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Abstract

Phylogenomics, the study of phylogenetic relationships among taxa based on their genome sequences, has emerged as the
preferred phylogenetic method because of the wealth of phylogenetic information contained in genome sequences.
Genome sequencing, however, can be prohibitively expensive, especially for taxa with huge genomes and when many taxa
need sequencing. Consequently, the less costly phylotranscriptomics has seen an increased use in recent years.
Phylotranscriptomics reconstructs phylogenies using DNA sequences derived from transcriptomes, which are often
orders of magnitude smaller than genomes. However, in the absence of corresponding genome sequences, comparative
analyses of transcriptomes can be challenging and it is unclear whether phylotranscriptomics is as reliable as phyloge-
nomics. Here, we respectively compare the phylogenomic and phylotranscriptomic trees of 22 mammals and 15 plants
that have both sequenced nuclear genomes and publicly available RNA sequencing data from multiple tissues. We found
that phylotranscriptomic analysis can be sensitive to orthologous gene identification. When a rigorous method for
identifying orthologs is employed, phylogenomic and phylotranscriptomic trees are virtually identical to each other,
regardless of the tissue of origin of the transcriptomes and whether the same tissue is used across species. These findings
validate phylotranscriptomics, brighten its prospect, and illustrate the criticality of reliable ortholog detection in such
practices.
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Introduction
Reconstructing the phylogenetic relationships among various
species is a major task of evolutionary biology, because an-
swering almost any evolutionary question requires having a
reliable phylogeny of the taxa concerned. Although morpho-
logical characters are required in the phylogenetic analysis
involving fossils, phylogenies of extant species are now rou-
tinely inferred using DNA or protein sequences exclusively.
These molecular trees are generally considered more reliable
than morphological trees, because there are typically many
more molecular characters than morphological characters
available for phylogenetic analysis and because homoplasy,
which confuses phylogenetic inference, is rarer among mo-
lecular characters than morphological characters (Zou and
Zhang 2016). However, use of different genes often results in
different trees (Rokas et al. 2003), because of sampling error or
discordance between gene trees and species trees, among
other reasons. Increasing the number of genes and total se-
quence length in molecular phylogenetics can reduce the
sampling error and yield the most common gene tree, which
likely represents the species tree. Hence, phylogenomics, in-
ferring phylogenies using genome-scale sequence data, is be-
lieved to be a powerful approach to molecular phylogenetics
(Eisen and Fraser 2003; Delsuc et al. 2005; Philippe et al. 2005)

and has indeed led to a number of well-resolved phylogenies.
Nevertheless, despite the drastic cost reduction in DNA se-
quencing in the last decades, it remains expensive to obtain
high-quality genome assemblies with annotations, especially
for large eukaryotic genomes (Yandell and Ence 2012; Ekblom
and Wolf Jochen 2014) and when many taxa need to be
sequenced.

Originally developed for measuring the mRNA concentra-
tions of all expressed genes in a sample (Wang et al. 2009;
Martin and Wang 2011), transcriptome sequencing, also
known as RNA sequencing (RNA-seq), offers DNA sequences
of the transcribed fraction of the genome with a considerably
lower cost. The acquisition and use of these DNA sequences
for phylogenetics is referred to as phylotranscriptomics, which
has been employed by many authors in recent years to re-
solve the evolutionary relationships of diverse lineages of
organisms (Hittinger et al. 2010; Kocot et al. 2011; Smith
et al. 2011; Struck et al. 2011; Johnson et al. 2013; Riesgo
et al. 2014; Wickett et al. 2014; Zeng et al. 2014; Irisarri et al.
2017; Janou�skovec et al. 2017; Price Dana and Bhattacharya
2017). However, whether phylotranscriptomics is as reliable as
phylogenomics is unclear, due to several features of phylo-
transcriptomics that are nonexistent in phylogenomics. First,
because not all genes in a genome are expressed in a tissue,
transcriptome data do not allow the delineation of the DNA
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sequences of all genes encoded by a genome. This fact, com-
pounded by gene expression differences among species,
makes the identification of orthologous genes from transcrip-
tomes more challenging and less reliable than that from ge-
nome sequences. Second, gene expression varies among
tissues, and it is unclear whether transcriptomes of certain
tissues perform better in phylotranscriptomics than those of
other tissues and whether phylotranscriptomics requires us-
ing the same tissue from all taxa under consideration. It is
obviously difficult to acquire the same tissue from a large
number of species. Third, because highly expressed genes,
which tend to have slow sequence evolution (Zhang and
Yang 2015), are enriched in transcriptomic data, it is unclear
whether phylotranscriptomic (PT) results are consequently
biased when compared with phylogenomic (PG) results. On
the other hand, noncoding regions are likely to be less useful
than coding regions for phylogenetics except for closely re-
lated species. Hence, transcriptome sequencing is likely more
cost-effective than genome sequencing for most phylogenetic
tasks. This is especially true if the high cost of genome se-
quencing limits the sequencing depth and genome assembly
quality. Restriction-site-associated DNA sequencing
(Andrews et al. 2016), which sequences a faction of each
target genome, has also been used for phylogenetics.
Because the property of this method is similar to phyloge-
nomics except with smaller data sizes and lower costs (Cariou
et al. 2013; Cruaud et al. 2014; Andrews et al. 2016), it will not
be considered here.

In this study, we evaluate the performance of phylotran-
scriptomics with the above questions in mind. Because 1) the
true phylogeny of a set of taxa is rarely known, 2) it is hard to
simulate transcriptome evolution realistically, and 3) phylo-
transcriptomics is commonly regarded as an approximation
to phylogenomics, we assess the performance of phylotran-
scriptomics by examining the topological similarity between
the transcriptome-based tree and the genome-based tree for
the same taxa. Obviously, such analyses require the availability
of genome sequences and transcriptome data from the same
set of species. Furthermore, the genome sequence-based tree
of the taxa should be largely or fully consistent with the
commonly accepted evolutionary relationships of the taxa,
because otherwise one cannot use the similarity between PT
and PG trees to measure the reliability of phylotranscriptom-
ics. Respectively analyzing published data from 22 mammals
and 15 plants, we report that, upon rigorous orthologous
gene identification, PT trees are virtually identical to PG trees,
regardless of the tissue of origin of the transcriptome data and
whether the same tissue is used across species.

Results

Phylotranscriptomics of 22 Mammals
To compare between trees generated using genome and tran-
scriptome data, we selected 22 mammalian species (20 pla-
centals, one marsupial, and one monotreme) with both fully
sequenced nuclear genomes and publicly available RNA-seq
data from at least three tissues (supplementary table S1,

Supplementary Material online). For this comparison to be
fair, we should employ the most suitable or widely used com-
putational tools for the PG and PT analyses, respectively. The
tools for PG and PT analyses are likely different from each
other due to the different types of data used in the two
analyses. In the PG analysis, we identified 1,924 one-to-one
orthologous genes from the genome sequences using the
BlastP-based OrthoMCL method (see Materials and
Methods). Upon the alignment of orthologous protein
sequences, the alignments were concatenated and gaps re-
moved. We then used RAxML (Stamatakis 2014) to infer the
maximum-likelihood tree, which is referred to as the PG tree
hereinafter. The PG tree is clearly resolved with each interior
branch having a 100% bootstrap support (fig. 1). The topol-
ogy of the PG tree is largely congruent with previously pub-
lished molecular trees of these mammals (Miller et al. 2007;
Prasad et al. 2008; Morgan et al. 2013).

Transcriptome data from between three and seven of the
following seven tissues were publicly available at the time of
this study (October 2017) for each of the 22 mammals: brain,
kidney, liver, heart, testis, muscle, and lung. In particular, tran-
scriptomes from the first three of these tissues are available
for all 22 species. We first analyzed the brain transcriptomes
of the 22 mammals in order to build a PT tree. As mentioned,
one of the challenges faced by phylotranscriptomics is orthol-
ogous gene identification. We thus tested two drastically dif-
ferent methods. The first method, named HaMStR
(Ebersberger et al. 2009), is one of the most popular tools
for orthologous gene identification from transcriptome data
(Kocot et al. 2011; Misof et al. 2014; Zeng et al. 2014). HaMStR
combines a profile hidden Markov model (pHMM) search
and a subsequent BLAST search to extend existing core
orthologs with sequences from further taxa. In the present
case, we empirically defined the mammalian core orthologs
based on the human, long-tailed macaque, mouse, cow, and
dog genome sequences by reciprocal best BLAST hits (see
Materials and Methods). The second method, referred to as
the YS method (Yang and Smith 2014), builds gene trees from
homologous gene sequences in order to identify one-to-one
orthologs. Because the YS method uses more stringent crite-
ria than HaMStR in ortholog identification, we expect the YS
method to have a higher false negative rate, whereas HaMStR
to have a higher false positive rate when compared with each
other.

HaMStR identified 2,035 orthologous genes (with trimmed
alignments �500 codons) from the brain transcriptomes
(fig. 2A), which allowed the reconstruction of the brain PT
tree by RAxML (fig. 2B). Although the bootstrap support of
the brain PTHaMStR tree is 100% for all but two interior
branches, several clades in the tree differ from the corre-
sponding parts of the PG tree and are apparently incorrect.
For instance, in the brain PTHaMStR tree, human and gorilla are
clustered (with 100% bootstrap support) in exclusion of
chimpanzee and bonobo, and whale is grouped with pig
(with 0% bootstrap support) instead of cow and goat (fig. 2B).

In comparison, the YS method identified only 270 one-to-
one orthologous genes (with trimmed alignments �150
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codons) from the same brain transcriptomes (fig. 2C). Yet, the
brain PTYS tree (fig. 2D) is highly similar to the PG tree in
topology, with the only difference being the relative closeness
of the hedgehog and horse to the clade including
Cetartiodactyla (goat, cow, whale, and pig) and Carnivora
(dog and cat). Furthermore, all but one interior branches of
the PT tree have 100% bootstrap support.

To examine whether transcriptomes of different tissues
yield different PT trees, we similarly analyzed the RNA-seq
data from the other six tissues individually. For both HaMStR
and YS methods, the number of orthologous genes identified
varied among the seven tissues (fig. 2A and C). This variation
is in part due to the inclusion of different numbers of species
in the analysis of different tissues. As expected, the number of
orthologous genes identified in a tissue tends to decrease with
the number of species considered for the tissue, although
their correlation is not significant (Spearman’s correlation
¼�0.41, P¼ 0.36). The coefficient of variation in orthologous
gene number from the HaMStR analysis remains large (0.215)
even among the three tissues (brain, kidney, and liver) with
data from all 22 species (fig. 2A); the corresponding coefficient
of variation from the YS results is smaller (0.097) (fig. 2C). The
seven PTHaMStR trees resulting from the seven tissues (fig. 2B
and supplementary fig. S1, Supplementary Material online)
differ to some extent from one another and from the PG tree
when the common species of the trees compared are con-
sidered. In comparison, the seven PTYS trees (fig. 2D and
supplementary fig. S2, Supplementary Material online) look
more similar to each other and to the PG tree.

To understand why PTYS trees are more similar than
PTHaMStR trees to the PG tree, we benchmarked the orthologs
identified in the PG analysis, PTYS analysis, and PTHaMStR anal-
ysis against the ortholog annotations in the commonly used
OrthoDB. We found that the fraction of incorrectly identified
orthologs is the smallest in the PG analysis (1.9%), higher in
PTYS (on average 5.5% across the seven tissues), and highest in
PTHaMStR (28.0%) (supplementary fig. S3, Supplementary
Material online); these differences in error probably cause
PTYS to outperform PTHaMStR. Furthermore, the alignments
of orthologs identified by HaMStR have a high percentage of
gap sites when compared with the alignments of orthologs
identified by the YS method (supplementary figs. S4 and S5,
Supplementary Material online). Interestingly, for an average
gene used, the number of species with missing data is lower
for HaMStR than YS (supplementary table S2, Supplementary
Material online), but this difference may be because of more
erroneous orthologs identified by the former than the latter
method. Because we required a minimal trimmed alignment
length of 500 codons in HaMStR but 150 codons in YS, we
wondered whether this difference caused the different per-
formances. We found that the PTHaMStR trees based on
orthologous genes with trimmed alignment lengths between
150 and 500 codons (supplementary fig. S6, Supplementary
Material online) and those based on orthologous genes with a
minimal trimmed alignment length of 500 codons are simi-
larly different from the PG tree (P¼ 0.13, Mann–Whitney U
test of equality in topological distances; see below). Thus, the
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FIG. 1. A PG tree of 22 mammals reconstructed using 1,924 one-to-one orthologous genes. Bootstrap percentages estimated from 200 replications
are shown on interior branches.
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difference in the required minimal alignment length is not the
reason why PTYS trees are more similar than PTHaMStR trees to
the PG tree.

To quantitatively compare PG, PTYS, and PTHaMStR trees,
we measured the topological distance between a PG and a PT
tree from the same set of species by their topological distance
dT, which is twice the number of branch partitions that differ
between the two trees (Robinson and Foulds 1981). For every
tissue, PTYS has a smaller dT than PTHaMStR from the PG tree
(fig. 3A), demonstrating that, compared with the use of
HaMStR, using the YS method in ortholog identification
yields PT trees that are more similar to the PG tree
(P¼ 0.016, two-tailed sign test). Furthermore, in all tissues,
the distribution of the dT values from 200 bootstrap trees is
nonoverlapping between the two methods, indicating a sig-
nificant superiority of the YS method over HaMStR in ana-
lyzing these transcriptomes (fig. 3A and B). Averaged across
the seven tissues, dT¼ 3 for PTYS trees (fig. 3B), in contrast to
12 for PTHaMStR trees (fig. 3A). Hence, the improvement con-
ferred by YS over HaMStR is large. As a comparison, we gen-
erated 10,000 random trees among the 22 species and

calculated their dT from the PG tree. None of these random
trees had a dT � 16 (fig. 3C), which was the maximum dT

observed for any PT tree, indicating a significantly greater
similarity between PT trees and the PG tree than the random
expectation.

Another assessment of the topological distance between a
PT tree and the corresponding PG tree is to examine whether
their dT is greater than what is created by swapping two
random picked tips (extant taxa) in the PG tree. We gener-
ated 10,000 PG trees with two randomly picked tips swapped,
10,000 PG trees with two pairs of randomly selected tips
sequentially swapped, and 10,000 PG trees with three pairs
of randomly selected tips sequentially swapped, respectively
(fig. 3C). For the brain transcriptomes, the dT between the PG
tree and a two-tip-swapped PG tree has a probability of Ptwo-

tips¼ 0.825 to be equal to or smaller than the dT between the
PTHaMStR tree and the PG tree (fig. 3D). The P value reduces to
Pfour-tips ¼ 0.332 when two pairs of tips are swapped and to
Psix-tips¼ 0.075 when three pairs of tips are swapped (fig. 3D).
When the PTYS tree instead of the PTHaMStR tree is considered,
the above probabilities become Ptwo-tips ¼ 0.065, Pfour-tips ¼
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FIG. 2. PT trees of mammals inferred from brain transcriptomes. (A) Number of one-to-one orthologs identified using HaMStR from the
transcriptomes of various tissues. The number in each bar indicates the number of species represented in the transcriptome data. (B) The PT
tree inferred using 2,035 one-to-one orthologous genes identified by HaMStR from brain transcriptomes. (C) Number of one-to-one orthologs
identified using the YS method from the transcriptomes of various tissues. The number in each bar indicates the number of species represented in
the transcriptome data. (D) The PT tree inferred using 270 one-to-one orthologous genes identified by the YS method from brain transcriptomes.
Bootstrap percentages estimated from 200 replications are shown on interior branches. The scale bar shows the number of amino acid
substitutions per site.

Phylotranscriptomics versus Phylogenomics . doi:10.1093/molbev/msaa181 MBE

3675



0.003, and Psix-tips¼ 0, respectively (fig. 3D). This comparison
shows that the difference between the PTHaMStR tree and PG
tree is equivalent to swaps of one to three pairs of tips, but
that between the PTYS tree and the PG tree is no more than
the swap of one pair of tips. We performed the same analysis
for each of the other tissues, with the consideration of the
appropriate PG tree that includes the same species as in the
corresponding PT trees. In each tissue, we observed smaller P
values for the PTYS tree than the PTHaMStR tree (fig. 3D).
Hence, compared with phylogenomics, YS-based phylotran-
scriptomics is of similar quality and is much better than
HaMStR-based phylotranscriptomics.

In phylotranscriptomics, one can sometimes sample from
multiple tissues per species, but our results suggest that, when
the YS method is used in ortholog identification, the specific
tissue used to profile the transcriptome has only a minimal
impact on the tree reconstructed. Specifically, dT is between 2
and 4 for the seven tissues considered and is also between 2
and 4 for the three tissues (brain, kidney, and liver) that each
has data from all 22 species (fig. 3B).

In each of the above PT analyses, the same tissue was
used for all species, which may be infeasible under some
circumstances. Because nearly one half of all annotated
genes of a genome tend to be expressed in a tissue-
specific manner (Jongeneel et al. 2005; Whitehead and
Crawford 2005; Fagerberg et al. 2014), it is important to
investigate whether reliable phylotranscriptomics
requires the use of the same tissue from all species con-
cerned. To this end, we randomly chose one transcrip-
tome from each of the 22 species and identified one-to-
one orthologous genes from such heterogeneous tran-
scriptomic data using the YS method. This was repeated
ten times. On average, we found 171 one-to-one orthol-
ogous genes, and the dT between a reconstructed PT tree
and the PG tree ranges from 2 to 6 with a mean of 4
(supplementary fig. S7, Supplementary Material online),
which is only slightly greater than the corresponding dT

(between 2 and 4 with a mean of 2.7 for the three tissues
with all 22 species) when the same tissue is used across all
species (fig. 3B). This result suggests that, although the use

FIG. 3. Topological distances (dT) between the mammalian PG tree and PT trees. (A) Distribution of dT between the PG tree and 200 bootstrapped
PTHaMStR trees constructed using transcriptomes of each tissue. Arrow indicates the result based on the original instead of bootstrapped data.
Because different numbers of species are represented in each tissue, one should not directly compare among tissues. (B) Distribution of dT between
the PG tree and 200 bootstrapped PTYS trees constructed using transcriptomes of each tissue. (C) Distribution of dT between the PG tree and
10,000 random trees of 22 taxa, 10,000 PG trees with two tips swapped, 10,000 PG trees with four tips swapped, and 10,000 PG trees with six tips
swapped, respectively. (D) Summary of P values, which show the probability with which the dT between the PG tree and a tip-swapped tree, is equal
to or smaller than the observed dT between the PG tree and the PT tree being compared. *P< 0.05, **P< 0.01, and ***P< 0.001.
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of the same tissue in all species concerned is preferred,
using heterogeneous tissues does not substantially reduce
the reliability of phylotranscriptomics.

Phylotranscriptomics of 15 Vascular Plants
To examine the generality of the results obtained from the 22
mammals, we performed a similar analysis of 15 vascular
plants including 14 angiosperms and one gymnosperm (sup-
plementary table S3, Supplementary Material online). Due in
a large part to frequent genome duplication followed by gene
loss, many plants have unusually dynamic and structurally
complex genomes (Coghlan et al. 2005; Tang et al. 2008;
Paterson et al. 2010; Jiao et al. 2011), increasing the benefit
of phylotranscriptomics over phylogenomics in cost savings.
Using orthoMCL, we identified 482 one-to-one orthologous
genes (�150 codons) from the 15 plant genomes. We aligned
the corresponding protein sequences and concatenated
them before making a maximum-likelihood tree by RAxML.
The obtained PG tree is well resolved (fig. 4A) and is consis-
tent with the current understanding of plant evolution
(Murat et al. 2017).

We found publicly available RNA-seq data from three tis-
sues (leave, root, and stem) for each of 11 species and those
from two tissues (leave and root) for each of the four remain-
ing species (supplementary table S3, Supplementary Material
online). From the three tissues, we identified an average of
2,520 and 119 orthologous genes (�150 codons) using
HaMStR and YS methods, respectively. The same procedure
was used to identify orthologs in plants and mammals.
Probably because plant genomes experienced genome dupli-
cation, the number of one-to-one orthologs identified is con-
siderably fewer in plants (119) than in mammals (270). When
the leaf transcriptomes were analyzed, the PTHaMStR tree
(fig. 4B) has the same topology as the PG tree except for
the position of Cucumis melo, whereas the PTYS tree
(fig. 4C) has the same topology as the PG tree. That is, the
leaf PTHaMStR (fig. 5A) and PTYS (fig. 5B) trees have dT¼ 2 and
0 from the PG tree, respectively. When the root transcrip-
tomes were analyzed, both PTHaMStR (supplementary fig. S8A,
Supplementary Material online) and PTYS (supplementary fig.
S9A, Supplementary Material online) trees have dT¼ 2 from
the PG tree (fig. 5A and B). When the stem transcriptomes
were analyzed, both PTHaMStR (supplementary fig. S8B,
Supplementary Material online) and PTYS (supplementary
fig. S9B, Supplementary Material online) trees have dT ¼ 0
from the PG tree for the 11 species concerned (fig. 5A and B).
Comparing between PT trees and PG trees with two or four
tips swapped showed that PT trees are typically no more
different than swapping two tips from the PG tree (fig. 5A
and B). Thus, phylotranscriptomics, especially when the YS
method is used for ortholog identification, is almost as reliable
as phylogenomics for the 15 vascular plants. When randomly
sampling one of the available tissues from each species, we
found that the YS-based PT trees are still close to the PG tree,
with dT ¼ 0 or 2 in three replicates of random sampling
(fig. 5C).

Robustness of the Results
To examine whether the above findings in mammals and
plants are sensitive to the particular methods or models
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FIG. 4. Phylogenetic trees of 15 plants. (A) A plant PG tree inferred
using 482 one-to-one orthologous genes. (B) A plant PT tree inferred
using 2,604 one-to-one orthologous genes identified from leaf tran-
scriptomes by HaMStR. (C) A plant PT tree inferred using 77 one-to-
one orthologous genes identified from leaf transcriptomes by the YS
method. Bootstrap percentages estimated from 200 replications are
shown on interior branches.
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used, we applied the following five alternative methods or
models. First, instead of using the YS method, we used a
recently developed tree-based orthology refinement method
named PhyloPypruner for identifying orthologs from tran-
scriptomes. We found that PhyloPypruner-based PT trees
(supplementary fig. S10, Supplementary Material online) are
almost identical to the corresponding PTYS trees and PG trees

(supplementary fig. S11, Supplementary Material online).
Second, instead of using OrthoMCL, we used OrthoFinder
to identify orthologs from genome sequences. We identified
2,397 and 482 one-to-one orthologous genes from the mam-
malian and plant genomes, respectively. Except for the posi-
tion of the horse that has a low bootstrap value of 67%, the
mammalian and plant PG trees were unaltered by using these
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FIG. 5. Topological distances (dT) between the plant PG tree and PT trees. (A) Distribution of dT between the PG tree and 200 bootstrapped
PTHaMStR trees constructed using transcriptomes of each tissue. Because different numbers of species are represented in each tissue, one should not
directly compare among tissues. (B) Distribution of dT between the PG tree and 200 bootstrapped PTYS trees constructed using transcriptomes of
each tissue. (C) Topological distance (dT) between the plant PG tree and three PTYS trees inferred using randomly picked transcriptomes from the
15 species. In all panels, arrow indicates dT based on the original data whereas the gray shade shows the frequency distribution of dT from 200
bootstrapped samples. P values show the probability with which the dT between the PG tree and a tip-swapped PG tree is equal to or smaller than
the observed dT between the PG tree and the PT tree. *P< 0.05, **P< 0.01, and ***P< 0.001. Numbers of orthologs used are indicated.
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orthologs (supplementary fig. S12, Supplementary Material
online). In addition, the same method was applied to the
mammalian and plant transcriptomes. The dT values between
the PT trees (supplementary fig. S13, Supplementary Material
online) under OrthoFinder and the PG tree were not signif-
icantly different (P¼ 0.58, Mann–Whitney U test) from the
corresponding original dT values based on the YS method.
Third, instead of using HaMStR, we used Orthograph to cir-
cumvent redundant transcript assignments when identifying
orthologs but did not find it to improve phylotranscriptom-
ics. For instance, the brain PTOrthograph tree (supplementary
fig. S14, Supplementary Material online) has a dT of 26 from
the PG tree, even higher than that (16) of the brain PTHaMStR

tree. Fourth, instead of using RAxML with the
PROTCATWAG model, we used IQ-TREE under the LG þ
C60 þ Fþ R model to infer the PT trees of mammals and
plants. Except for the three tissues (muscle, lung, and root)
whose dT values decreased from 2 to 0 (muscle and root) or
from 4 to 0 (lung), dT values between PT and PG trees were
unaltered (supplementary figs. S15 and S16, Supplementary
Material online). Finally, instead of using the concatenation-
based phylogenetic analysis, we tried a coalescent-based anal-
ysis (ASTRAL-III) but found the results similar. For instance,
from the PG tree, the brain PTYS tree from the coalescent
approach (supplementary fig. S17, Supplementary Material
online) and that from the concatenation approach (fig. 2D)
both show a dT of 2. Together, these results suggest that our
conclusion that phylotranscriptomics is as reliable as phylo-
genomics is robust.

Discussion
With the aim of comparing the performance of phylotran-
scriptomics with that of phylogenomics, we respectively an-
alyzed 22 mammals and 15 vascular plants that have both
publicly available genome sequences and RNA-seq data from
multiple tissues. We found that when orthologous genes are
identified from transcriptomes using the YS method, the in-
ferred PT tree tends to be highly similar to the PG tree, even
when the transcriptomic data of different species originate
from different tissues. This finding demonstrates that phylo-
transcriptomics is a good approximation to phylogenomics
and alleviates the constraint of sampling the same tissue
across a diverse array of species, which may be infeasible un-
der many circumstances. Furthermore, our results imply that
when transcriptomes from multiple tissues are available from
a species, it is valuable to use the merged transcriptome data
of the species in phylotranscriptomics. Given the relatively
low cost of transcriptome sequencing compared with ge-
nome sequencing, our finding is expected to stimulate wider
uses of phylotranscriptomics.

Despite the increasing quantity of genome-scale molecular
data, several studies have produced conflicting phylogenetic
results even with large molecular data. For example, three PG
analyses of early animal diversification yielded conflicting con-
clusions regarding the origin of metazoa (Dunn et al. 2008;
Philippe et al. 2009; Schierwater et al. 2009). A similar situation
exists regarding the root of the placental mammal tree

(Meredith et al. 2011; McCormack et al. 2012; Song et al.
2012; Leary et al. 2013). Apparently, adopting big data by
only increasing the sequence length is not sufficient to resolve
some difficult trees. Appropriate and extensive taxon sam-
pling may help (Philippe et al. 2011). The reduction in the cost
of sequencing per species when one adopts phylotranscrip-
tomics instead of phylogenomics allows broadening taxon
sampling, which would further help resolve some of the
most difficult trees. One caveat in the above reasoning is
the fact that the number of orthologous genes that can be
used for phylogenetic inference is expected to reduce with
the number of taxa included. To assess the impact of this
problem, we analyzed two subsets of the 22 mammals in
figure 1. The first subset contains seven species (human, rab-
bit, mouse, hedgehog, dog, opossum, and platypus), whereas
the second, larger subset contains 14 species (first subset plus
orangutan, Rhesus monkey, guinea pig, mole rat, horse, pig,
and cow). These subsets are constructed to represent major
lineages in the mammalian tree in figure 1 but with different
degrees of taxon sampling. We ask whether using the larger
subset of 14 species (or the full set of 22 species) is better than
using the smaller subset for inferring the phylogenetic rela-
tionships of the seven species in the smaller subset. Clearly,
using the larger subset or full set increases taxon sampling,
but it may reduce the number of usable orthologs. Indeed,
when analyzing the brain transcriptomes, we found the num-
ber of orthologous genes to reduce from 1991 for the smaller
subset to 705 for the larger subset to 235 for the full set, based
on the orthologs identified by OrthoFinder. When the phy-
logenetic relationships of the seven species of the smaller
subset are concerned, dT of the PT tree from the PG tree is
0 when the smaller subset of transcriptomes are used but
becomes 6 and 4 respectively when the larger subset and full
set are used. Similar results were observed when kidney or
liver transcriptomes were analyzed. Hence, more studies are
needed to find the right amount of taxon sampling for reliable
PT analysis.

Our study showed that the success of phylotranscriptom-
ics relies on rigorous orthologous gene identification. It is
worth noting that we identified orthologs with a gene-tree-
free method (orthoMCL) in phylogenomics. Yet, in phylo-
transcriptomics, the gene-tree-based ortholog identification
implemented by Yang and Smith (2014) is superior to the
tree-free ortholog identification implemented in the popular
HaMStR, despite an order of magnitude fewer orthologs iden-
tified by the former than the latter. It is possible that the gene-
tree-free ortholog identification is sufficiently accurate in an-
alyzing genome sequences but not so when applied to tran-
scriptomes, because many genes may be missing from the
latter due to low expressions. A key parameter in HaMStR is
the set of core orthologs, which we defined empirically from
five mammalian or plant genomes (see Materials and
Methods). To investigate how the core orthologs affect ortho-
log identification from transcriptomes, we also tried a prede-
fined set of 1,032 eukaryotic core orthologs in the HaMStR
model organisms data set, which is the most commonly used
set in recent PT analyses. The brain PTHaMStR tree inferred
under this set of eukaryotic core orthologs is worse than the
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brain PTHaMStR tree inferred under 14,018 mammalian core
orthologs (supplementary fig. S18A and B, Supplementary
Material online), demonstrating the sensitivity of ortholog
identification by HaMStR to the core orthologs used and
the benefit of using core orthologs matching the group of
species considered. However, using the plant core orthologs
versus eukaryotic core orthologs does not affect the HaMStR-
based PT tree of the plants (supplementary fig. S18C and D,
Supplementary Material online), probably because the plant
data are less sensitive to ortholog identification algorithms.
We found that the extent by which PTYS is superior to
PTHaMStR is greater for the mammalian data than the plant
data. This may be explained by the fact that the fraction of
incorrectly identified orthologs is more similar between YS
and HaMStR for plants than for mammals (supplementary
fig. S3, Supplementary Material online), but the reason behind
this plant–mammal disparity is unclear. It is a pleasant sur-
prise that the YS method, developed for plant phylotranscrip-
tomics, is even more useful for animal phylotranscriptomics.

We note, however, that all of our conclusions are based on
only two phylogenetic clades: mammals and vascular plants.
Although there is no strong reason to suspect otherwise, the
generality of these conclusions across the tree of life awaits
further exploration.

Materials and Methods

Genome and Transcriptome Data
We selected 22 mammals and 15 plants with fully sequenced
nuclear genomes and publicly available RNA-seq data. The
data sets used are listed in supplementary tables S1 and S3,
Supplementary Material online.

Transcriptome Data Processing
To obtain high-quality clean reads (i.e., excluding adapter
sequences, poly-N sequences, or low quality bases), we proc-
essed all raw RNA-seq data using Trimmomatic (v0.35)
(Bolger et al. 2014). The clean reads from each sample were
then used for de novo transcriptome assembly by Trinity
(version 2.20) (Haas et al. 2013) with default settings. After
assembly, open reading frames (ORFs) were predicted using
TransDecoder (version 3.0.0) (https://github.com/
TransDecoder/TransDecoder/wiki) assisted by BlastP
searches with an E-value cutoff of 10�5 using UniprotKB/
Swiss-Prot database (http://www.uniprot.org). ORFs shorter
than 100 codons were discarded. ORF sequences with >99%
amino acid sequence identity were clustered using the CD-
HIT program (version 4.6.5) (Li and Godzik 2006). We per-
formed a BUSCO analysis (Waterhouse et al. 2018) to evalu-
ate the completeness of each transcriptome we investigated
(supplementary fig. S19, Supplementary Material online) but
found no clear association between the completeness and the
number of orthologous genes or dT from the PG tree.

Identification of Orthologs from Complete Genome
Sequences
OrthoMCL (Li et al. 2003) was run in default settings with all-
against-all BlastP analysis to identify orthologous proteins in

the 22 mammalian genomes. Pairwise sequence similarities
between protein sequences were calculated using BlastP with
an E-value cutoff of 10�5. Markov clustering was applied using
an inflation parameter of 1.4 to improve sensitivity and spe-
cificity. To avoid complications introduced by paralogous
genes in PG inference, we excluded orthologous gene groups
containing more than one gene from any given species and
exclusively selected orthologous genes shared by all 22 mam-
mals to infer the PG tree. The same method was used in the
analysis of 15 plant genomes.

We also used OrthoFinder (v2.3.3) (Emms and Kelly 2015)
under Diamond (Buchfink et al. 2015) sequence search
(v0.9.24.125) with default options for ortholog identification
in both mammalian and plant genomes. The above clustering
algorithm and the same exclusion criteria for grouping orthol-
ogous genes were applied.

Identification of Orthologs from Transcriptomes
Five methods were employed to identify orthologous protein
coding genes from mammalian transcriptomes without the
use of genome sequences. First, we employed HaMStR (ver-
sion 13.2.6) (Ebersberger et al. 2009), which in turn used BlastP
(Altschul et al. 1997) and HMMER (Eddy 1998) to search the
combined assembled data for protein sequences matching a
set of known core orthologs. Two distinct sets of core ortho-
logs were used. The first, referred to as eukaryotic core ortho-
logs, is a predefined set of 1,032 single-copy orthologous genes
in the InParanoid database (O’Brien et al. 2005) derived from
the genome sequences of Home sapiens, Ciona intestinalis,
Drosophila melanogaster, Caenorhabditis elegans, and
Saccharomyces cerevisiae. The second, referred to as the
mammalian core orthologs, is a set of 14,018 single-copy
orthologous genes identified from the genome sequences of
Homo sapiens, Macaca fascicularis, Mus musculus, Bos taurus,
and Canis familiaris using OrthoMCL with BlastP E-value cut-
off of 10�5 and Markov clustering inflation index of 1.4.
According to the HaMStR method, our mammalian-
translated unigenes were searched from any one of the
1,032 eukaryotic core orthologs (or 14,018 mammalian core
orthologs) with pHMMs. The matched unigenes were com-
pared with human proteins (as a reference) using BlastP. If a
reciprocal best BLAST hit existed between these genes, the
unigene was placed in that orthologous gene. Finally, for
phylogenic inference, we kept those orthologous genes with
genes present with single-copy (one-to-one) orthologs in at
least 50% of the species in the group. The same analyses were
conducted for plant transcriptomes, where core orthologous
genes were defined using the genome sequences of
Arabidopsis thaliana, Zea mays, Solanum lycopersicum,
Phaseolus vulgaris, and Ananas comosus in conjunction
with Arabidopsis thaliana proteins as a reference.

Second, we applied the gene-tree-based orthology infer-
ence method of Yang and Smith (2014). Using all-against-all
BlastP comparisons (E-value cutoff of 10�5 and max_target_-
seqs 1,000) among a set of protein sequences inferred from
mammalian transcriptomes, we carried out initial homology
searches. The resulting BlastP hits which had at least 30%
aligned regions and at least 30% identical amino acids in
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the aligned regions, and with a hit fraction being at least 0.3,
were retained. To obtain putative homology groups, we per-
formed Markov clustering (MCL) on the filtered all-against-all
BlastP results. For further homology inference, sequences
shorter than 30 amino acids were excluded, and clusters
with at least half of the species represented were retained.
The sequences of each resulting cluster were aligned and
trimmed using MAFFT (v7.149, options: -genafpair, -maxiter-
ate 1,000) (Katoh and Standley 2013) and Phyutility (v2.2.6,
option: -clean 0.1) (Smith and Dunn 2008), respectively. Gene
trees were estimated using RAxML (v8.2.9) (Stamatakis 2014)
with the model of PROTCATWAG. To prune spurious
branches from the input tree, a terminal branch was removed
if it was more than ten times the length of its sister branch
and was longer than 0.6. Because multiple isoforms of the
same gene inferred from transcriptomes could form mono-
phyletic or paraphyletic groups, only the ones that had the
most unambiguous characters in the trimmed alignment
were retained. Branches longer than 0.5 were excluded to
remove deep paralogs. The resulting tree was trimmed to
produce one-to-one orthologous genes that were most likely
present as single-copy genes in the ancestor of the mammals.

Third, we used another tree-based orthology inference
method named PhyloPypruner (v0.8.4) (https://pypi.org/proj-
ect/phylopypruner/). We reused the input trees and align-
ments generated by the YS method and implemented
PhyloPypruner with default options to prune erroneous
branches.

Fourth, we used Orthograph (v0.6.3) (Petersen et al. 2017)
to search orthologous genes from transcriptomes. It employs
a best reciprocal hit search strategy using pHMMs and maps
nucleotide sequences to the globally best matching cluster of
the mammalian core orthologs.

Finally, the OrthoFinder (v2.3.3) (Emms and Kelly 2015)
used for ortholog identification from genomes was also ap-
plied to both mammalian and plant transcriptomes.

Inference of Phylogenomic and Phylotranscriptomic
Trees
Amino acid sequences of orthologous genes were aligned
with Prank (http://wasabiapp.org/software/prank/) using de-
fault options. The aligned sequences were trimmed using
Phyutility (option: -clean 0.3). Any trimmed alignments
<500 amino acids were discarded, except in the case of all
plant trees and YS-method-based mammalian PT trees where
this length cutoff was set at 150. Maximum-likelihood trees
based on the concatenated trimmed alignments were in-
ferred by RAxML with the PROTCATWAG model and IQ-
TREE (v1.6.10) (Nguyen et al. 2015) under the LG þ C60 þ
Fþ R model.

Coalescent-Based Species Tree Reconstruction
We inferred gene trees from individual orthologous groups
using IQ-TREE (v1.6.10) (Nguyen et al. 2015) with the LG þ
C60 þ Fþ R model. A species tree was then reconstructed
from the estimated gene trees using ASTRAL-III (version 5.7.3)
(Zhang et al. 2018).

Generation of Random Trees
To simulate random trees with a given number of taxa, we
used the rtree function in the ape package (v5.0) imple-
mented in R (https://cran.r-project.org). In addition, we
used in-house Python scripts to construct tip-swapped trees
by swapping two randomly selected tips in a tree at a time
until the number of predefined iterations was reached.

Topological Distance between Two Trees
Tree topologies were compared using the R library package
ape (v5.0) (Popescu et al. 2012) with the function dist.topo,
which implemented the topological distance (Robinson and
Foulds 1981). All statistical analyses were performed using R
(R Development Core Team, R Foundation for Statistical
Computing, Vienna, Austria).

Benchmarking Ortholog Identification Methods
To investigate whether the orthologs identified by the
HaMStR and YS methods are correct, we used the
OrthoDB hierarchical catalogue (version 10) (Kriventseva
et al. 2019) as the gold standard. Using BlastP searches (E-
value cutoff of 10�5), each gene in each ortholog group was
assigned an OrthoDB ID. If all genes in an ortholog group have
the same ID, the group is regarded as having correct orthol-
ogy. Otherwise, we consider it incorrect if at least one gene in
the ortholog group has a different ID, or unannotated if any
gene in the group has no OrthoDB ID.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.

Acknowledgments
We thank Stephen Smith, members of the Zhang Lab, and
three anonymous reviewers for valuable comments. This re-
search was supported by the Collaborative Genome Program
(No. 20180430 to C.P.) and “Research center for fishery re-
source management based on the information and commu-
nication technology” (ICT to C.P.) of the Korea Institute of
Marine Science and Technology Promotion (KIMST) funded
by the Ministry of Oceans and Fisheries, Korea. J.Z. is sup-
ported by the U.S. National Institutes of Health research grant
GM120093.

References
Altschul SF, Madden TL, Sch€affer AA, Zhang J, Zhang Z, Miller W,

Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Res.
25(17):3389–3402.

Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA. 2016.
Harnessing the power of RADseq for ecological and evolutionary
genomics. Nat Rev Genet. 17(2):81–92.

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for
Illumina sequence data. Bioinformatics 30(15):2114–2120.

Buchfink B, Xie C, Huson DH. 2015. Fast and sensitive protein alignment
using DIAMOND. Nat Methods. 12(1):59–60.

Cariou M, Duret L, Charlat S. 2013. Is RAD-seq suitable for phylogenetic
inference? An in silico assessment and optimization. Ecol Evol.
3(4):846–852.

Phylotranscriptomics versus Phylogenomics . doi:10.1093/molbev/msaa181 MBE

3681

https://pypi.org/project/phylopypruner/
https://pypi.org/project/phylopypruner/
http://wasabiapp.org/software/prank/
https://cran.r-project.org


Coghlan A, Eichler EE, Oliver SG, Paterson AH, Stein L. 2005.
Chromosome evolution in eukaryotes: a multi-kingdom perspective.
Trends Genet. 21(12):673–682.

Cruaud A, Gautier M, Galan M, Foucaud J, Saune L, Genson G, Dubois E,
Nidelet S, Deuve T, Rasplus JY. 2014. Empirical assessment of RAD
sequencing for interspecific phylogeny. Mol Biol Evol.
31(5):1272–1274.

Delsuc F, Brinkmann H, Philippe H. 2005. Phylogenomics and the recon-
struction of the tree of life. Nat Rev Genet. 6(5):361–375.

Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E,
Rouse GW, Obst M, Edgecombe GD, et al. 2008. Broad phyloge-
nomic sampling improves resolution of the animal tree of life. Nature
452(7188):745–749.

Ebersberger I, Strauss S, von Haeseler A. 2009. HaMStR: profile hidden
Markov model based search for orthologs in ESTs. BMC Evol Biol.
9(1):157.

Eddy SR. 1998. Profile hidden Markov models. Bioinformatics
14(9):755–763.

Eisen JA, Fraser CM. 2003. Phylogenomics: intersection of evolution and
genomics. Science 300(5626):1706–1707.

Ekblom R, Wolf Jochen BW. 2014. A field guide to whole-genome se-
quencing, assembly and annotation. Evol Appl. 7(9):1026–1042.

Emms DM, Kelly S. 2015. OrthoFinder: solving fundamental biases in
whole genome comparisons dramatically improves orthogroup in-
ference accuracy. Genome Biol. 16(1):157.

Fagerberg L, Hallström BM, Oksvold P, Kampf C, Djureinovic D, Odeberg
J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, et al. 2014.
Analysis of the human tissue-specific expression by genome-wide
integration of transcriptomics and antibody-based proteomics. Mol
Cell Proteomics 13(2):397–406.

Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J,
Couger MB, Eccles D, Li B, Lieber M, et al. 2013. De novo transcript
sequence reconstruction from RNA-seq using the Trinity platform
for reference generation and analysis. Nat Protoc. 8(8):1494–1512.

Hittinger CT, Johnston M, Tossberg JT, Rokas A. 2010. Leveraging skewed
transcript abundance by RNA-Seq to increase the genomic depth of
the tree of life. Proc Natl Acad Sci U S A. 107(4):1476–1481.

Irisarri I, Baurain D, Brinkmann H, Delsuc F, Sire J-Y, Kupfer A, Petersen J,
Jarek M, Meyer A, Vences M, et al. 2017. Phylotranscriptomic con-
solidation of the jawed vertebrate timetree. Nat Ecol Evol.
1(9):1370–1378.

Janou�skovec J, Gavelis GS, Burki F, Dinh D, Bachvaroff TR, Gornik SG,
Bright KJ, Imanian B, Strom SL, Delwiche CF, et al. 2017. Major
transitions in dinoflagellate evolution unveiled by phylotranscrip-
tomics. Proc Natl Acad Sci U S A. 114(2):E171–E180.

Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph
PE, Tomsho LP, Hu Y, Liang H, Soltis PS, et al. 2011. Ancestral poly-
ploidy in seed plants and angiosperms. Nature 473(7345):97–100.

Johnson BR, Borowiec Marek L, Chiu Joanna C, Lee Ernest K, Atallah J,
Ward Philip S. 2013. Phylogenomics resolves evolutionary relation-
ships among ants, bees, and wasps. Curr Biol. 23(20):2058–2062.

Jongeneel CV, Delorenzi M, Iseli C, Zhou D, Haudenschild CD,
Khrebtukova I, Kuznetsov D, Stevenson BJ, Strausberg RL, Simpson
AJG, et al. 2005. An atlas of human gene expression from massively
parallel signature sequencing (MPSS). Genome Res. 15(7):1007–1014.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment soft-
ware version 7: improvements in performance and usability. Mol Biol
Evol. 30(4):772–780.

Kocot KM, Cannon JT, Todt C, Citarella MR, Kohn AB, Meyer A, Santos
SR, Schander C, Moroz LL, Lieb B, et al. 2011. Phylogenomics reveals
deep molluscan relationships. Nature 477(7365):452–456.

Kriventseva EV, Kuznetsov D, Tegenfeldt F, Manni M, Dias R, Simao FA,
Zdobnov EM. 2019. OrthoDB v10: sampling the diversity of animal,
plant, fungal, protist, bacterial and viral genomes for evolutionary
and functional annotations of orthologs. Nucleic Acids Res.
47(D1):D807–D811.

Leary MA, Bloch JI, Flynn JJ, Gaudin TJ, Giallombardo A, Giannini NP,
Goldberg SL, Kraatz BP, Luo Z-X, Meng J, et al. 2013. The placental
mammal ancestor and the post–K-Pg radiation of placentals. Science
339(6120):662–667.

Li L, Stoeckert CJ, Roos DS. 2003. OrthoMCL: identification of ortholog
groups for eukaryotic genomes. Genome Res. 13(9):2178–2189.

Li W, Godzik A. 2006. Cd-hit: a fast program for clustering and compar-
ing large sets of protein or nucleotide sequences. Bioinformatics
22(13):1658–1659.

Martin JA, Wang Z. 2011. Next-generation transcriptome assembly. Nat
Rev Genet. 12(10):671–682.

McCormack JE, Faircloth BC, Crawford NG, Gowaty PA, Brumfield RT,
Glenn TC. 2012. Ultraconserved elements are novel phylogenomic
markers that resolve placental mammal phylogeny when combined
with species-tree analysis. Genome Res. 22(4):746–754.

Meredith RW, Jane�cka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC,
Goodbla A, Eizirik E, Sim~ao TLL, Stadler T, et al. 2011. Impacts of the
cretaceous terrestrial revolution and KPg extinction on mammal
diversification. Science 334(6055):521–524.

Miller W, Rosenbloom K, Hardison RC, Hou M, Taylor J, Raney B,
Burhans R, King DC, Baertsch R, Blankenberg D, et al. 2007. 28-
Way vertebrate alignment and conservation track in the UCSC
Genome Browser. Genome Res. 17(12):1797–1808.

Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen
PB, Ware J, Flouri T, Beutel RG, et al. 2014. Phylogenomics resolves
the timing and pattern of insect evolution. Science
346(6210):763–767.

Morgan CC, Foster PG, Webb AE, Pisani D, McInerney JO, O’Connell MJ.
2013. Heterogeneous models place the root of the placental mam-
mal phylogeny. Mol Biol Evol. 30(9):2145–2156.

Murat F, Armero A, Pont C, Klopp C, Salse J. 2017. Reconstructing the
genome of the most recent common ancestor of flowering plants.
Nat Genet. 49(4):490–496.

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast
and effective stochastic algorithm for estimating maximum-
likelihood phylogenies. Mol Biol Evol. 32(1):268–274.

O’Brien KP, Remm M, Sonnhammer E. 2005. Inparanoid: a comprehen-
sive database of eukaryotic orthologs. Nucleic Acids Res. 33(Database
issue):D476–D480.

Paterson AH, Freeling M, Tang H, Wang X. 2010. Insights from the
comparison of plant genome sequences. Annu Rev Plant Biol.
61(1):349–372.

Petersen M, Meusemann K, Donath A, Dowling D, Liu S, Peters RS,
Podsiadlowski L, Vasilikopoulos A, Zhou X, Misof B, et al. 2017.
Orthograph: a versatile tool for mapping coding nucleotide sequen-
ces to clusters of orthologous genes. BMC Bioinf. 18(1):111.

Philippe H, Brinkmann H, Lavrov DV, Littlewood DTJ, Manuel M,
Wörheide G, Baurain D. 2011. Resolving difficult phylogenetic ques-
tions: why more sequences are not enough. PLoS Biol. 9(3):e1000602.

Philippe H, Delsuc F, Brinkmann H, Lartillot N. 2005. Phylogenomics.
Annu Rev Ecol Evol Syst. 36(1):541–562.

Philippe H, Derelle R, Lopez P, Pick K, Borchiellini C, Boury-Esnault N,
Vacelet J, Renard E, Houliston E, Qu�einnec E, et al. 2009.
Phylogenomics revives traditional views on deep animal relation-
ships. Curr Biol. 19(8):706–712.

Popescu A-A, Huber KT, Paradis E. 2012. ape 3.0: new tools for distance-
based phylogenetics and evolutionary analysis in R. Bioinformatics
28(11):1536–1537.

Prasad AB, Allard MW, Green ED; NISC Comparative Sequencing
Program. 2008. Confirming the phylogeny of mammals by use of
large comparative sequence data sets. Mol Biol Evol. 25(9):1795–1808.

Price Dana C, Bhattacharya D. 2017. Robust Dinoflagellata phylogeny
inferred from public transcriptome databases. J Phycol.
53(3):725–729.

Riesgo A, Farrar N, Windsor PJ, Giribet G, Leys SP. 2014. The analysis of
eight transcriptomes from all poriferan classes reveals surprising ge-
netic complexity in sponges. Mol Biol Evol. 31(5):1102–1120.

Cheon et al. . doi:10.1093/molbev/msaa181 MBE

3682



Robinson DF, Foulds LR. 1981. Comparison of phylogenetic trees. Math
Biosci. 53(1–2):131–147.

Rokas A, Williams BL, King N, Carroll SB. 2003. Genome-scale approaches
to resolving incongruence in molecular phylogenies. Nature
425(6960):798–804.

Schierwater B, Eitel M, Jakob W, Osigus H-J, Hadrys H, Dellaporta SL,
Kolokotronis S-O, DeSalle R. 2009. Concatenated analysis sheds light
on early metazoan evolution and fuels a modern “urmetazoon”
hypothesis. PLoS Biol. 7(1):e1000020.

Smith SA, Dunn CW. 2008. Phyutility: a phyloinformatics tool for trees,
alignments and molecular data. Bioinformatics 24(5):715–716.

Smith SA, Wilson NG, Goetz FE, Feehery C, Andrade SCS, Rouse GW,
Giribet G, Dunn CW. 2011. Resolving the evolutionary relationships
of molluscs with phylogenomic tools. Nature 480(7377):364–367.

Song S, Liu L, Edwards SV, Wu S. 2012. Resolving conflict in eutherian
mammal phylogeny using phylogenomics and the multispecies co-
alescent model. Proc Natl Acad Sci U S A. 109(37):14942–14947.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and
post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313.

Struck TH, Paul C, Hill N, Hartmann S, Hösel C, Kube M, Lieb B, Meyer A,
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