cancers

Review

Glycosylation: Rising Potential for Prostate Cancer Evaluation

Anna Kaluza *¥, Justyna Szczykutowicz

check for

updates
Citation: Katuza, A.; Szczykutowicz,
J.; Ferens-Sieczkowska, M.
Glycosylation: Rising Potential for
Prostate Cancer Evaluation. Cancers
2021, 13, 3726. https://doi.org/
10.3390/ cancers13153726

Academic Editor: Sandra J. van Vliet

Received: 25 June 2021
Accepted: 21 July 2021
Published: 24 July 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Mirostawa Ferens-Sieczkowska

Department of Chemistry and Immunochemistry, Wroclaw Medical University, Sklodowskiej-Curie 48/50,
50-369 Wroclaw, Poland; justyna.szczykutowicz@umed.wroc.pl (J.S.);
miroslawa.ferens-sieczkowska@umed.wroc.pl (M.E-S.)

* Correspondence: anna.kaluza@umed.wroc.pl; Tel.: +48-71-770-30-66

Simple Summary: Aberrant protein glycosylation is a well-known hallmark of cancer and is as-
sociated with differential expression of enzymes such as glycosyltransferases and glycosidases.
The altered expression of the enzymes triggers cancer cells to produce glycoproteins with specific
cancer-related aberrations in glycan structures. Increasing number of data indicate that glycosylation
patterns of PSA and other prostate-originated proteins exert a potential to distinguish between benign
prostate disease and cancer as well as among different stages of prostate cancer development and
aggressiveness. This review summarizes the alterations in glycan sialylation, fucosylation, truncated
O-glycans, and LacdiNAc groups outlining their potential applications in non-invasive diagnostic
procedures of prostate diseases. Further research is desired to develop more general algorithms
exploiting glycobiology data for the improvement of prostate diseases evaluation.

Abstract: Prostate cancer is the second most commonly diagnosed cancer among men. Alterations in
protein glycosylation are confirmed to be a reliable hallmark of cancer. Prostate-specific antigen is the
biomarker that is used most frequently for prostate cancer detection, although its lack of sensitivity
and specificity results in many unnecessary biopsies. A wide range of glycosylation alterations in
prostate cancer cells, including increased sialylation and fucosylation, can modify protein function
and play a crucial role in many important biological processes in cancer, including cell signalling,
adhesion, migration, and cellular metabolism. In this review, we summarize studies evaluating the
prostate cancer associated glycosylation related alterations in sialylation, mainly «2,3-sialylation, core
fucosylation, branched N-glycans, LacdiNAc group and presence of truncated O-glycans (sTn, sT
antigen). Finally, we discuss the great potential to make use of glycans as diagnostic and prognostic
biomarkers for prostate cancer.
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1. Introduction

Prostate cancer was the second most commonly occurring cancer and the fifth leading
cause of cancer death among men in 2020 [1,2]. In 1986, prostate-specific antigen (PSA)
was approved by the United States Food and Drug Administration (FDA) to screen men
for prostate cancer (PCa). PSA is present in small quantities in the serum of men with a
healthy prostate (up to 2.5 ng/mL), whereas a concentration above 4 ng/mL is considered
indicative of prostate cancer or benign prostatic hyperplasia (BPH) [3,4]. Frequently, PSA
screening for prostate cancer has limited sensitivity and specificity, which can lead to
overdiagnosis and overtreatment of indolent disease, resulting in unnecessary, invasive
biopsy and treatments for non-aggressive cancers [5,6]. Hence, in the following years
serum PSA screening in association with digital rectal exam (DRE) and Gleason scoring
of prostate biopsy samples was approved by the FDA for the early detection of prostate
cancer [7]. Subsequent approaches for refining the specificity and sensitivity of the serum
PSA test involved calculating the proportion of free PSA (fPSA) to total PSA (tPSA), and
PSA complexed with alpha-1-antichymotrypsin and a2-macroglobulin to total PSA [7], as
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well as focusing on the individual molecular forms of PSA such as proPSA, benign PSA,
and intact PSA. A multifactorial PSA test, such as the Prostate Health Index (PHI) and the
four-kallikrein panel (4Kscore), can improve diagnostic accuracy but has limited prognostic
usefulness, and may miss some aggressive tumors [8-10]. More recently, imaging tech-
niques such as multiparametric magnetic resonance imaging (mpMRI) and prostate-specific
membrane antigen (PSMA) positron emission tomography (PET)/computed tomography
(CT) have evaluated as a potential tool for staging prostate cancer in men before radical
treatment. However, the limitations of both techniques were identified. Detection of
clinically significant PCa in multiparametric MRI is changeable and depends on a few
factors, including tumor location and volume, Gleason score, moreover the analysis of
multiparametric prostate MRI is operator dependent [11]. Meanwhile, the sensitivity of
PSMA PET/CT technique for the detection of metastases is reduced, presumably due
to limitations in the spatial resolution of detecting small tumor deposits in primary and
recurrent prostate cancer [12]. Researchers also compared the clinical utility of prostate
cancer antigen 3 (PCA3) with PSA in a serum test [13] and widely examined PSA post-
translational modification such as glycosylation [14-16]. Due to the high importance of
glycan alterations observed in prostate cancer, including increased sialylation and core
fucosylation, the emergence of truncated O-glycans and branched N-glycans, in this review
we discuss the great potential to make use of glycans as diagnostic and prognostic biomark-
ers for prostate cancer. Our review focuses on PSA, the glycoprotein that has been studied
in the most detail so far, but the variety of scientific approaches is remarkable, therefore
unfractionated biological material such as whole serum were also considered. Not all
glycoepitopes important for prostate cancer proliferation have been observed for PSA, thus
analyzing only a selected glycoprotein, a lot of data relevant to the assessment of glycosyla-
tion changes in prostate disease may be lost. Therefore, presented work does not provide
evident solutions for the selection of glycoepitopes that could effectively act as prognostic
biomarkers, the studies available so far do not allow for such far-reaching conclusions.

2. Action of Androgens in the Prostate Gland

The biomolecules secreted in prostatic fluid are engaged in the regulation of prostate
epithelium homeostasis and the process of ejaculation. The agents that provide these
functions are kallikreins, which include PSA and kallikrein-related peptidase 2 (hK2). The
others are citrate, an intermediate product of the Krebs cycle, and Zn?*, a chemical element
actively stored within the cytoplasm of the prostatic epithelial cells [17,18]. Physiological
growth and development of prostatic epithelium, as well as the regulation of its secretory
functions, depend on the appropriate action of androgen steroid hormones [19]. The action
of androgens is mediated via the androgen receptor (AR), a ligand-activated transcription
factor and member of the steroid hormone nuclear receptor family, which mediates andro-
gen signaling by binding to androgen response elements (AREs) in both normal prostate
tissue and prostate cancer [20-22].

Healthy prostate cells store the largest amount of zinc ions of all soft tissues in the
human body. This remarkable property is based on the fact that prostatic epithelial cells
retain Zn?* through androgen-dependent Zn?* cellular uptake and maintain the cycle
in which specific zinc transporters are involved [17,18]. The accumulation of Zn?* and
citrate within the prostate, suppression of the Krebs cycle, and the release of fluid from
the gland are regulated by androgens. In prostate tissue, a more potent derivative 5o-
dihydrotestosterone (DHT), synthesized from testosterone by 5a-reductase enzyme, is
the primary ligand for the AR [23]. Hundreds of genes have been identified that are
regulated via DHT in prostate epithelial cells, many of which are essential genes involved
in the maintenance of prostate homeostasis [24,25]. Circulating testosterone level and
intraprostatic DHT concentration decrease gradually with ageing, causing the gland to
malfunction by reducing its ability to sustain a healthy tissue level of intracellular Zn*,
KLK-secreted proteins and citrate within the prostate liquid.
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Normal prostate epithelial cells display characteristic behaviour in relation to their
metabolic pathway. They are programmed to produce citrate, unlike most cells which
oxidize it [26]. The inhibition of the Krebs cycle in normal prostate cells results in the
accumulation and subsequent secretion of citrate as a component of semen. This distinctive
process of citrate production is supported by another specific feature of the prostate
epithelial cells: the ability to store high concentrations of zinc, which have been shown
to inhibit m-aconitase, the enzyme that catalyses the oxidation of citrate in the Krebs
cycle [27,28]. Accumulation of zinc in prostate epithelium is driven by an increased amount
of the zinc transporter ZIP1 in tissue [27,28]. In normal prostate epithelial cells, through the
accumulation of zinc, the Krebs cycle is inhibited, so these cells are energetically inefficient.
This leads to an ATP production process different than present in most cells [29]. In contrast,
prostate cancer cells reverse this process, leading to reactions that cause zinc loss and citrate
oxidation, which is a major change in energy metabolism [18,28]. It was discovered long
ego that prostate cancer cells do not exhibit the standard Warburg effect, observed in most
cancer cells, whereby high glucose uptake and lactate release are considered hallmarks
of most tumors [30]. As opposed to most cancer cells that utilize aerobic glycolysis,
prostate cancer cells show a higher level of citric acid cycle activity compared to normal
cells [26,28,31].

Apart from that, androgens are crucial for the development and metastatic progression
of prostate cancer. Undoubtedly, androgen deprivation therapy (ADT) is the widely
accepted initial treatment for symptomatic metastatic prostate cancer. In the early stages of
diseases ADT is effective, but after 2-3 years the patients may develop castration-resistant
prostate cancer (CRPC), which is ultimately lethal [32,33].

3. Prostatic Inflammation, Benign Prostatic Hyperplasia and Prostate Cancer

Recent data support the role of chronic prostatic inflammation as a predisposing factor
for development of BPH [34] and prostate cancer [35]. Several authors have highlighted the
significance of prostatic inflammation in the origin of BPH, pointing out that the prostate
is an immunocompetent gland in which a small number of inflammatory cells such as T
and B lymphocytes, mast cells and macrophages are physiologically present [36]. In adults,
chronic inflammatory prostate infiltrates vary greatly in BPH and healthy tissues. The most
common cells of infiltrates from patients with BPH are CD19* or CD20* B lymphocytes,
CD4" T lymphocytes and macrophages [37]. The B and T cells as well as macrophages
occurring in the adult prostate can contribute to the damage of both epithelial and stromal
cells, induce cytokine production and increase the concentration of growth factors that
can stimulate an anomalous remodelling process. Interestingly, IL-8 has been suggested
as a link between chronic prostate inflammation and the development of BPH. Several
studies have indicated significantly elevated IL-8 expression in epithelial prostate cells
and emphasized that this can trigger the expression of fibroblast growth factor (FGF) and
stromal-epithelial growth factor signaling and subsequently induce abnormal proliferation
of prostatic cells [38]. In consequence, tissue damage can initiate a chronic wound healing
process that can induce prostate enlargement, potentially resulting in BPH [36].

4. Biology of Prostate-Specific Antigen

Prostate fluid is a rich source of prostate-derived proteins that can be used for
biomarker discovery in a number of prevalent benign and malignant prostatic diseases
including prostatitis, benign prostatic hyperplasia and prostate cancer. Several glycosylated
proteins have been accepted as cancer biomarkers by the FDA, including prostate-specific
antigen [39,40]. Prostate-specific antigen (PSA), also known as human kallikrein 3 (KLK3),
is currently widely used as the gold standard biomarker for screening and diagnosis of
prostate cancer [4]. PSA is an organ-specific glycoprotein, secreted by the epithelium and
periurethral glands. PSA occurs as a 237-amino acid serine protease with chymotrypsin-
like activity, and its transcription is regulated by androgens [41,42]. PSA is secreted as an
inactive proenzyme (proPSA) into seminal fluid, which during the liquefaction process is
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converted by kallikrein-related peptidase 2 to a 33 kDa mature active form [3,43,44]. In
the early stage of prostate cancer development, disruption of the basal cell layer and the
basement membrane of the prostate epithelium results in leakage of PSA into the peripheral
circulation, and this circulating blood form of PSA is identified in the early detection tests
for prostate cancer [3]. The serum PSA level increases with the clinical severity of disease
and is proportional to tumor volume, whereas after radical prostatectomy its level in serum
reaches undetectable values [41,45]. Schroeder et al. showed that PSA-based screening of
prostate cancer reduced the rate of death by 20% but simultaneously was correlated with a
high degree of overdiagnosis [46].

PSA has a single N-glycosylation site at asparagine (Asn-69), verified in X-ray crystal
structures [47,48]. In 2013, the results of a comprehensive multi-laboratory ABRF study
examining N-glycosylation of Asn-69 in healthy donors were announced, and they made it
possible to describe the structure of glycans attached to PSA [3,48,49]. The most abundant
glycans identified were four biantennary glycan structures, consisting of three mannose,
two galactose subunits, and four 3-N-acetylglucosamine residues, estimated to comprise
approximately 80% of the total number of PSA-related glycans. These all have one or two
terminal sialic acid residues and the presence or absence of a core fucose. Two dominant
hybrid structures have also been reported [3,48,49].

5. Glycosylation Changes in Cancer

Protein glycosylation is a post-translational process that enhances molecular hetero-
geneity as well as functional diversity within cell populations. Tumor cells show a wide
range of glycosylation rearrangement in relation to their unchanged counterparts. Hako-
mori and Kannagi were the first to postulate the two main mechanisms underlying the
cancer-associated changes of carbohydrate structures, called incomplete synthesis and
neo-synthesis [50]. The incomplete biosynthesis pathway, typical for the early stages of a
tumor, is the result of defective synthesis of typical glycans present in normal epithelial
cells, leading to the synthesis of truncated structures such as short-chain O-GalNAc glycans
(Tn, T, sialyl-Tn, and sialyl-T antigens). In contrast, neo-synthesis occurs extensively in
advanced stages of cancer, and is associated with the induction of some genes involved in
the glycosylation pathway, which results in de novo expression of antigens such as Lewis
blood group related antigens (Le) and their sialylated counterparts: sialyl Lewis A (sLe?)
and sialyl Lewis X (sLeX) antigens (Figure 1) [50,51]. Altered expression of glycans may
result from several biological factors: (1) overexpression or underexpression of the relevant
glycosyltransferases in the Golgi apparatus, (2) changed glycosidase activity, (3) alterations
in tertiary peptide backbone composition, and (4) the availability and sufficiency of the
sugar nucleotide donors and cofactors [52-54]. The presence and molecular density of the
glycans affect the half-life of many different types of membrane receptor proteins, including
glucose transporters, cytokine receptors, transforming growth factor beta (TGF-3) and
epidermal growth factor receptor (EGFR), which are involved in tumor formation and cell
migration associated with cancer progression [54-56].
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Figure 1. Overexpressed glycan structures typical for PCa. (A) Highly branched (tetra-antennary) N-glycan with LacdiNAc

motif; (B) Biantennary N-glycan terminated with «2,3-linked SA; (C) Biantennary N-glycan with core fucose and bisecting
GIcNAG; (D) sTn truncated O-glycan; (E) sT O-glycan antigen; (F) core-2-O-glycan with sLeX antigen. Blue boxes indicate

glycosyltransferases involved in the synthesis of particular structures.

6. Sialylated N-Glycans

Sialylated glycans are the ligands of various proteins involved in crucial biological
processes; cell surface sialylated glycans are engaged in the immune response, signal
transduction and embryonic development. The sialic acid residues operate as receptors
for specific ligands, such as siglecs and selectins [57,58]. Many reports have also stated
that sialylated glycans are involved in oncogenesis and malignant progression [58]. The
transformation of healthy cells into heterogeneous cancer cells is accompanied by the
appearance of an abnormal sialylation pattern, which is reflected in a large group of sialy-
lated glycoproteins secreted by tumor cells [58,59]. One of the decisive glycomic features
associated with malignant and metastatic progression is the presence of N-glycans termi-
nated with «2,6-N-acetylneuraminic acid (Neu5Ac) residues, controlled by the action of
-galactoside-a2,6-sialyltransferase I (ST6Gal-I). Expression of this enzyme is modified in
various malignancies, including prostate, breast and ovarian cancer [60-62]. The presence
of «2,6-linked sialic acids on tumor cells is crucial because «2,6-sialylation can execute
alternative biological outcomes compared to «2,3-sialylation. One accurate example is
the impact of «2,6-sialylation on galectin-dependent cell behaviours. Numerous studies
indicate that «2,6-sialylation of galactose acts as a general inhibitor of galectin binding, in
contrast to o2,3-sialylation with various binding effects to some particular galectins. There-
fore, glycans capped with «2,6-sialic acid globally act as a significant negative regulator of
many key galectin functions. One of the important activities of cell surface «2,6-sialyation
is to suppress the binding of pro-apoptotic galectins, at the same time inducing cancer cell
survival [63,64].

Additionally, elevated sialylation in cancer can be related to the formation of polysialic
acid, which is associated with several types of cancers and is often present in high-grade
tumors [58,65]. Other main sialylated antigens associated with cancer are sLe® and sLe*.
These have been shown to be remarkably expressed in many malignant tumors, including
hepatic, renal and breast cancers [66]. Additionally, sLe* antigen expression level has
been associated with a diminished chance of survival for prostate cancer patients [67].
SLe* and its isomer sLe® are crucial recognition determinants for selectins, vascular cell
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adhesion molecules belonging to a large family of C-type lectins. In the process of inflam-
mation, selectins mediate the first stage of leucocytes” adhesion to the endothelium during
leucocyte extravasation [68]. In cancer cells, sLe* interactions with selectins regulate the
metastatic process by tethering platelet-tumor cell emboli and promoting their arrest on
the endothelium, therefore contributing to malignant behaviour and the progression of
metastasis [69].

Over the years, PSA glycosylation changes have been analysed by mass spectrometry,
and the level of «2,3-linked sialic acid was reported to be remarkably different in prostate
cancer patients compared to a control group, stressing the importance of PSA sialylation in
distinguishing cancer patients from healthy men (Figure 1B) [14,16,70]. In patients with
prostate cancer, serum PSA contains increased levels of «2,3-linked sialic acid connected
to the terminal galactose residue compared to healthy individuals [14,71]. Additionally,
Ohyama et al. detected that binding of prostate cancer related PSA to Maackia amurensis
lectin specific for «2,3-linked sialic acid was more intense than binding of PSA from healthy
individuals [72]. Serum glycoproteins of prostate cancer patients showed increased levels
of o2,3-linked sialic acid in relation to serum of patients with benign prostatic hyperplasia.
The authors suggested that this feature can be used to predict the Gleason score with
greater sensitivity and specificity than PSA concentration, used to date [73].

In metastatic prostate cancer two main forms of PSA were detected in the serum: a free
form and alpha-1-antichymotrypsin (ACT)-complexed PSA. Both were characterized by
mostly sialylated biantennary glycan structures, but the presence of several multi-antennary
complex structures was also observed [14]. Yoneyama et al. developed a more sensitive
diagnostic PSA test, in which they used a magnetic microbead-based immunoassay, that
directly measured the amount of «2,3-linked sialic acid on the free serum PSA. The new
assay showed a sensitivity of 95% and a specificity of 72% in a measurement carried out
on a cohort of over 300 serum samples, from patients who underwent biopsy, including
138 PCa and 178 non-PCa patients with a PSA level less than 10.0 ng/mL [16]. This
solution was more sensitive and accurate than the conventional PSA level and the free
PSA-percent tests in the diagnosis of prostate cancer. Another study conducted in 13 BPH
and 34 prostate cancer patients’ sera (including 17 Gleason grade 5 and 17 Gleason grade 7
samples), which considered N-glycans from the whole serum glycoproteins, indicated that
tetra-antennary tetra-sialylated N-linked oligosaccharide levels were higher in the serum
samples from patients with Gleason score 7 compared to Gleason score 5. Conversely,
levels of tetra-antennary tetra-sialylated glycans with terminal fucose and tri-antennary
tri-galactosylated glycans were significantly lower in serum from patients with a Gleason
score of 7 compared to a Gleason score of 5 [73]. Moreover, the detection of «2,3-linked
sialic acid PSA glycoforms combined with the PHI in a cohort of 79 patients showed
100% sensitivity and 94.7% specificity. The proposed analysis proved superior to PSA to
distinguish aggressive prostate cancer from low-risk and benign disease (Table 1) [74].
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Table 1. Summary of sialylated N-glycan alterations in prostate cancer.

. Author Year
Type of Glycans Structure Sample Groups Main Results References
Serum of PCa patients vs. serum of Serum «2,3-linked sialic acid of PSA in PCa group was Yoneyama 2014
non-PCa patients significantly higher than in non-PCa group [16]
PCa serum vs. control serum Level of «2,3-linked 51al.1c acid of PSA from prostate Pihikova 2016
cancer serum was increased compared to
(healthy men) [70]

«2,3-sialylated

healthy individuals

BPH serum vs. PCa serum

Significant increase in «2,3-linked sialic acid from total
serum glycoproteins in PCa group comparing with
BPH group was detected

Saldova 2011 [73]

BPH serum, low-risk PCa serum,
intermediate-risk PCa serum, and
high-risk PCa serum samples

There was a significant increase of «2,3-sialylated PSA
in the group of high-risk PCa patients compared with
the intermediate-risk PCa, low-risk PCa, and
BPH groups

Llop 2016 [75]

BPH serum vs. PCa serum

Serum % o2,3-sialic acid of PSA was significantly
higher in patients with PCa compared to BPH patients

Ishikawa 2017 [76]

BPH serum vs. PCa serum

The combination of % «2,3-SA PSA and PHI
differentiates high-risk PCa patients from the low and

Ferrer-Batalle 2017

intermediate-risk PCa patients [74]
PCa urine samples with varied Highly sialylated urinary N-glycans were upregulated Yang 2017
Gleason scores in metastatic cancer patients [77]
BPH serum vs. PCa serum (17 Tetra-antennary tetra-sialylated glycans were Saldova 2011
Tetra-antennary tetrasialylated Gleason grade 5 and 17 Gleason grade increased in the serum samples from patients with [73]

7 samples)

Gleason score 7 compared to Gleason score 5
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Table 1. Cont.
. Author Year
Type of Glycans Structure Sample Groups Main Results References
A decreased amount of tri-antennary,
.Trl.-antennaryf trl-galacfosylated Indolent, significant, aggressive PCa tr}-galactosylated tr1—s1elalylated glycans Wlth and Gilgunn 2020
tri-sialylated with and without core ; LSOO without core fucose residue corresponding to the
according Epstein’s criteria [78]

fucose residue

transition of PCa from indolent state through
significant and aggressive disease

Sialylated glycoforms bearing
GalNAc moieties

Serum PCa vs. standard SP PSA of
healthy men

Serum PSA sialylated glycoforms bearing GalNAc
moieties were heightened in aggressive PCa patients

Gratacos-Mulleras 2020
[79]
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The most recent study considering whole serum N-linked glycans in various prostate
cancer stages aimed to investigate whether an altered glycosylation pattern could differ-
entiate distinct forms of prostate cancer, including indolent, significant, and aggressive
PCa. N-glycan profiling was performed on 117 prostate cancer serum samples using an
automated, high-throughput analytical platform, which exploits ultra-performance lig-
uid chromatography for high resolution separation of N-glycans. The results revealed
a decreased amount of tri-antennary, tri-galactosylated tri-sialylated glycans with and
without core fucose residues, corresponding to the transition of PCa from the indolent
stage through significant and aggressive disease. Additionally, an increase in hybrid,
oligomannose, bisecting GIcNAc and monoantennary glycans was observed (Table 1) [78].

Another interesting investigation regarded the main sialylated PSA glycoforms from
the serum of aggressive PCa patients in relation to standard PSA from seminal plasma of
healthy men. Exploiting Sambucus nigra affinity chromatography, the «2,6-linked sialic
acid glycoforms were separated from «2,3-linked glycoforms, then PSA N-glycans were
analysed by hydrophilic interaction liquid chromatography. The results indicated that
levels of serum PSA sialylated glycoforms bearing GalNAc moieties (LacdiNAc) were
raised in aggressive PCa patients. Concomitantly, levels of disialylated core fucosylated
biantennary structures with «2,6-linked sialic acid, which were previously indicated as
major PSA glycoforms characteristic for standard PSA from healthy men, were significantly
lowered in aggressive PCa (Table 1) [79].

7. Fucosylated N-Glycans

Fucosylated glycans are synthesized by a series of fucosyltransferases. The modifica-
tion generally occurs as core fucosylation and terminal fucosylation, the latter including
specific Lewis blood group antigens such as LeX, Le¥, Le?, and LeP. The core fucosylation
of protein relies on addition of a fucose residue to the innermost N-acetylglucosamine
(GIecNACc) residue of N-glycans via an «l,6-linkage, and is catalysed by fucosyltransferase
Fuc-TVIII (Figure 1C), encoded by the FUTS gene [80]. Altered expression of FUT8 and
FUTE6 is an important feature in several cancers such as high-grade prostate cancer and
breast cancer [80,81]. The FUT6 gene encodes o1,3-fucosyltransferase and is upregulated
in distant metastases. It was also reported that the product of this gene can participate in
metastasis to bones [82]. Furthermore, expression of FUT6 might trigger prostate cancer cell
trafficking through an E-selectin-dependent mechanism [83,84]. Overexpression of FUT$
has been recently linked with aggressive and castrate-resistant prostate cancer, as well as
being associated with a poor prognosis for patients [85,86]. More recent data indicate that
FUT8 is involved in controlling the function of cancer cell membrane receptors [87]. Core
fucosylation transforms cell surface molecules as well as the tumor microenvironment, and
thus the extracellular matrix and growth factors, supporting cancer progression. FUT8
promotes cancer cell invasiveness by remodelling the core fucosylation of the TGF-f3 recep-
tor [88,89], as the presence of core fucose strongly affects the binding affinity of the TGF-f3
receptor and thus TGF-f3 induced epithelial-mesenchymal transformation (EMT) [90,91].

In the serum of prostate cancer patients increased core fucosylation of glycans has
been found, compared to patients with BPH as well as men without known prostatic
disease. These findings suggest that core fucosylation is associated with disease pro-
gression [73,92,93]. Saldova et al. established a high-throughput HPLC assay and used it
for quantitative analysis of N-glycans from the whole serum glycoproteins of BPH and
prostate cancer samples. Additionally, the samples were split into low and higher grade
Gleason groups. A significant increase in core-fucosylated biantennary glycans in prostate
cancer related to BPH was observed, but no changes in these glycans were associated with
Gleason scores (Table 2) [73].
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Table 2. Summary of fucosylated, bisected, tri- and tetra-antennary N-glycan alternations in prostate cancer.

Type of Glycans Structure Sample Groups Main Results Author, Year References
Healthy individuals serum vs. PCa In the serum of PCa patients increased fucosylation of Kyselova 2007
patients serum glycans compared to healthy individuals was found [91]
BPH serum vs. PCa serum (17 A significant increase in core-fucosylation biantennary Saldova 2011
Gleason grade 5 and 17 Gleason glycans in PCa serum relative to BPH was observed, no [73]
grade 7 samples) changes were associated with Gleason scores
LNCaP-an androgen dependent cell Fucosylation of glycans was increased in the rapidly Shah 2015
line and PC3- an androden proliferating and more invasive PC3 cell line relative to the [85]
Fucosylated or/and independent cell line slow growing, and less invasive LNCaP cell line
PC3 vs. LNCaP FUTS expression was elevated in metast'atlc PCa tissues
compared to normal prostate tissues
and A Wang 2014
metastatic PCa tissues vs. normal FUTS overexpression in LNCaP [80]
. ’ cells increased PCa cell migration, while loss of FUTS in PC3
prostate tissues -
cells decreased cell motility
PCa serum samples with different LCA- and AAL-immunoassays detected ll.lcregsed Wang 2019
fucosylated PSA, results were correlated with higher
Gleason scores [94]
Gleason scores
~ EPS-urine .pools from aggressive The presence of bl-an‘termary structures w1.th Nyalwidhe 2013
Bisected PCa, indolent PCa and bisecting-GlcNAc residue was increased with [95]
non-cancer urine samples disease severity
Serum samples from healthy men, . L . . . .
. Tri- and tetra-antennary glycans were significantly higher in Ishibashi 2014
BPH, early stage-PCa, PCa with CRPC patients compared to the other groups [96]
Tei- and ADT and CRPC patients P P group
Ti- an
tetra-antennary MGATS5B gene overexpression was observed
Prostate cancer cells LNCaP, PC-3, in all prostate cancer cell lines compared to normal prostate Lange 2012
LuCaP 23.1, and DU-145 epithelium. 31,6-branched oligosaccharides were [97]

restricted to metastatic prostate cancer xenografts
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Table 2. Cont.
Type of Glycans Structure Sample Groups Main Results Author, Year References
Normal seminal fluid and prostate The amount of the LaCd.l NAc moieties was mcreased n Peracaula 2003
LNCaP glycans in relation to structures obtained from
cancer cells LNCaP [71]
normal SP PSA
Abundance of multisialylated LacdiNAc structures was Haga 2019
Sera from PCa vs. BPH sera significantly upregulated in the PCa patients compared to %98]
. . the BPH group
LacdiNAc motif :
Seminal fluid, serum of BPH and In prostate cancer the upregulahor} of the B4Ga1NACT4 was Fukushima 2010
PCa patients, and LNCaP cell line observed, and were correlated with the overexpression of [99]
! the LacdiNAc groups for PCa-derived PSA
The LacdiNAc-PSA immunoassay allowed for distinction
between PCa and BPH within the PSA gray zone Kava 2015
BPH serum vs. PCa serum The LacdiNAc-PSA determination revealed that levels of Ell 00]

LacdiNAc-PSA were significantly higher in PCa sera than in
BPH sera
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Studies utilizing the two prostate cancer cell lines LNCaP and PC3 have shown that
fucosylation of glycans is increased in the rapidly proliferating and more invasive PC3 cell
line compared to the slow growing, less invasive LNCaP cell line [85]. Wang et al. detected
expression of «1,6-fucosyltransferase solely in PC3, and not in LNCaP cells. Afterwards
the authors found that FUT8 expression was elevated in metastatic PCa tissues compared
to normal prostate tissues. Using PC3 and LNCaP cells as models, they also confirmed that
FUTS overexpression in LNCaP cells increased PCa cell migration, while the silencing of
FUT8 expression in PC3 cells reduced cell motility. These results suggest the association of
FUTS with aggressive prostate cancer (Table 2) [91,101].

In a recent study Clark et al. evaluated the effect of altered «1,6-fucosyltransferase
expression on extracellular vesicles (EVs) in a prostate cancer cell model. They found
that increased cellular expression of FUT8 can reduce the number of vesicles secreted by
prostate cancer cells and simultaneously enhance the protein abundance correlated with
cell motility and prostate cancer metastasis. Overexpression of FUT8 can also cause changes
in glycans presented on EV-derived glycoproteins [101]. Wang and co-workers developed a
quantitative lectin immunoassay using Lens culinaris agglutinin (LCA) and Aleuria aurantia
lectin (AAL) to evaluate the level of PSA fucosylated glycoforms in serum samples from
prostate cancer patients with different Gleason scores. The results demonstrated that both
LCA and AAL immunoassays identified an increased level of fucosylated serum PSA. These
results were concomitantly correlated with higher Gleason scores. Finally, the authors
concluded that the determined fucosylated PSA forms could be valuable biomarkers to
differentiate between aggressive and non-aggressive prostate cancer (Table 2) [94].

8. Branched N-Glycans

During malignant transformation and cancer progression, a frequently occurring
change in the glycosylation pattern is the increased expression of complex (31,6-branched
N-glycans [102]. The raised level of GlcNAc-branching N-glycans is a result of increased
activity of mannoside N-acetylglucosaminyltransferase 5 (GnT-V), which is encoded by
the MGAT5 gene, often activated in cancer cells [59]. Activity of GnT-V leads to the
formation of complexed tri- and tetra-antennary structures (Figure 1A), which can affect the
stability, functional activity and half-life of proteins, as well as membrane dynamics [61,103].
Furthermore, branched N-glycans can be modified via $1,4-galactosyltransferases (31,4-
GalTs), thus elongated with poly-N-acetyllactosamine repeats, and finally capped with
sialic acid or fucose. Poly-N-acetyllactosamine moieties are ligands for galectins, a family
of evolutionarily conserved carbohydrate-binding proteins. These lectins bind glycans
with high avidity and affinity, forming multivalent galectin-glycan lattices that control
glycoprotein clustering and endocytosis, to regulate receptor signaling and activation [104].
Galectins play an essential role in cancer, participating in neoplastic transformation,
survival of cancer cell, angiogenesis and tumor metastasis [59,105]. In contrast to the
function of GnT-V, GnT-1II catalyses the attachment of bisecting GIcNAc N-glycans via
a 31,4-linkage (Figure 1C), inhibiting further conversion and extension of the glycan, as
seen in $1,6-branched structures. GnT-1III counteracts the role of GnT-V in the neoplastic
process by participating in the inhibition of cancer metastasis [59].

Numerous studies have indicated that N-acetylglucosaminyltransferase V is an impor-
tant tumorigenesis- and metastasis-associated enzyme in prostate cancer [106]. Lange et al.
reported that 31,6-GlcNAc tri- and tetra-branched N-glycans were increased in cell line
xenograft mouse models of prostate cancer (Table 2) [97]. Additionally, it was found that pa-
tients with castration-resistant prostate cancer had both overexpressed transcription levels
of N-glycan branching enzymes and increased tri- and tetra-antennary N-glycans [91,96].
Slightly different observations were reported for direct expressed-prostatic secretion (EPS)
and EPS urine samples. A decline in the amount of tri- and tetra-antennary glycans in
advanced prostate cancer samples with a Gleason score of 8 and 9 was detected, and at
the same time many biantennary structures with a bisecting-GlcNAc residue were observed,
suggesting antimetastatic activity of GnT-III [95]. In some recent research it has been empha-
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sized that changes in branched N-glycans can help to distinguish between BPH and prostate
cancer, and furthermore increased levels of serum tri- and tetra-antennary N-glycans can be
clinically useful for predicting castrate-resistant prostate cancer (Table 2) [96]. In a recent
study, tetra-antennary N-glycans were identified as part of a biomarker panel to refine the
distinction of patients with indolent and aggressive prostate cancer and predict patient
survival [107].

9. LacdiNAc Structures

In general, LacdiNAc structures are rarely observed in normal mammalian cells, while
their frequency is significantly increased in prostate, ovarian, and pancreatic cancers [98,108,109].
The terminal modification of N-glycans results from the 34-linkage of N-acetylgalactosamine to
N-acetylglucosamine to form the LacdiNAc unit (GaINAcp1—+4GlcNAc). Two human 34-
N-acetylgalactosaminyltransferases (34GalNAcTs)—p4GalNAcT3 and 34GalNAcT4—are
involved in biosynthesis of the LacdiNAc motif (Figure 1A). Although the enzymes have
high sequence homology and similar substrate specificities, they present different tissue
distribution: the B#GALNT3 gene is mainly expressed in the human testis, stomach and
colon, while the BAGALNT4 gene is expressed in the human brain and ovary [109].

LacdiNAc structures have been documented for PSA N-glycans purified from seminal
plasma of healthy individuals and from the human prostate cell line LNCaP. The amounts of
the LacdiNAc moieties were increased in PSA obtained from prostate cancer cells [71,109].
Furthermore, the occurrence of LacdiNAc groups on PSA has been observed in numerous
studies using Wisteria floribunda agglutinin (WFA) [98-100,110]. Interestingly, in prostate
cancer the upregulation of 34GalNAcT4 was observed, while no changes were noted
for p4GalNACcT3 [99,109]. Additionally, a correlation between enzyme upregulation
and overexpression of LacdiNAc epitopes in prostate cancer derived PSA was found
(Table 2) [99]. When prostate cancer and benign prostatic hyperplasia PSA were compared,
BPH patients’ glycoproteins contained predominantly terminally sialylated, complex-type
biantennary N-glycans, whereas PSA from patients with prostate cancer presented an
increased amount of similar biantennary complex-type glycans, but with one LacdiNAc
unit, only partially sialylated [109]. Haga and co-workers observed that abundance of
multiple sialylated LacdiNAc structures was significantly upregulated in PCa patients
compared to the BPH group, and further established a new, highly sensitive PCa-specific
diagnostic model: the “PSA G-index”. It is based on the relative abundance of the two di-
and tri-sialylated LacdiNAc glycoforms. Both above-mentioned PSA glycoforms showed
a significant correlation with Gleason scores. In the same study, histochemical staining
analysis with WFA lectin showed that PCa cells overexpressed glycoproteins containing
LacdiNAc moieties (Table 2) [98]. The low sensitivity of tests developed so far encourages
the use of a combination of several markers in the assay, suggesting that such a combination
could ultimately constitute a biomarker panel for prostate cancer detection, as proposed by
Yoneyama et al. To identify clinically significant prostate cancer (CSPC), they evaluated
the amount of LacdiNAc-glycosylated prostate-specific antigen (LDN-PSA) and LDN-PSA
normalized by prostate volume (LDN-PSAD). During the experiment, they measured
LDN-PSA, total PSA, and ratio of free PSA to total PSA values in 718 men who underwent
a prostate biopsy and in 174 prostate cancer patients who underwent radical prostatectomy.
In the cohort of prostate biopsy patients LDN-PSAD demonstrated significantly higher
clinical performance to discriminate CSPC compared with LDN-PSA, PSAD, total PSA
and free/total PSA ratio. The authors concluded that LacdiNAc-glycosylated PSA is
significantly more efficient than the conventional PSA test in identifying patients with
CSPC [111].

10. Truncated O-Glycans

Biosynthesis of O-glycans is initiated by transfer of a single N-acetylgalactosamine
residue to serine or threonine by polypeptide N-acetylgalactosaminyltransferases ppGalNAc-
Ts (GALNTS), to form a simple Tn antigen [112]. In subsequent stages enzymatic extension



Cancers 2021, 13, 3726

14 of 22

of Tn antigen with galactose builds core 1 O-glycans (T antigen), which can be further ex-
tended with 31,6-N-acetylglucosamine to produce core 2 O-glycans (Figure 1E,F). GCNT1
is reported to be involved in the formation of core 2 branched O-glycans and in synthesis
of the cancer-associated antigen sLe* [113,114]. Increased GCNT1 expression has been
linked to prostate cancer progression and is a predictor of recurrence after radical prostatec-
tomy [114,115]. Expression of both GCNT1 and the sLe* antigen is controlled by androgens
in prostate cancer cells. Moreover, sLe* is the major sialylated antigen related to poor
prognosis and metastasis in PCa [48,113].

Alternatively, attachment of the N-acetylneuraminic acid molecule to the Tn antigen
can generate sialo-Tn antigen (sTn) (Figure 1D). Formation of the sTn antigen is regu-
lated by expression of sialyltransferase ST6GalNAc-I. Such modifications are frequently
dysregulated, often occur during the neoplastic transformation process and are associ-
ated with numerous malignancies, including breast, colorectal, ovarian and gastric can-
cers [116,117]. Munkley et al. found that expression of the sialyltransferase ST6GalNAc-I
and the cancer-associated sialyl-Tn antigen is regulated by androgens in prostate cancer
cells, and is involved in reducing cell adhesion, leading to transformation towards a more
mesenchymal-like cell phenotype in a mouse model of prostate cancer, during a process
termed epithelial-mesenchymal transition (EMT) [118,119]. This fact is worth emphasizing,
as the sTn antigen was detected in half of all high-grade prostate cancer tissue samples from
patients with diagnosed prostate disease [118,120]. Additionally, ST6GalNAc-I expression
was found to be increased in primary prostate tumors and decreased in metastatic tissue
compared to benign prostate tissue. Several studies have shown that increased expression
of sialylated Tn antigens inhibits formation of a solid tumor mass and promotes cell de-
tachment from the tumor (Table 3) [118,121]. These results indicate that ST6GalNAc-I may
play a significant role in tumor cell invasion and migration [118,119]. In earlier research
of Arai and co-workers, the presence of sTn in the serum or tumor tissue biopsy was
correlated with cancer progression and worse survival outcomes in prostate cancer patients.
Additionally, the expression of sialyl-Tn MUC-1, a protein that plays a protective role for
the mucosal epithelial surface [122], was negatively correlated with survival outcomes and
positively correlated with higher serum PSA levels (Table 3) [123].

Table 3. Summary of truncated O-glycan alternations in prostate cancer.

. Author, Year
Type of Glycans Structure Sample Groups Main Results References
The presence of sialyl-Tn MUC-1 was
Prostate cancer correlated with cancer progression, .
. o . . Arai 2005
specimens vs. normal positively correlated with higher serum [123]
prostate specimens PSA level in PCa patients, and negatively )
correlated with survival outcomes
sialyl-Tn (sTn) antigen l Expression of sTn was induced by
androgens in prostate cancer cells and is
rimarv and mediated by ST6GalNAc-I Munkley 2015
P y ST6GalNAc-I was significantly Munkley 2016
metastatic tumors . . .
up-regulated in primary prostate carcinoma [118,119]
but relatively down-regulated in
established metastatic tissue.
sialyl-T antigen was extensively elevated in
sialyl-T (sT) VCaP, LNCaP, DU145, all prostate cancer cell lines (VCaP, LNCaP, Bai 2020
antigen PC-3 vs. RWPE-1 cells  DU145, PC-3) compared to normal RWPE-1 [124]

cells, especially in PC-3 cells
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Table 3. Cont.
. Author, Year
Type of Glycans Structure Sample Groups Main Results References
Malignant vs An increase in core-2-O-linked sLe*
core-2-O-linked & ) antigens on PSA, MUC-1, and PAP in Chen 2014

sLex* antigens

non-malignant

prostate tissues malignant relative to non-malignant [113]

prostate tissues was observed

Some studies have also examined the role of core-2-O-linked sLe* in prostate cancer,
with a particular focus on metastatic disease [113,125,126]. Overexpression of sLe* has
been correlated with an inferior prognosis, among patients with metastatic prostate cancer,
and with castration-resistant, aggressive prostate cancer [113]. Highlighting the role of O-
glycans, Chen et al. found an increase in core-2-O-linked sLe* antigens on PSA, MUC-1, and
prostatic acid phosphatase (PAP) proteins in malignant relative to non-malignant prostate
tissues, in patients who had undergone radical prostatectomy [113]. Many prostate cancer
clinical trials have focused on mucin-1 (MUC-1), a single pass membrane protein, for which
both the expression level of MUC-1 and its glycosylation were frequently altered [127]. An
elevated MUC-1 level was detected in 58% of primary tumor tissues and 90% of lymph
node metastases, but not in healthy prostate or benign prostate tissues [128].

A recent study by Bai et al. showed that sialyl-T antigen was extensively elevated in
all prostate cancer cell lines (VCaP, LNCaP, DU145, PC-3) compared to normal RWPE-1
cells, and it was particularly visible in PC-3 cells. Further research focused on examination
of ST3Gal-I function in PC-3 cells; ST3Gal-I silencing studies indicated that ST3Gal-I is
correlated with migration, proliferation and apoptosis of PC-3 cells. Subsequently, in vivo
studies showed that decreased ST3Gal-I expression was associated with a reduction in
tumor size in a xenograft mouse model, demonstrating that sialyl-T antigen could be
considered as a biomarker for the prognosis of prostate cancer metastasis (Table 3) [124].

11. Conclusions and Future Perspectives

Glycoproteins are often considered as prognostic biomarkers for cancer diagnosis
and monitoring of tumor progression, as well as predictive biomarkers for disease recur-
rence [129]. Researchers are constantly working on new approaches to the early diagnosis
of prostate cancer, risk prediction and disease treatment, and emphasizing that glycans
can be a source of new, non-invasive biomarkers. Glycoprotein markers are characterized
by high heterogeneity, which results from multiple glycosylation sites and glycosylation
patterns, and it has been emphasized that these features may significantly alter the selectiv-
ity of these molecules. Therefore, an attempt to broaden the knowledge of cancer-specific
glycan structures and glycosylation sites, and then compare their patterns within a healthy
population, can provide the first key step towards determining the importance of glycosy-
lation in the diagnostic process. In view of these aspects, considerable efforts are still being
made to standardize a glycomics protocol and implement modern, high-throughput mass
spectrometry technology [77,130-132].

The biomarker most frequently used in prostate cancer diagnosis is prostate-specific
antigen, but its limitations due to relatively low specificity restrict its use in screening
tests and reduce the diagnostic potential [59,133]. The diminished sensitivity of these
tests for early prostate cancer screening, along with the emergence of novel methods and
technologies for glycan analysis, prompted the search for novel biomarkers based on the
detection and identification of specific glycoforms of individual glycoproteins. This ap-
proach may lead to the establishment of new biomarkers with higher specificity for early
cancer detection or for diagnosis in precancerous lesions [134,135]. Such research has be-
come possible to carry out using newly developed, high-throughput platform technologies,
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which additionally enable the effective analysis of large sample cohorts [79,134]. Numerous
studies have investigated whether a cancer-specific glycosylation pattern on PSA can be
used to differentiate between BPH and PCa [75,133]. The most recent research on glycan
composition in order to identify PCa and establish a prognosis has been conducted on di-
verse biological material, including serum [78], urine [77,136], expressed prostatic secretion
urine [137], formalin-fixed, paraffin-embedded (FFPE) tissues [138,139], cell lines [124,140],
and exosomes [141].

Several studies have reported altered glycosylation, mainly both sialylation and fu-
cosylation, in PSA as specific biomarkers of prostate cancer that are able to distinguish it
from benign prostatic hyperplasia [73,133]. A crucial change in prostate cancer glycosy-
lation is the increased level of sialylation, as well as the overexpression of cancer-related
sialoglycans. Abnormal sialylation is evidently associated with tumor growth, invasion
and enhanced cell survival and the onset of metastasis. Additionally, an increased level of
the a2,3-sialylated isomer of PSA was noted as a distinctive feature of aggressive prostate
cancer [16,70,76]; thus, analysis more targeted at aberrant sialylation is likely to be of
significant therapeutic value [142]. Hence, a high-performance assay has recently been
developed that allows for differentiation of «2,3- and «2,6-linked sialic acid isomers of
PSA in urine [136], and subsequently a mass spectrometric method for distinguishing «2,3-
and «2,6-sialoglycopeptide isomers in seminal plasma PSA was optimized [143], with
good prospects for application of both methods in the diagnosis of prostate cancer. Thus,
high-performance analysis of glycopeptides presenting prostate cancer-associated glycans
has recently opened up new avenues for the discovery of glycoconjugates and glycoforms
for the future emergence of cancer biomarkers with potential clinical applications [144].

In summary, composition of glycoproteins and glycans is likely to play an important
role in both non-malignant prostate cancer and in prostate cancer. Hence in recent years,
impressive progress in understanding their composition and function has been achieved.
Numerous studies in this area have contributed to the emergence of glycans as promising
biomarkers, highlighting their use in clinical settings as attractive targets for prostate cancer
treatments [48,59,145].
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