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Abstract
Background Compilation of different morphological lesion signatures is characteristic of renal pathology. Previous studies 
have documented the potential value of artificial intelligence (AI) in recognizing relatively clear-cut glomerular structures 
and patterns, such as segmental or global sclerosis or mesangial hypercellularity. This study aimed to test the capacity of 
deep learning algorithms to recognize complex glomerular structural changes that reflect common diagnostic dilemmas in 
nephropathology.
Methods For this purpose, we defined nine classes of glomerular morphological patterns and trained twelve convolutional 
neuronal network (CNN) models on these. The two-step training process was done on a first dataset defined by an expert 
nephropathologist (12,253 images) and a second consensus dataset (11,142 images) defined by three experts in the field.
Results The efficacy of CNN training was evaluated using another set with 180 consensus images, showing convincingly 
good classification results (kappa-values 0.838–0.938).
Furthermore, we elucidated the image areas decisive for CNN-based decision making by class activation maps. Finally, we 
demonstrated that the algorithm could decipher glomerular disease patterns coinciding in a single glomerulus (e.g. necrosis 
along with mesangial and endocapillary hypercellularity).
Conclusions In summary, our model, focusing on glomerular lesions detectable by conventional microscopy, is the first sui 
generis to deploy deep learning as a reliable and promising tool in recognition of even discrete and/or overlapping morpho-
logical changes. Our results provide a stimulus for ongoing projects that integrate further input levels next to morphology 
(such as immunohistochemistry, electron microscopy, and clinical information) to develop a novel tool applicable for routine 
diagnostic nephropathology.
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Introduction

Artificial intelligence is an umbrella term encompassing 
techniques that enable machines to mimic human intel-
ligence. Machine learning is a subset of artificial intel-
ligence that refers to algorithms capable of learning 
without being explicitly programmed. Here, amongst 
others, so-called convolutional neural networks (CNNs) 
are implemented to independently ‘comprehend’ charac-
teristic features in large image datasets. Recent substan-
tial progress in image visualization and computation has 
made CNN-based machine learning an affordable approach 
that is of utmost interest for diagnostic image-based dis-
ciplines, particularly radiology and pathology [1–3]. Due 
to the plethora of sometimes overlapping clinical and his-
tological disease patterns, nephropathology represents a 
challenging discipline. This holds true also for the evalu-
ation of histology sections from experiments with kid-
ney diseases in animal models. Here, maybe even more 
than in human samples, a higher degree of automation 
and standardization is needed. Algorithms for segmenta-
tion of healthy kidney parenchyma have been previously 
successfully developed [4, 5]. Similarly, computational 
morphologic analyses of diabetic nephropathy, mesangial 
proliferation, and IgA-Nephropathy pattern have been pub-
lished [6–9]. However, until now, no CNN-based approach 
that simultaneously deals with various glomerular lesions 
and that can discern them from unaffected glomeruli has 
been reported.

A wide variety of glomerular lesions linked to specific 
kidney diseases have been well characterized [10]. In 
addition, many kidney diseases present a broad range of 
morphological alterations, which in sum reflect the mor-
phologic and pathophysiologic complexity of glomeru-
lopathies [10] (Sup. Figure 1). Maybe the most extreme 
example for this diagnostic complexity is the classification 
of lupus nephritis into different classes, each exhibiting a 
characteristic, however not pathognomonic, morphologi-
cal signature [10–13]. Inline, other diagnostic entities may 
demonstrate a substantial variation in their morphology 
patterns that frequently reflect their clinical behavior (for 
instance, IgA nephropathy may also show an endocapillary 
in addition to the mesangial hypercellularity and necrosis 
at the same time). In this study, CNN models were trained 
to classify different glomerular lesions in a way that imi-
tates the education of pathology residents to discern dis-
ease patterns before making the diagnosis [10–12]. Our 
approach was based on the digitalization of slides from the 
routine diagnostics and isolation of glomeruli. We dem-
onstrate that it can successfully identify the glomerular 
lesions and recognize more than one disease pattern when 
confronted with complex glomerular changes.

Methods

Patient specimen and raw data generation

Periodic acid–Schiff (PAS) stained formalin-fixed paraffin-
embedded tissue was retrieved (Institute of Pathology, Medi-
cal Faculty Mannheim, Heidelberg University & Institute 
of Pathology, University Medical Center of the Johannes 
Gutenberg University Mainz) and used in an anonymized 
way. The data collection and all experiments were conducted 
in accordance with a vote of the ethics commission II of the 
Heidelberg University (vote 2020-847R).

Data management and analysis

Image processing (glomerulus segmentation, image crop-
ping) and preprocessing were performed (image data 
arrangement) in the MATLAB environment (MATLAB 
(R2017a). Machine learning was performed in Python with 
PyTorch 14, 15 as described in the corresponding sections.

Defining the patterns of glomerular changes

We first categorized the basal morphologic patterns of glo-
merular alterations for our CNN-model-based approach: 
normal glomerulus (pattern 01), amyloidosis (pattern 02), 
nodular sclerosis (pattern 03), global sclerosis (pattern 04), 
mesangial hypercellularity (pattern 05), mesangioprolif-
erative glomerulonephritis (MPGN) (pattern 06), necrosis/
crescent (pattern 07), and segmental sclerosis (pattern 08) 
(Fig. 1 and Sup. Figure 1). Extraglomerular structures that 
should offer an “exit strategy” for the models were labeled 
as pattern 09 (Fig. 1 and Sup. Figure 1–2). The categories 
represent prototypical glomerular changes in terms of light 
microscopy and the experiments do not rely on any ancil-
lary studies that would have been implemented in routine 
diagnostics (such as immunohistochemical, immunofluo-
rescence, or ultrastructural investigations). For example 
the typical pattern “amyloidosis” with its acellular, weakly 
PAS-positive depositions needs further investigations such 
as Congo-red stain (or EM) to establish the diagnosis and 
to exclude its mimics (such as fibrillary glomerulopathy).

Creation of three datasets for training, validation, 
and testing

We digitalized PAS stained slides of kidney biopsies from 
routine diagnostics from two independent institutions 
(Institute of Pathology Mannheim and Institute of Pathol-
ogy Mainz). In total, three datasets (datasets #1 and #2 for 
training and validation and dataset #3 for testing only) were 
defined (Sup. Figure 2):
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Dataset #1: To foster the collection of glomeruli from 
the above-mentioned scanned cases, we implemented a glo-
merulus detection RCNN-based object detection tool (as 
published by Kawazone et al. [16]). This tool automatically 
cropped all glomeruli per whole slide image. In the next 
step, an expert nephropathologist (SP) assigned a total of 
12,253 images of cropped glomeruli with a single morpho-
logical pattern to the predefined patterns (Fig. 2) sorting out 
incomplete glomeruli or images with tissue artifacts. The 
numbers per pattern range from 70 for pattern 06 (MPGN) 
to 4385 for pattern 01 (normal glomerulus) (Sup. Figure 4 
A1-2).

Datasets #2–3: A total of 11,142 newly cropped glomeruli 
were assigned to the predefined patterns in the consensus of 
three independent nephropathologists (SP, ZVP, MMG). The 
numbers per pattern range from 46 for pattern 06 (MPGN) 
to 4091 for pattern 01 (normal glomerulus) (Sup. Figure 4 
B1-2). From this database, 20 images per pattern were cho-
sen as the test set (hereafter dataset #3) and kept away until 
testing the models (Sup. Figure 4C). The remaining images 

(hereafter dataset #2) were used to re-train and validate the 
models pre-trained on dataset #1. All three nephropatholo-
gists performed their categorization of the images prior to 
the learning and testing phase, thus, not being influenced by 
any results of the CNN algorithm.

CNN‑training

Several published classification models or versions of 
published models (AlexNet [17], VGG [18], ResNet [19], 
Densenet [20], Squeeze net [21], and Inception net [22]) 
were trained (Sup. Figure 3). By using the repository hid-
denlayer the architecture of the herein applied models can be 
visualized (as done in the folder ModelPlots in the according 
GitHub-repository cited below).’

The image size was set to 224 × 224 pixel for all models 
except the Inception net, where it was set to 299 × 299 pixel. 
As optimizer we used a stochastic gradient descent [23, 24]. 
The initial learning rate was  10–3. We used a learning rate 

Fig. 1  Paradigmatic patterns of 
glomerular diseases. In terms 
of conventional morphology, 
the fundamental glomerular 
changes were attributed to 9 
patterns (Nrs. 01-09). Extra-
glomerular structures were 
labeled as ‘default’ pattern 09. 
MPGN, membranoproliferative 
glomerulonephritis
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decay of 0.1 every 7 epochs. All models were trained for 50 
epochs. The loss function was cross entropy loss.

All calculations were performed on a GPU (Graphics Pro-
cessing Unit) (NVidia TitanXP).

In a typical transfer learning setting a complex, published 
model, which initially was trained on a large dataset (e.g. 
the cityscape dataset), is re-trained on a smaller dataset. The 
idea behind this is that complex models may not converge 
if trained only on a small dataset. By using a pre-trained 
model, this model has already learned many features and 
usually only needs to re-learn how to map the features on the 
new classes. Therefore, in a typical transfer learning setting 
only the last layers of a CNN model are re-trained [25–27]. 
However, in our model, re-training of the last layer solely 
did not lead to a convergence of the loss, likely due to a 
specific image composition of the kidney tissue [28–30] in 
contrast to large image datasets usually used for training. 
For instance, histological images have quite a different color 
composition in contrast to cityscapes.

Statistical analysis

Statistical analysis was performed in R version 3.2.4 [31]. 
Kappa coefficients were calculated to assess the degree of 

agreement for binary factors. In the case of more than two 
raters, the Fleiss' kappa was calculated. As a measure for 
classification quality, the accuracy and the confusion matrix 
are presented.

Code and data availability

The according code is available on GitHub: https:// github. 
com/ catwe is/ Asses sment- of- glome rular- morph ologi cal- 
patte rns- by- deep- learn ing.

The trained models and the test dataset are available on 
HeiData: https:// heida ta. uni- heide lberg. de/ priva teurl. xhtml? 
token= 6f166 ca5- c48a- 4943- 86c7- 4b35c 88dc8 79.

Results

Training and validation of different convolutional 
neuronal network (CNN) classification models

We used different published classification models [14, 15] 
and the aforementioned dataset #1 (defined by one expert 
pathologist) and dataset #2 (consensus of three expert 
pathologists) to classify glomerular disease patterns. In 

Fig. 2  Examples of processed images. For each pattern, four examples from the image database are shown. The different image proportions are 
given by different bounding boxes reflecting the variable glomerular shape and size in the sections

https://github.com/catweis/Assessment-of-glomerular-morphological-patterns-by-deep-learning
https://github.com/catweis/Assessment-of-glomerular-morphological-patterns-by-deep-learning
https://github.com/catweis/Assessment-of-glomerular-morphological-patterns-by-deep-learning
https://heidata.uni-heidelberg.de/privateurl.xhtml?token=6f166ca5-c48a-4943-86c7-4b35c88dc879
https://heidata.uni-heidelberg.de/privateurl.xhtml?token=6f166ca5-c48a-4943-86c7-4b35c88dc879
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addition, we aimed to compare the performance of dif-
ferent convolutional neuronal networks CNNs in terms of 
accuracy. To this end, several versions of AlexNet [17], 
VGG [18], ResNet [19], Densenet [20], Squeeze net [21], 
and Inception net [22] were trained (Sup. Figure 2–3). 
Examples of the model input are shown in Fig. 2.

The classification quality for all networks was assessed 
based on the untrained part (20%) of datasets #1 and #2 
used for validation purposes (hereinafter validation sets 
#1 and #2). No cross-validation approach was used; thus, 
the images within the validation sets are unseen. The 
accuracy and kappa value were calculated based on the 
resulting confusion matrices. The accuracy values ranged 
from 0.910 to 0.920 (validation set #1) and respectively 
0.944–0.984 (validation set #2). The kappa values ranged 
from 0.884 to 0.933 (validation set #1) and respectively 
0.927–0.979 (validation set #2). In summary, the ResNet-
variant ResNet101 produced the best results for the valida-
tion sets (Table 1 and Fig. 2).

In order to measure the classification accuracy for each 
pattern separately, Fleiss’ kappa-value was calculated 
in all trained models. Independently of the model used, 
the best accordance (i.e., highest kappa-values) could be 
observed for the normal glomerulus (pattern 01; 0.967), 
MPGN (pattern 06; 0.985), and other structures (pattern 
09; 0.0971). In contrast, the values were lowest for mesan-
gial hypercellularity (pattern 05; 0.863). All remaining 
kappa-values were in the range in between.

Testing of the trained CNN‑models

The test dataset—dataset #3—contained 180 images 
assigned to the predefined patterns by consensus of three 
independent expert nephropathologists (MMG, SP, and 
ZVP). Of note, in contrast to the previously used validation 
sets, the test set was balanced with 20 images per pattern. 
The images were analyzed using all the models mentioned 
above, and the accuracy and kappa value were calculated 
based on the resulting confusion matrices. The accuracy 
values ranged from 0.856 to 0.944, and the kappa values 
ranged from 0.838 to 0.938. In summary, the ResNet-variant 
ResNet152 (Fig. 3) produced the best results for the test set 
(Table 2). The Fleiss’ kappa values reached the best accord-
ance for MPGN (pattern 06; 0.985) and the worst for mesan-
gial hypercellularity (pattern 05; 0.756).

Identification of the image areas decisive 
for the CNN‑decision making

In order to elucidate the CNN-based classification process, 
we strived to identify which aspects of the image are essen-
tial for decision making. We implemented two different 
approaches:

1. First, we used a class activation map (CAM) to produce 
a heat map for the network's highest activation, leading 
to the correct class assignment for every image [25]. 
We applied a free-available Pytorch-implementation 
from GitHub [26]. At one end of the spectrum, in the 
setting of normal glomerulus (pattern 01), the model 

Table 1  CNN-model results of the validation dataset (each part of 
dataset #1 and #2)

From dataset #1 (n = 2451 images) and from dataset #2 (n = 2267), 
each corresponding to 20%, are used for validation only. The table 
below shows the accuracy and kappa-values for different models, 
with the first value for dataset #1 and the second for dataset #2

Model Accuracy Kappa value

AlexNet [17] 0.910/0.944 0.884/0.927
squeeznet [21] 0.912/0.945 0.886/0.928
vgg11 [18] 0.932/0.963 0.912/0.951
vgg19 [18] 0.940/0.968 0.912/0.958
ResNet18 [19] 0.940/0.970 0.922/0.960
vgg16 [18] 0.933/0.970 0.913/0.960
ResNet34 [19] 0.954/0.975 0.940/0.967
ResNet50 [19] 0.949/0.977 0.934/0.970
inception [22] 0.947/0.980 0.930/0.973
densenet121 [20] 0.955/0.980 0.941/0.974
ResNet152 [19] 0.947/0.981 0.932/0.975
ResNet101 [19] 0.949/0.984 0.933/0.979

Fig. 3  Performance of the CNN algorithm. Confusion matrix depict-
ing the results of CNN-based glomerular categorization (by the 
ResNet 152) on the x-axis compared with the expert consensus on the 
y-axis. The herein analyzed test set contains 20 images per pattern. 
Here the accuracy was 0.944, and the kappa-value 0.938
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mainly focused on the edges of the image, where small 
parts of the tubulointerstitium and the blood vessels are 
shown (Fig. 4A), implying that recognition of normal 
glomerulus may be an indirect result of the exclusion of 
non-glomerular structures and incomplete glomeruli. On 
the other hand, in the case of amyloidosis (pattern 02), 
the heat maps showed that the model directly screened 
amyloid deposition within the glomerulus and, interest-
ingly, in the interstitial blood vessels (in Fig. 4B). Also, 
in other patterns, the heat maps apparently directly high-
lighted the pathological regions within the image.

2. Second, we used a deep convolutional generative adver-
sarial network (DCGAN) to produce example images for 
each class. The code was derived from the book by Hany 
and Walters [27] and is publicly available on GitHub 
[32]. The model consists of two networks: a generator 
learns to create synthetic image samples from a given 
distribution, and a discriminator being a classifier that 
distinguishes between authentic images from the given 
dataset and the fake ones created by the generator. Both 

Table 2  Results for the test dataset (dataset #3)

Dataset #3 comprises n = 180 images that were categorized by three 
nephropathologists (MMG, SP, and ZVP). For the trained models, the 
accuracy and the kappa value were calculated

Model Accuracy Kappa value

AlexNet [17] 0.856 0.838
squeeznet [21] 0.861 0.844
ResNet50 [19] 0.900 0.888
ResNet101 [19] 0.900 0.888
vgg11 [18] 0.911 0.900
vgg19 [18] 0.911 0.900
ResNet18 [19] 0.917 0.906
ResNet34 [19] 0.928 0.919
densenet121 [20] 0.928 0.919
inception [22] 0.928 0.919
vgg16 [18] 0.939 0.931
ResNet152 [19] 0.944 0.938

Fig. 4  Class activation maps (CAM) visualizing the decision-relevant 
image parts. In the trained CNN model, CAM was used to detect the 
image regions responsible for the strongest activation of the corre-
sponding class. Shown are selected glomerular disease patterns along 
with a heat map visualizing areas in dark red that were most decisive 

for the class activation. In b–f, these areas are congruent with the foci 
of morphological alteration. In panel a (normal glomerulus), there 
was no pathology, and therefore no activation of the model trained on 
pathology classification
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networks are trained simultaneously in an adversarial 
process in which the generator tries to deceive the dis-
criminator while the discriminator tries to identify the 
fake images. For normal glomeruli (pattern 01), this 
approach led to blurred but rather specific images, in 
the sense that the glomeruli were recognized as more 
or less physiological (Supp. Figure 5A). The images 
were also rather specific for global sclerosis (pattern 04) 
(Supp. Figure 5D). However, in both cases, the hereby-
produced images were easily recognized as non-original 
due to their limited image quality. For the other patterns, 
the produced images were non-distinguishable. The net-
work generated blurred images for all analyzed classes 
(Supp. Figure 5).

Application of the trained model in diagnostic 
settings

In practical terms, a kidney biopsy can contain glomeruli 
that do not necessarily show the same disease pattern and 
are heterogeneously distributed; for example, a renal biopsy 
from a patient with nephrosclerosis may contain normal, 
segmentally, and globally sclerosed glomeruli. Similarly, 
a case of necrotizing IgA glomerulonephritis may show 
mesangial expansion, endocapillary proliferation, necrosis, 
as well as segmentally and globally sclerosed glomeruli.

Thus, to determine how the algorithm will deal with 
real biopsy cases, we manually cropped glomeruli from 46 
diagnostic slides and assigned them to one of the previously 
defined disease patterns.

The trained ResNet152-model evaluated every cropped 
image for all cases and produced a binary output: the pre-
dicted value can be within (correct choice) or outside the 
expected range (false choice). The mean correct rate was 
0.867 with a standard deviation of 0.169. Pattern 09 (other 
structures) as default pattern was among the wrong choices, 
the most frequent one. Pattern distributions per diagnosis 
and diagnosis group were plotted per case in a heat map 
(Supp. Figure 6). Some categories with a very character-
istic morphological signature (like amyloidosis) tended to 
be assigned correctly, whereas other morphologically more 
similar patterns such as mesangial hypercellularity and nod-
ular sclerosis showed poorer classification quality.

Detection of more than one disease pattern 
in a single glomerulus

A synchronous combination of different morphological 
patterns can occur both on the whole biopsy and on the 
single glomerulus level, for example, segmental necro-
sis in MPGN or segmental sclerosis in a glomerulus with 
mesangial hypercellularity. To test the model’s decision on 
such glomeruli with more than one pattern, we used new 

images of glomeruli with complex changes that cannot be 
attributed to any single category but show facets of several 
patterns in parallel. For every input image, the model pro-
duced a probability value for all nine classes ranging from 
0 to 1. As shown in Fig. 5, the algorithm “recognizes” more 
than one disease pattern reflected by approximately equally 
high probabilities of the relevant patterns. Thus, in a case of 
IgA-glomerulonephritis with endocapillary hypercellularity 
and incipient segmental sclerosis (Fig. 5A), the 'mesangial 
hypercellularity’ and ‘segmental sclerosis’ were identified 
along with a similarity to the ‘MPGN’ pattern that reflects 
the endocapillary hypercellularity in this case. Of note, here 
and in most of the analyzed ambivalent cases, the basket-
category 'other structures' received a relatively high rating—
not surprising if appreciating that the training was performed 
on 'single patterned’ images. In the next step, we selected a 
more complex image from a case of IgA-nephropathy show-
ing a combination of mesangial and extracapillary prolif-
eration progressing to sclerosis (Fig. 5B). Our model cor-
rectly reflected the fact that the sclerosis reached the border 
between segmental and global (i.e. 50% of the glomerular 
area) by assigning approximately equal ratings for the pat-
terns of segmental and global sclerosis. Indeed, as collapsed 
capillaries with extracapillary proliferation dominate here, 
discrete mesangial hypercellularity in this case was not 
recognized by the network. Interestingly, the homogene-
ous fibrous tissue “resembled” amyloidosis to some extent 
(Fig. 5B). In a third case of a MPGN with a small necrosis 
progressing to segmental sclerosis, we could observe accu-
rate categorization of all the relevant, even discrete patterns 
(i.e. ‘MPGN’, ‘mesangial hypercellularity, ‘necrosis/cres-
cent’ and ‘segmental sclerosis’).

Discussion

In the present study, we investigated the potential value of 
machine learning in automatized recognition of common 
glomerular morphological changes. As quality parameter for 
the classification, we used the well-established kappa-value, 
a classical tool to measure inter-rater reliability and agree-
ment for nominal (diagnostic) decisions by (human) experts. 
Importantly, we initially intended to exclude the influence of 
interobserver variability (as one of the hallmarks of nephro-
pathology) and focus on the capacity of CNN to recognize 
(even complex, but) clear-cut patterns. Hence, our models 
were first trained on a dataset initially defined by one expert 
pathologist, in the next phase, they were re-trained on a sec-
ond dataset defined based on a three-expert consensus and 
finally evaluated on a subpart of the second, three-patholo-
gist-consensus dataset (Sup. Figure 2). Whereas calculation 
of the accuracy in our study provided an overall measure-
ment for the classification quality, kappa statistics mirrored 
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the agreement for every class. For the herein defined eight 
non-overlapping patterns of glomerular lesions and for a 
ninth evasion category, the trained CNN-models showed 

kappa-values from 0.884 (AlexNet-model) [14, 15, 17] to 
0.979 (ResNet 101-model) [14, 15, 19] for the validation 
datasets, hence demonstrating good to very good accordance 
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with the provided expert opinion. Furthermore, in a dedi-
cated test set with images evaluated and selected by the con-
sensus of three experts from two independent institutes, the 
kappa-values ranged as well from good to very good (0.838 
for the AlexNet-model [14, 15, 17] to 0.938 for the ResNet 
152-model [14, 15, 19]).

As expected, successful recognition of morphological 
patterns was not sufficient for an accurate assignment to the 
appropriate diagnosis in most cases (Sup. Figure 1). A typi-
cal example of a glomerular disease with a limited set of 
pathological changes is amyloidosis (pattern 02). Although 
the establishment of the diagnosis “amyloidosis” and the 
exclusion of its mimics (e.g. the rare fibrillary glomerulopa-
thy) need further investigations (such as Congo-red-stain 
or electron microscopy), the amyloidosis-pattern is quite 
characteristic. Accordingly, the diagnosis of amyloidosis 
was recognized by the ResNet152 in the diagnostic test set 
with 100% accuracy. On the other hand, immune-complex 
glomerulonephritides like IgA glomerulonephritis, lupus 
nephritis with a spectrum of rather unspecific lesion patterns 
obviously require further input from immunohistochemical/
immunofluorescence and ultrastructural studies as well as 
clinical data for the completion of the diagnostic process.

The comparison of the performance of our trained mod-
els with other classification models is hampered by several 
points: many popular image datasets (like CIFAR-10) do 
not correspond to our model regarding the image content 
since they contain roughly defined morphological classes 
(‘dog’, ‘sheep’, etc.) that are not comparable with rather 
delicate alterations of glomerular histology. Next, the data 
pool in our study comprised in total 23,395 images assigned 
to nine classes. As a comparison, broadly used datasets like 
the ImageNet 2012 classification dataset cover more than 
1000 classes in more than 1 million images [33]. Further-
more, even if certain published datasets contain histological 
images (for instance, the Atlas of Digital Pathology dataset 
with a significantly larger image cluster—17,668 images 
grouped into 42 classes), the image content and the task 
definition (recognition of the histological tissue type) sub-
stantially differ from our model [34]. We focused on highly 
specific glomerular architecture and set the task to recognize 
proportionally discrete pathological changes.

Moreover, the comparison of our results to other pub-
lished models is hampered by the differences regarding the 
underlying data and partially by the metrics employed for 
the classification quality. As generally accepted, we applied 
accuracy as an overall measure for the classification quality. 
Considering the above-mentioned work by Hosseini et al. 
[34] that reported an accuracy ≥ 0.95 for all used models, our 
results from a proportionally much smaller dataset (accu-
racy values 0.856–0.944 for the test set) are comparable. 
Nevertheless, dealing with a diagnostic problem, we also 
applied typical inter-rater statistical values like the kappa-
value and Fleiss kappa-value, used only in a minority of 
papers. For instance, in a trained CNN-model for the classifi-
cation of diabetic retinopathy in fundus images, Gyatri et al. 
[35] reported a kappa-value for multiclass classification of 
0.994. The kappa-values for the multiclass problem of the 
nine patterns in our study were in the range 0.756–0.985. In 
summary, the herein tested models can distinguish between 
most of the patterns with very high accuracy.

Importantly, our models were first trained on a dataset 
initially defined by one expert pathologist, and in the next 
phase they were re-trained on a second dataset defined 
based on a three-expert consensus. Finally, the models were 
evaluated on a test set that is a subpart of the second, three-
pathologist-consensus dataset. There, the kappa-values for 
all herein trained and tested models are in the range from 
good to very good.

The major challenge of glomerular pathology is that a 
single glomerulus can bear a combination of different dis-
ease patterns. This particular problem of overlapping tasks 
distinguishes our project from other approaches that trained 
CNNs to categorize tumors in mutually exclusive, rigorous 
categories like tumor type, microsatellite stability, or prog-
nostic category [36, 37]. Here we could demonstrate that our 
CNN model dealt with complex cases derived from routine 
diagnostics effectively, and recognized several co-existing 
lesion patterns occurring in a single glomerulus.

It is important to stress that—similar to routine diagnos-
tics—the recognition of a particular glomerular pattern does 
not equal the diagnosis which is the result of a complex 
process of considering ancillary tissue studies, clinical infor-
mation, serological data and patient’s history. For example, 
this input is essential for the interpretation of mesangial 
hypercellularity that can be the manifestation of an IgA-
glomerulonephritis, lupus nephritis or another connective-
tissue disease. Similarly, the light-microscopic pattern 
“normal glomerulus” might still lead to the diagnosis of an 
early membranous glomerulonephritis or minimal-change 
glomerulopathy if the characteristic ultrastructural findings 
and proteinuria are present.

In summary, our model shows that artificial intelligence 
may be used as a reliable model in the up-front evaluation 
of kidney pathology in biopsy specimens. Moreover, the 

Fig. 5  CNN-based algorithms are capable of recognizing several 
coincident disease patterns in one glomerulus in “real-life” images. 
Images of glomeruli with more than one disease pattern were taken 
from the daily diagnostic routine and subjected to CNN analysis. This 
generated probability values ranging from 0 to 1, reflecting the 'simi-
larity’ to the nine classes for each image. A IgA-glomerulonephritis 
with endocapillary hypercellularity and incipient segmental sclerosis. 
B IgA-glomerulonephritis with extracapillary proliferation progress-
ing to sclerosis that reaches the border between segmental and global. 
C MPGN with small extracapillary proliferation progressing to seg-
mental sclerosis

◂
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presented algorithm is capable of “recognizing” the affection 
of a single glomerulus by more than one disease pattern—
a situation regularly encountered in diagnostic nephropa-
thology. Further studies are warranted to integrate also the 
immunohistochemical and ultrastructural patterns together 
with clinical parameters (such as proteinuria, erythrocyturia, 
kidney function, and serum parameters) to boost the accu-
racy of digital learning in nephropathology and to present a 
valuable tool applicable in routine diagnostics in the future.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s40620- 021- 01221-9.
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