unknown number of populations. PC-
AiR can do robust population structure inference in the
presence of known or cryptic relatedness, first identify-
ing a subset of unrelated individuals that is representa-
tive of all ancestries in the sample, and then perform-
ing a PCA and predicting components of variation for
all remaining individuals based on genetic similarities.
IPCAPS resolves fine-scale population structure assign-
ing individuals to genetically similar subgroups. Finally,
KIND [37] is based on MATLAB and utilizes the spatial
distribution of minor-allele SNP variants, to construct
a vector for each individual and calculate a pair-wise
kinship coefficient. More recently, fineSTRUCTURE [38]
has emerged as a command-line and R option to detect
more subtle changes in population structure from haplo-
types. fineSTRUCTURE runs ChromoPainter, a tool used
by other algorithms to analyze admixture events, such as
GLOBETROTTER [39] and GTMix [40].

Specific ancestry, rather than unknown substructure,
can be inferred with several options including tsinfer
[41], PCAdmix [42], LAMP [43], HAPMIX [44], and RFMix
[45], the R packages ELAI [46], Summix [47], FastPop [48]
and FamANC [49] and the program MI-MAAP [50]. tsinfer,
a Python-based software, is used to infer whole-genome
histories through the succinct tree sequence, PCAdmix is
PCA-based and LAMP works with Hidden Markov Models
(HMM). LAMP and HAPMIX perform well in recently
admixed populations. RFMix and ELAI are specialized
in local ancestry. Other R packages include Summix
that estimates ancestry proportions from summary data,
FastPop that can infer ancestries on data involving two or
more intercontinental origins and FamANC that can be
used for local ancestry in large pedigrees. MI-MAAP [50]
is a web-based bioinformatics tool designed to prioritize

informative markers although it can also classify multi-
ancestry admixed populations.

Identity by descent
Recent shared ancestry between pairs of individuals
can be estimated by the identification of shared chro-
mosomal segments, i.e. IBD genomic fragments. Some
methods have been implemented in specific software
tools, almost all of them run from the command-
line, see Table 2 and Supplementary Table S3. They can
be divided into two distinct groups: those that need
phased data and those that do not. In the first group
there is GERMLINE [51] that deals with errors in the
genotypes and iLASH [52], RaPID [53], hap-IBD [54],
FastSMC [55] and fastIBD [56], all of them reporting
improved speed. Also in this group, there is RefinedIBD
[57], which does not allow for genotype errors but
uses the GERMLINE algorithm for the identification of
shared haplotypes exceeding a threshold length. Both
Refined IBD and fastIBD are implemented in the BEAGLE
software. Methods that allow unphased datasets include:
Parente2 [58] that applies an embedded log-likelihood
ratio method; IBIS [59] that finds identical-by-descent
segments via identical-by-state method; and TRUFFLE
[60] that admits genotyping errors and can be applied to
raw variant calls from VCF files. In addition, IBDLD [61]
and IBD_Haplo [62] (included in the MORGAN software
and in the R package IBDhaploRtools) can analyze both
phased and unphased data. Another popular program
is RELATE [63], that accounts for genotyping errors,
missing data and LD without pruning away SNPs and
is available both as a C++ command-line software or R
package. After IBD fragments are identified, programs
such as ibd-ends [64] give the probability distribution

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac043#supplementary-data
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for each endpoint; also, IBDkin [65] and SNPRelate [11]
can estimate kinship coefficients and relatedness from
IBD data.

Heritability
Phenotypic variance can be explained by many factors,
the percentage that is due to genetic factors is called
heritability, which can be defined in a narrow-sense (h2)
or in a broad-sense (H2). While the first one refers only to
additive genetic variation, the last also includes interac-
tion effects such as dominance and epistasis. Single SNP
associations are part of the narrow-sense heritability.
One individual SNP is unlikely to explain a sizable part of
heritability, as the magnitudes of single SNP associations
are usually small. However, the addition of several SNP
effects across the genome can explain an important part
of the narrow-sense heritability, other contributors being
rare structural variants. When considering a complex
trait in a GWAS, it is interesting to estimate the contri-
bution to its h2 given by the adding effects of all the
SNPs in the study. There are many bioinformatics tools
that estimate h2, see Table 3. Implemented in R, HERRA
[66] is a heritability estimator that works with machine-
learning methods and can handle continuous or dichoto-
mous outcomes. It runs from the command line. LD
SCore (LDSC) [67, 68] computes heritability, LD scores
and genetic correlations and RHE-mc [69] estimates the
variation in a complex trait that can be attributed to
additive and dominance effects. Alternatively, LDAK [70]
works with a modified kinship matrix in which SNPs
are weighted according to local LD, reducing the bias
and increasing the precision of narrow-sense heritabil-
ity estimates. The implementation includes methods to
calculate heritability from either summary statistics or
individual-level data.

Polygenic risk scores
Estimation of heritability informs on the overall genetic
architecture of phenotypic traits. However, it does not
provide, as single SNP associations, an estimate of indi-
vidual patient risk. Numerous SNPs with the highest
associations can be combined into a PRS to substan-
tially increase their independent risks into a collective
one. Most of the algorithms that can calculate PRS have
been developed during the last 5 years, see Table 4 and
Supplementary Table S4. Although PRS has been imple-
mented in PLINK [71] for some time, the first dedicated
PRS software, PRSice [72] was published in 2015 and
upgraded in 2019 (PRSice-2 [73]). PRSice runs from the
command line and includes some automated steps from
PLINK together with some additional steps in quality con-
trol. These two methods apply the most straightforward
approach, named Pruning and Thresholding (P + T) [74].

In addition, the Program in Complex Trait Genomics
of the IMB (University of Queensland) developed GCTA
(tool for Genome-wide Complex Trait Analysis) and GCTB
(tool for Genome-wide Complex Trait Bayesian analysis)
that run from the command line and include software

for the analysis of PRS. While GCTA provides SBLUP
[75, 76], which works with a linear mixed-effects model,
GCTB includes SBayesR [77] that applies a Bayesian mix-
ture model. In addition to those, there is also PRSoS [78]
that works with a P + T approach and XPA [79], which
is specialized in non-European populations and works
within a cross-population analysis framework.

Some R packages are also able to calculate PRSs from
genotype data: bigsnpr [80], lassosum [81] and EBPRS [82].
The first one is based on the package bigstatsr, a tool
for scalable statistical analysis. It provides LDPred2 [83]
to calculate PRS using both a Bayesian mixture model
and P + T, and has been recently updated with the inclu-
sion of lassosum2 that applies a regularized regression
model. With this fusion, both methods can be used in
the same package with input files in bed format. As for
EBPRS, one of its main advantages is the independence
of tuning parameters or external information. There are
other interesting tools that can construct PRS from the
summary statistics of a GWAS. These are PRS-CS [84], RSS
[85], R2BGLiMS [86], penRegSum [87], ggmix [88], XPASS
[79] and NPS [89].

Linkage disequilibrium
In GWASs of complex traits, neighboring and significant
SNPs are likely in LD with the causal variant. Thus, the
understanding of LD patterns and their block-like struc-
tures can guide the interpretation of association studies,
see Table 5 and Supplementary Table S5. ALOHOMORA
[90] is an open-source desktop app devoted to the linkage
analysis of Affymetrix GeneChip® Human Mapping 10 K
SNP array. Another desktop app performing the same
function is Haploview [91], a very useful tool for the
computation of LD statistics and population haplotype
patterns. The quantification of LD variation between two
populations can be done with varLD [92], which is a
JAVA program that allows genome-wide assessment of
LD variation as well as targeted analysis of a specific
genomic region.

The Big-LD [93] algorithm of the gpart R package is a
block partition method that uses interval graph modeling
of LD bins, clustering strong pairwise LD SNPs that are
not necessarily physically consecutive. LDExplorer [94]
is another R package that includes the MIG algorithm,
which computes the LD between SNPs at any distance,
without maximal block length restrictions. Finally, also
written in R, MATILDE [95] is an MCMC algorithm that
can be used as a dimension reduction tool to identify
blocks of LD for clustering contiguous SNPs.

Go beyond: genotyping structural variants
SNP data can also be used to extract information
about changes in the structure of the genome. In
other words, there are algorithms capable of genotyp-
ing structural variants from SNP array data, includ-
ing chromosomal inversions, CNVs, mosaicism and
recombination patterns. For each category we have

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac043#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac043#supplementary-data
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Table 6. Tools for the study of inversions with their characteristics

Tool Type Availability Input data Algorithm Characteristics Year Reference

invClust R package Free PLINK Mixture model, uses all
the SNPs in the
inverted segment

Detects 20 human
inversions from the invFest
database, experimentally
validated and greater than
0.2 Mb Allows including
ancestry information

2015 [97]

PFIDO R package Free PLINK Pairwise
identity-by-state
distance matrix
transformed by MDS.
Model-based approach
with 18 parameterized
Gaussian mixture
models

Detects 8p23 inversion-type
Does not rely on any specific
SNP

2012 [99]

inveRsion R package Free Text files with 0/1/2
coded genotypes

Sliding window scan,
uses linkage between
groups of SNPs

Detects inversions directly
from genotypes Can detect
new possible inversion
regions Optimal for
homogenous samples and
old inversions.

2012 [96]

scoreInvHap R package Free PLINK or VCF files Comparison with
reference
haplotype-genotypes

Detects 20 human
inversions from the invFest
database, experimentally
validated and greater than
0.2 Mb

2019 [98]

RecombClust R package Free Phased VCF files LDmixture model Detects chromosomal
subpopulations with distinct
recombination histories

2020 [102]

selected the top-five methods, according to the number
of citations on PubMed between January 2020 and
September 2021; see Tables 6–8. All the tools for the
genotyping of CNV and mosaicisms are summarized in
Supplementary Tables S6 and S7.

Chromosomal inversions
Chromosomal inversions are chromosomic rearrange-
ments that appear when two breaks occur in the same
chromosome and the cleaved fragment rotates before re-
joining, see Figure 1. Although inversions can be detected
by many methods from FISH to NGS, using SNP data
is a promising cost-effective option, as it allows a rapid
analysis of thousands of samples at zero cost, see Table 6.
Inversion genotyping from SNPs depends on their LD
within and across the inverted region. The first genotyp-
ing approach relies on the detection of the high LD that
is associated with SNPs flanking the inversion and SNPs
within the inversion but contiguous to the breakpoints.
The other approach is based on the detection of distinct
clusters in genomic divergence created by the lack of
recombination that occurs between the non-collinear
regions of individuals heterozygous for the inversion.
When the two fragments evolve separately and accumu-
late mutations, they represent two distinct lineages that
can be detected by a clustering tool of the SNPs within
the inversion, as if they were from different populations.

There are three software tools capable of genotyping
several inversions from SNPs: inveRsion [96], invClust [97]

and scoreInvHap [98]. inveRsion was the first to be devel-
oped and uses linkage differences in SNP groups across
inversion alleles. It first employs a sliding window scan
that phases and pairs haplotype blocks around potential
breakpoints to identify regions likely to have an inver-
sion. Then, it applies a mixture model to identify can-
didate inverted regions and to determine the inversion
genotypes of the individuals. The second tool, invClust,
tests the existence of extended haplotypes by exploiting
all the SNPs inside the inverted segment, instead of only
using those at the breakpoints. The method classifies
the inversion genotypes into clusters of similar hap-
lotype origin, accounting for differences in ancestries
(Figure 1). The clustering detection is then performed
with a mixture model that includes specific constraints
based on a previous observation of the data, which helps
to reduce the degrees of freedom and improve inver-
sion genotyping. invClust allows ancestry information
to be included in the mixture model. Finally, the last
of the methods, scoreInvHap, also relies on the haplo-
type structures generated by the inversions. The method
uses reference haplotype-genotypes, previously linked
to reported experimental inversion-genotypes, and com-
pares the SNPs of a new individual with those in the refer-
ence. The algorithm works under stringent conditions of
SNP coverage and sample sizes. Another feature of scor-
eInvHap is its capacity to confidently call inversions with
multiple haplotypes, as such, it can genotype inversions
that other methods cannot.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac043#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac043#supplementary-data
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Table 7. Top-five tools for the study of CNVs with their characteristics

Tool Type Availability Input data Algorithm Characteristics Year Reference

PennCNV Command-line
(Perl)

Free Processed Intensity
files with LRR and
BAF + PFB (Population
frequency of B allele)
files (supplied with the
package for several
Affymetrix/Illumina
arrays)

Hidden Markov Model
(HMM)

Visualization
options

2007 [127]

QuantiSNP Command-line
(MATLAB)

Free Illumina Infinium I/II
or Affymetrix 500 K
and SNP 6.0 processed
intensity files with LRR
and BAF

Objective Bayes
Hidden Markov Model
(OB-HMM)

Visualization
options Detects
Loss of
Heterozygosity

2007 [128]

Birdsuite Command-line
(Bash, needs R,
JAVA, Matlab,
Python)

Free Affymetrix CEL files
(Genome-Wide Human
SNP Array 6.0) Illumina
610 (beta version)

Birdseye - Hidden
Markov Model (HMM)
Canary -
One-dimensional
Gaussian mixture
model (GMM)

Linux only
PLINK
conversion
pipeline

2008 [124]

SCIMMkit Command-line
(Perl, R)

Free Final call report from
Illumina BeadStudio
(Infinium II and
GoldenGate
BeadXpress chips)

SCIMM
(SNP-Conditional
Mixture Modeling) -
Mixture-likelihood
based clustering
SCOUT
(SNP-Conditional
Outlier detection) -
Scoring function.

Visualization
options
(scatterplots)

2008 [121]

GLAD R package Free Preprocessed files with
LRR values

Segmentation based
on Adaptive Weights
Smoothing (AWS)

Specific for
cancer samples

2004 [133]

Table 8. Top-five tools (the most cited between January 2020 and September 2021 in PubMed) for the study of mosaicism with their
characteristics

Tool Type Availability Input data Algorithm Characteristics Year Reference

GISTIC Command-line
(MATLAB)

Free Segmented Data Ziggurat
Deconstruction
(ZD)

Specific for cancer
samples

2007 [156]

MoChA Command-line (C)
(bcfools
extension) R for
graphical outputs

Free VCF files with LRR
and BAF values (raw
Affymetrix or
Illumina files if
using a
complementary
pipeline)

Hidden Markov
Model (HMM)

Detects LOH
Visualization options

2020 [143]

PICNIC Command-line
(MATLAB)

Free (under
license)

Affymetrix CEL files Hidden Markov
Model (HMM)

Specific for cancer
samples Predicts
absolute copy
number Visualization
options

2010 [151]

BAFSeg-
mentation

Command-line
(perl, R)

Free Preprocessed files
with BAF and LRR

Segmentation-
based

Specific for cancer
samples Provides
percentage Detects
LOH Visualization
options

2008 [147]

hapLOH Command-line
(Python, Perl)

Free BAF file and phased
genotypes

Hidden Markov
Model (HMM)

Supports low
aberrant cell
proportions

2013 [157]
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Figure 1. Chromosomic inversions appear when two breaks occur in the same chromosome and the cleaved fragment rotates before re-joining. They can
be found in heterozygosis (center) or homozygosis (right). One of the methods for inversion detection is the clustering detection performed by invClust,
which classifies the inversion genotypes into clusters of similar haplotype origin.

In addition to the three previous methods, there
is an algorithm specialized in the genotyping of the
8p23 human inversion named Phase Free Inversion
Detection Operator (PFIDO) [99]. The method is based
on the clustering of multidimensional scaling axes
on a pairwise identity-by-state distance matrix across
individuals. It identifies the axis displaying most sub-
structure and clusters individuals with a18 parameter
Gaussian mixture modelling. The most parsimonious
model is selected and the conditional probability of an
individual belonging to each cluster is calculated using a
z-score.

There are two other pipelines to genotype inversions
that have been developed by different laboratories [100,
101]. However, they are difficult to apply given the lack of
support software. Finally, inversions can also be detected
by their specific recombination patterns. The role of
recombination as a source of genetic variability for
adaptation and evolution is widely known. Moreover, it
has been recently reported that recombination patterns
can define distinct chromosomal subpopulations that
may influence phenotypic traits. RecombClust [102] is a
tool that is able to detect chromosomal subpopulations
based on recombination histories using SNP array data.
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Figure 2. Representation of a CNV region in a normal state, gain of genetic material, loss of genetic material and CNN LOH.

RecombClust can be used to detect inversions, regions
under selection or where recombination is under
regulation in a subgroup of individuals.

Copy number variants
In addition to the duplication of genetic material in
homologous chromosomes, occasionally, there are chro-
mosomal segments with a varying number of repeats
between individuals known as CNV. CNVs can represent
gains of material when an individual has more than the
two expected copies, and losses when an individual has
less than two copies, see Figure 2. CNVs can also lead to
a copy number (CN) neutral loss of heterozygosity (CNN
LOH) of the segment when a loss in one chromosome is
repaired by making a copy of the remaining allele, which
results in having two identical copies (LOH) but with a
normal CN (CNN). It is also possible to characterize global
homozygosity and heterozygosity of individuals, using
standard tools such as PLINK and BCFTools.

Although the possibility of genotyping CNVs from
SNP arrays with specialized tools has been available
for some time, bioinformaticians are still challenged to
develop reliable algorithms capable of detecting CNVs
with high accuracy. Ideally, these tools should achieve
good specificity and sensitivity, and low false positive and
negative rates, besides being applicable to different types
of arrays. To date, the development of many different
methods aiming to fit all these requirements has been
scrutinized in different articles that aim to determine
the methods with the best performances [103–116]. The
algorithms are, however, difficult to compare, not only
due to their different requirements in terms of input
data but also because most of them have different tuning
parameters. Therefore, adjusting and finding the right
parameters plays a determinant role. Some authors
argue that algorithms that are specifically developed
for a certain SNP array tend to perform better than
platform-independent tools or algorithms that have been

readapted [106]. Another relevant issue is that deletions
are easier to detect than duplications, given that the
first represents a 50% decrease in signal intensity while
the latter implies a 33% increase. Even when using the
same type of array, some programs will perform better
than others depending on the characteristics of the
samples. Because there is not yet a gold standard for CNV
genotyping, the consensus is that no single algorithm is
sufficiently powered and results should be accepted only
if obtained by two or more different tools.

The genotyping of CNVs from SNP arrays is based
on the analysis of the B allele frequency (BAF) and the
logR Ratio (LRR) (Figure 3), with two basic steps involving
the normalization of signals, which is used to clean
the data; and the detection of the region and its CN,
which can be done by different approaches. Depending
on the detection method, we can roughly divide the
algorithms into those based on Hidden Markov Models
(HMM), segmentation or a combination of both. More
practically, we can divide the algorithms into groups
regarding the genotyping platform for which they are
most suitable, see Table 7 and Supplementary Table S6.
The first set includes those methods for Illumina arrays,
the second group for Affymetrix, and the third for both or
other platforms. In general, CNV genotyping tools provide
their own normalization step, but for those that do not
implement it, there are tools like ITALICS [117] or affy2sv
[118].

CNV algorithms for Illumina data
Illumina provides its own algorithm named CNVPartition
that uses bivariate Gaussian distributions for CNV geno-
typing. This tool is part of the GenomeStudio platform,
which can be freely downloaded from their website. It is
fast and easy for having a general overview of the data
[103, 108], it also has high specificity [105] and positive
predicted rate both with deletions and duplications [113]
but performs poorly in terms of sensitivity [103, 105,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac043#supplementary-data
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Figure 3. Changes in the BAF and LRR within CNVs of different types. (Orange) Normal state where the BAF (a measure of heterozygosity) is on average
0 or 1 for homozygous probes and 0.5 for heterozygous probes and the LLR (a normalized measure of DNA content) is on average 0. (Blue) CN gain is
represented by a split of the BAF signal at 1/3 and 2/3 and a gain in LRR. (Red) CN loss is represented by a loss BAF for heterozygous probes (0.5) and a
loss in LRR signal. (Green) Loss of heterozygosis by CNV is represented by a loss BAF for heterozygous probes and no change in the LRR signal.

113]. CamCNV [119] is an alternative R-package capable
of detecting rare CNVs with at least three probes. The
command-line tool, PlatinumCNV [120] is also specific
for Illumina data. This algorithm applies a Gaussian
mixture model with a cross-sample approach that is
able to detect allele-specific patterns. It provides some
additional R functions to plot the results but its main
disadvantage is the requirement of large sample sizes (of
several thousand) for sufficient power to detect genome-
wide CNVs. SCIMMkit [121, 122] is another command-
line software that includes three tools for CN detection:
SCIMM that genotypes deletions, SCIMMSearch that gen-
erates probe sets to be used by SCIMM, and SCOUT that
detects rare deletion and duplication variants. The mod-
elling algorithm, that requires Perl and R to run, needs
statistical knowledge for correct use [103] but provides
high detection rates [108]. Finally, Trityper [123] applies
a cross-sample approach but, although it can interpret

single and tri-allelic SNPs, it is only able to genotype
deletions and not duplications [103, 108].

CNV algorithms for Affymetrix data
Affymetrix also provides their own tools for the analysis
of CNVs. They are implemented on a desktop application
called Affymetrix Genotyping Console (GTC), which
is also available in the command-line through the
Affymetrix Array Power Tools (APT). For Human Mapping
100 and 500 K arrays, they provide the Affymetrix
GeneChip Chromosome Copy Number Analysis Tool
(CNAT) version CN4 and for Genome-Wide Human
SNP 6.0 Array they offer the CNAT version CN5 and
the Canary algorithm, which is part of Birdsuite [124].
Birdsuite is a set of four tools developed by the Broad
Institute including (i) Canary, that genotypes common
CNVs, (ii) Birdseed, that genotypes biallelic SNPs, (iii)
Birdseye, that detects rare and de novo CNVs and (iv)
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Fawkes, that integrates CNV information to produce
consistent SNP genotypes even for non-biallelic cases.
While Birdsuite has low reproducibility of its own results
[109, 111], it has a high success rate on validated CNVs
with more than 20 markers [115]. Moreover, it also
performs well in the detection of rare CNVs. Birdsuite was
trained in HapMap samples and that raises the possibility
of a biased outcome, which has been confirmed by some
authors [109] and rejected by others [106].

Finally, COKGEN [125] is an R-package ready to per-
form different steps including normalization and a two-
stage CNV detection based on optimization [103], with
adjustable parameters to facilitate the detection of rare
CNVs. It retrieves fewer events than the others but a high
percentage of them can be validated, which results in a
high concordance rate but low sensitivity [126].

CNV algorithms for multiple platforms
The last group of algorithms includes those that can deal
with more than one type of data, they include command-
line programs, a few R packages and three commercial
desktop applications.

PennCNV [127] is one of the most used command-
line tools and thus, and one of the most reviewed. In
general, it stands out for its easy use with well-supported
instructions and detailed guidelines with quality control
metrics to deal with problematic data [103, 108, 109, 112,
116] as well as a good performance in terms of specificity,
reliability, reproducibility and bias, both in detecting the
CNVs and assessing the number of copies. It can be used
to detect varying degrees of genetic relatedness [110], and
it is reported as the most suitable tool by the majority
of performance studies. The weakness of PennCNV, as
reported by in some articles [105, 126], is a low sensitivity
that increases using pedigree information [111]. This is
probably related to the detection of small CNVs [112],
since sensitivity increases in large CNVs [107, 111, 115].

Another widely used command-line tool is QuantiSNP
[128], which provides easily modifiable parameters and
has been reported to perform well in datasets with
diverse characteristics, detecting a high number of
CNVs [112]. As many detections may not be validated
with other tools [115], it has medium sensitivity and
specificity together with high false positive and negative
rates [105, 113, 126]. Although originally developed for
earlier versions of the Affymetrix chips, dChipSNP [129]
is another tool that can now deal with both Illumina
and Affymetrix platforms. The software automatically
determines the optimal parameters, which cannot be
accessed nor modified by the user [114] and seem to be
best fitted for Affymetrix data [108]. According to some
authors, dChipSNP is biased towards the detection of
duplications over deletions [109, 114], and this can be
explained by the fact that this software was originally
developed to detect LOH regions and clustering in cancer
samples [129]. The last command-line tool, cnvHap,
[130] works with Illumina, Affymetrix and Agilent data.
Performing haplotype-based detection, the algorithm is

especially successful with small CNVs of less than 10
probes. According to some authors [126], cnvHap finds
approximately from 5 to 10 times more CNVs than other
tools depending on the dataset, which results in lower
concordance rates but higher sensitivity than others.

Regarding R packages, R-GADA [131] provides a com-
plete and flexible pipeline, being able to genotype CNVs,
graphically display the results and perform association
analysis for Affymetrix, Illumina or aCGH arrays [103].
This package uses pre-computed LRR values and applies
a segmentation algorithm based on Genome Alteration
Detection Analysis (GADA) which gives a clear advan-
tage in processing speed [108]. Another two R packages
that also implement a segmentation-based algorithm
to pre-computed LRR values are VEGA [132] and GLAD
[133]. The first one is based on the Mumford and Shah
model, while the second was initially developed for aCGH
arrays but it can be applied to SNP arrays applying an
Adaptive Weights Smoothing algorithm [115]. In general,
segmentation-based algorithms tend to find more CNV
segments than other tools [112, 115].

Finally, Partek Genomics Suite (PGS), SNP & Variation
Suite (SVS) and Nexus Copy Number are three commer-
cial tools developed by Partek, Golden Helix and BioDis-
covery, respectively. They can be purchased and down-
loaded from their own websites and all of them provide
a user-friendly graphical interface with data viewers and
support microarray data from several platforms. In terms
of performance, PGS detects fewer events than the others
but with a high validation percentage, and it tends to
perform well with frequent and large CNVs. It also shows
a low sensitivity that increases with quantile normaliza-
tion [110, 111]. On the contrary, SVS is one of the algo-
rithms that find more CNVs, which are not validated with
other tools [110]. Finally, Nexus Copy Number includes
two algorithms named Rank and SNPRank that perform
well but are affected by high false-positive rates and high
sample-to-sample variation. For lowering false-positive
findings DeepCNV [134] and SeeCiTe [135] are two tools
to perform an automatic validation of the obtained CNV
calls. Both programs can be used after running any of the
mentioned programs, keeping in mind that the last one
works with trios’ data.

Genomic mosaicism
Mutations occurring during stages of continuous cell
divisions can lead to the coexistence of groups of cells
with genotypic differences within the same organism,
a phenomenon called mosaicism. Mutations that imply
duplications, deletions or reorganization of small DNA
fragments are called CNV mosaicisms, which are the
existence of a CNV but only in a percentage of the
organism’s cells. The detection of mosaic events is also
derived from the BAF and LRR signals but with differ-
ent patterns from those seen for constitutional CNVs
(Figure 4). It is important to note that most of the algo-
rithms that have been developed to detect CNVs cannot
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deal with mosaicisms, which are usually ignored or mis-
classified. For this reason, it has been necessary to create
new specific tools. We have listed algorithms that have
been designed to detect mosaic events in SNP array data,
see Table 8 and Supplementary Table S7. We make the
distinction between methods applied in non-cancer and
cancer studies.

Non-cancer samples
Mosaic Alteration Detection (MAD) [136] is probably one
of the most used tools. First, it applies the GADA algo-
rithm [131] to perform segmentation on the deviation of
the BAF signal from its expected value. Then, it classifies
the events depending on the type of mosaicism found
using the LRR signal. It can detect deletions, duplications
and copy neutral changes as well as regions of homozy-
gosity due to IBD. Its high sensitivity and specificity allow
the capture of both previously described alterations and
new variants, even if they are small or affect a low
percentage of the cells in the sample. The MAD algorithm
has been implemented in an R package [131] to facilitate
the analyses. Aging-related mosaic loss of chromosome
Y (mLOY) is the most commonly acquired mutation in
males’ genome. LOY is a neutral mutation [137] that is
associated with several human diseases including cancer
[138, 139], Alzheimer’s disease [140] and cardiovascular
disease [141]. The specific tool MADLoy [142] for mLOY
detection provides a robust and efficient calling for large
studies.

There is an extension of bcftools software named
MoChA [143] that runs on the command line but needs
phased VCF files with either BAF and LRR or allelic
depth (AD) values. A recently developed pipeline that
converts raw data from both Affymetrix and Illumina
platforms to VCF files has made the tool more accessible.
MoChA detects losses and gains of DNA as well as LOH
regions. Finally, parent–child trios data can be analyzed
with triPOD [144]. This method, which is a Perl script
that uses R for graphical visualization, has a command-
line version. The method is also accessible from a web
application. The tool can detect deletions, amplifica-
tions, and uniparental disomies, heterodisomies and
isodisomies, and has the peculiarity that it can tell if
the aberration is inherited from the father or mother,
or if there exists a paternal or maternal contribution.
The calling method, namely Parent-of-Origin-based
Detection (POD), is different than other programs.
POD is based on the identification of SNPs which are
informative for abnormal parental contribution, i.e.
when the comparison of progeny and parental genotypes
potentially reveals abnormal parental contribution in the
region.

None of the tools can provide the percentage of cells
that carry the chromosomic aberration. For this purpose,
there is a tool named Distribution Analysis by Fitting
Integrated Probabilities (DANFIP) [145]: it provides the
frequency of big aberrations—that have to be previously
known—with a precision of at least 0.1% and an accuracy
of at least 4%. The method uses an inverse continuous

distribution function that can assess the degree of
mosaicism from the BAF signal. It performs well for
simple deletion monosomy, partial monosomy, simple
trisomy, partial trisomy and uniparental disomy with
trisomy mosaicism. There are two other algorithms
for smaller unknown CNVs in mosaic that give the
percentage of affected cells. The first one, MONTAGE
[146], written in Perl and Bash languages, uses BAF and
LRR values in a sliding window approach that looks for
allelic imbalances and classifies them as a deletion or
duplication in relation to normal diploid CN. Also, it
detects LOH regions. An interesting characteristic is that
MONTAGE results can be directly analyzed for phenotype
associations with ParseCNV. HaplotypeCN [126] is a
command-line tool with two important strengths: first,
it can detect parent-specific CN change on either
chromosome and provides haplotype-specific results;
second, the CN are provided as fractional numbers, so
it can detect somatic mutations in heterogeneous cell
populations. HaplotypeCN finds a low number of CNVs
high concordance rate but low sensitivity [126].

Cancer samples
Mosaicism appears as a consequence of a mutation dur-
ing a stage of continuous cell divisions. Tumorigenesis
is, therefore, a prolific scenario for mosaicisms, being
one of the characteristics of cancer cells. For this reason,
there are many CNV mosaicism detection tools that are
specialized in the detection of genetic aberrations in
cancer samples. These tools are particularly designed
to deal with a heterogeneous sample. In cancer, the
presence of normal and cancerous cells sums up the
inherent intratumor heterogeneity. The tools can also
detect aneuploidies.

BAFSegmentation [147] is one of the most complete
tools, as it detects LOH and allelic imbalances including
gains, loses and hemizygous loses and is able to provide
an estimation of the percentage of cancerous cells. This
last functionality is as well a characteristic of ASCAT
[148], also designed for tumor samples. CNAG [149] and
TAFFYS [150] have been specifically developed for the
analysis of CN alterations and LOH in cancer cells and are
freely available. In addition, the Copy Number Analyser
for Affymetrix GeneChip arrays (CNAG) is a software
from the university of Tokio that, as reported in Baross
et al. [114], detects a higher proportion of duplications
and a lower proportion of deletions than other programs.
Its HMM parameters are optimized to detect full CN
changes in mostly diploid samples, so it is recommended
to adjust them for detection of mosaic CNVs, among oth-
ers. Finally, TAFFYS runs in MATLAB and can work with
diluted tumor samples with a minimum of 30% of cancer
cells. After suppressing and modelling the signal noise,
it applies an HMM for CN inference with visualization
capacity. Other methods for CNV in cancer are PICNIC
[151], that predicts absolute CN; PennCNV-tumor [152],
which is able to quantify the intratumor heterogeneity;
TAPS [153], that has high sensitivity; OncoSNP [154];
genoCN [155]; GISTIC [156] and hapLOH [157], which

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac043#supplementary-data
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Figure 4. Changes in the BAF and LRR depending on the type of mosaicism. (Top) A mosaic CN gain is represented by a split of the BAF signal between
in values between 1/3 and 2/3 and a gain in LRR. (Middle) A mosaic CN loss is represented by a BAF split between 0 and 1 and a loss of LRR. (Bottom) A
mosaic loss of heterozygosity is represented by a BAF split between 0 and 1 and a normal LRR.

can work with a very low proportion of aberrant cells,
either in tumor-normal mixture samples or with clonal
aberrations in non-malignant tissues.

Most of the algorithms that detect CNVs, both in
mosaicism and not, report them as a list of genome
regions. Some of them provide their own algorithms to
perform associations once the calls have been obtained
(see Tables 7 and 8, Supplementary Tables S6 and S7).
For those not offering the option, this step can be done
externally with any association analysis tool able to

work with genomic regions, for example, the R packages
regioneR [158] and CNVassoc [159].

Recent studies applying inference methods
of SNP data
Our selection of methods for this review was based on
the methods’ reported application between January 2020
and September 2021 in studies with relevant results.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac043#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac043#supplementary-data
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Here, we describe the context of use of the most popular
ones.

Software devoted to the analysis of population struc-
ture and ancestry was not only used to infer popula-
tion patterns [40, 160–163] but also to support studies
of diseases and traits in which population admixture
and ancestry play determinant roles [164–173]. The same
could be observed for IBD detection, with some arti-
cles centered on population structure [55, 174–176] and
others on practical applications [177, 178]. In ancestry
studies, more than one algorithm was usually applied,
and we did not observe a clear trend towards any of the
tools, as almost all of them had been referenced during
the analyzed period. By contrast, in IBD calculations, one
run of the tool seemed to be sufficient for estimations.
fastIBD (BEAGLE) along with GERMLINE were the most
recurrently employed.

Regarding heritability, LD Score (LDSC) was, for
instance, applied to study face and brain shape [179]
as well as tissue-specific gene sets [180], while LDAK
helped to reach a better understanding of heritability
and variance of the phenotypic traits [181, 182]. For the
calculation of PRS, PRSice and PRS-CS were the first
choices, followed by LDPred, lassosum and SBayesR.
While PRS tools have been mostly used on neurological
studies involving Alzheimer’s [183–185], depression [186–
188], self-harm [189, 190] or substance use [191–193], they
have also been applied on other diseases and conditions
[194–199]. Most studies applying LD tools were also on
neurological conditions [200–203]. Including these and
other phenotypes, Haploview was the most popular tool
[204–206].

Regarding CNVs, PennCNV and QuantiSNP were used
to detect several rare CNV associations in over 100
000 European ancestry subjects with autoimmune,
cardio-metabolic, oncologic and neurological/psychi-
atric diseases [207]. Studies involving CNVs related to
neurological outcomes were the most frequent [208–
215], all of them applied PennCNV. In particular, CNV
genotyping was crucial in studies involving diseases
such as schizophrenia [216, 217], bipolar disorder [216],
Parkinson’s disease [218], Autism Spectrum Disorder
[219] and attention deficit hyperactivity disorder [220].
Other CNVs studies included different outcomes such
as HBV [221, 222], autophagy [223], gallstones disease
[224], vesicoureteral reflux [225], esotropia [226], cheap
screenings for primary immunodeficiency [227] and
COVID-19 potential targets [228]. For these studies,
PennCNV was the most popular, followed by Nexus
Copy Number, Birdsuite and QuantiSNP. In the context of
cancer, the same algorithms were used for the research
on cervical cancer [229], multiple myeloma [230],
germline PTEN mutations [231] and tumor evolution
and response to drugs [232] and thyroid carcinoma
[233].

Studies on mosaicism detection in cancer mainly used
BAFSegmentation, TAPS, PICNIC, GISTIC and CNAG relat-
ing acute myeloid leukemia [234], hyperdiploid childhood

acute lymphoblastic leukemia [235], ossification of
fibromyxoid tumors [236], gastric adenocarcinoma
[237], hepatoblastoma [238], lymphoblastic leukemia
[239] and non-Hodgkin B-cell lymphoma [240]. Also,
mosaicism genotyping was performed with MoChA,
MAD, BAFSegmentation and PICNICfor mastocytosis
[241] and drug resistance. Relevant findings of mosaic
detection include their contribution to Autism Spectrum
Disorder risk [242], predisposition to infections [243]
and clonal hematopoiesis [143]. Recent applications
on the detection of inversions, included the genotyp-
ing of 20 inversions with scoreInvHap to study their
role in obesity-related diseases [244], while a similar
study in admixed population in Brazil used invClust
[245].

Discussion
We have reviewed the current landscape of available
options to exploit SNP array data. However, new tools
are being developed every year. In addition to SNP arrays,
NGS is another important tool to detect multiple genomic
substructures and, particularly those with low frequency,
such as rare variants and point mutations. Nevertheless,
NGS is limited by two important aspects. First, the storage
and analysis of large datasets demand large computa-
tional resources. Second, its high cost drives most stud-
ies to opt for alternative sequencing techniques, which
translates into a fewer number of publicly available NGS
datasets. Consequently, SNP arrays still remain an impor-
tant option for large population studies.

Given the high availability of microarray SNP data and
methods, extraction of underlying genomic structure is
becoming a mainstream addition to GWASs. In addition,
huge amounts of SNP data are continuously generated
from GWAS studies and made available in public repos-
itories. These datasets can still be exploited and rel-
evant information extracted from them. The genotyp-
ing of structural variants is one of the most promising
ones. Among the distinct algorithms that have been spe-
cially developed to this end, the ones focused on CNV
are the most abundant, followed by CNV mosaicism in
cancer samples. By contrast, there are only three tools
that can genotype human inversions. Whereas for inver-
sion genotyping it is a good option to choose one single
method, for CNV genotyping it is recommended to use
at least two of them. First, because most of the tools
do not cover the entire spectrum of CNV size. Second,
because the performance of each algorithm depends on
the characteristics of the dataset. Regarding the tools
for population structure and ancestry as well as the
analysis of LD and IBD, the best option is choosing a
program that fits the characteristics of the population.
If those are unknown, using more than one tool is rec-
ommended. In addition, we encourage to run more than
one software to achieve a more accurate calculation of
PRSs and the estimation of the heritability of complex
traits.
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Key Points

• Large consortia and public databases have generated
large amounts of freely available SNP array data that are
underexploited.

• SNP array data can be used to extract information on
population structure and ancestry, polygenic risk scores,
identity-by-descent fragments, linkage disequilibrium,
heritability and to genotype structural variants, such
as inversions, copy number variants, mosaicisms and
recombination histories.

• Choosing a tool to make the most from SNP data is
challenged by the amount of methods and their diversity.

• This review presents software summary tables of many R
packages, command-line tools and desktop applications,
describing their advantages and disadvantages, input
requirements and context of use.

• We review current tools in use in recent published
literature.
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