Li et al. BMC Cancer (2021) 21:1022

https://doi.org/10.1186/512885-021-08749-w B M C C ancer

RESEARCH Open Access

elF5B requlates the expression of PD-L1 in ®
prostate cancer cells by interacting with
Wig1

Qi Li"", Mulun Xiao', Yibo Shi', Jinhao Hu', Tianxiang Bi', Chaoliang Wang', Liang Yan' and Xiaoyan Li?

Check for
updates

Abstract

Background: Fukaryotic translation initiation factors (elFs) are the key factors to synthesize translation initiation
complexes during the synthesis of eukaryotic proteins. Besides, elFs are especially important in regulating the
immune function of tumor cells. However, the effect mechanism of elFs in prostate cancer remains to be studied,
which is precisely the purpose of this study.

Methods: In this study, three groups of prostate cancer cells were investigated. One group had its elF5B gene
knocked down; another group had its Programmed death 1 (PD-L1) overexpressed; the final group had its Wild-
type p53-induced gene 1 (Wig1) overexpressed. Genetic alterations of the cancer cells were performed by plasmid
transfection. The expression of PD-L1 mRNA was detected by quantitative real-time PCR (qRT-PCR), and the
expressions of PD-L1 and elF5B proteins were observed by western blot assays. Cell Counting Kit-8 (CCK-8), flow
cytometry, Transwell and Transwell martrigel were used to investigated cell proliferation, apoptosis, migration and
invasion, respectively. The effect of peripheral blood mononuclear cells (PBMCs) on tumor cells was observed, and
the interaction between elF5B and Wig1 was revealed by co-immunoprecipitation (ColP) assay. Finally, the effects of
interference with elF5B expression on the growth, morphology, and immunity of the tumor, as well as PD-L1
expression in the tumor, were verified by tumor xenograft assays in vivo.

Results: Compared with normal prostate epithelial cells, prostate cancer cells revealed higher expressions of elF58
and PD-L1 interference with elF-5B expression can inhibit the proliferation, migration, invasion and PD-L1
expression of prostate cancer cells. Meanwhile, the cancer cell group with interference with elF5B expression also
demonstrated greater, apoptosis and higher vulnerability to PBMCs. ColP assays showed that Wig1 could bind to
elF5B in prostate cancer cells, and its overexpression can inhibit the proliferation, migration, invasion and PD-L1
expression of cancer cells while promoting apoptosis. Moreover, interference with elF5B expression can inhibit
tumor growth, destroy tumor morphology, and suppress the proliferation of tumor cells.

Conclusion: elF5B can promote the expression of PD-L1 by interacting with Wig1. Besides, interference with elF5B
expression can inhibit the proliferation, migration, invasion and immunosuppressive response of prostate cancer
cells. This study proposes a new target, elF5B, for immunotherapy of prostate cancer.
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Introduction

Prostate cancer is one of the most common cancers in
the male genitourinary system, and its incidence rate in-
creases as people age. Moreover, its global incidence rate
ranks second among all malignant tumors in males, and
its mortality rate is the fifth of all malignant tumors [1].
Previous studies have shown that prostate cancer is a
low immune-reactive cancer characterized by limited in-
filtration of immune cells or extensive infiltration of im-
munosuppressive T cells, in which the processed death-
1 (PD-1) /programmed death ligand 1 (PD-L1) pathway
plays an important role [2]. In general, the PD-1/PD-L1
signaling pathway could inhibit the body’s immunity to
tumors, and the pathway could be blocked by inhibiting
PD-L1 expression, thereby enhancing immune function
and killing the tumors. Although PD-1 immunotherapy
has been approved as the first-line treatment for patients
with prostate cancer, the mechanism of PD-L1 up regu-
lation in prostate cancer is still unclear. Therefore, it is
of great significance to identify PD-L1 regulators and
relevant clinical biomarkers to predict patients’ response
to immunotherapy and provide a new strategy to treat
prostate cancer.

Eukaryotic translation initiation factor (eIF) is an es-
sential factor participating in the formation of transla-
tion initiation complexes during protein synthesis in
eukaryotic cells. More than 20 elFs have been found till
now, and elF-2, elF-3, elF-4 and elF-5 are the most
studied subtypes. Various elFs have been demonstrated
as important participants in tumor occurrence and de-
velopment, as well as the initial stage of protein transla-
tion in eukaryotic cells. Specifically, eIF-4E is the first
identified eIF that is highly expressed in tumors, and its
expression level is subject to the tumor stage [3, 4].
Moreover, researchers also found that many elFs are
highly expressed in tumors, and they are involved in
tumor occurrence, invasion and metastasis [5, 6]. For ex-
ample, elF5B is a subunit of elF-5 and a GTPase, and it
is capable to specifically activate the GTPase enzymatic
activity of eIF-2 [7]. Shruthy et al. revealed that elF5B is
overexpressed in lung adenocarcinoma, which induces
PD-L1 overexpression and poor prognosis [8]. However,
the effect of elF5B on immunosuppression in prostate
cancer has not been studied yet.

p53 is a tumor suppressor gene that is capable to re-
pair damaged DNA and inhibit the activation of onco-
genes, thereby inhibiting tumor development [9]. In
human tumors, the mutation frequency of p53 is as high
as 50% [10]. Evidence has shown that p53 and PD-L1 ex-
pressions are correlated in various malignant tumors
[11, 12]. Particularly, wild-type p53-induced gene 1(Wig-
1) is a target gene of p53. It encodes an unusual zinc fin-
ger protein and participates in the regulation of post-
transcriptional genes. Previous studies have shown that

Page 2 of 11

Wig-1 can bind to both long double-stranded RNA and
short dsRNA chains. Besides, Wig-1 also initiates a posi-
tive feedback loop through the gold rich element (GRE)
in the untranslated region of the 3’ end in p53 to
stabilize p53 mRNA. Finally, Wig-1 is highly expressed
in tumor cells and may be involved in apoptosis and oxi-
dative stress. Hyung et al. found that Wig-1 interacts
with eIF5B to inhibit the initiation procedure of transla-
tion [13]. Following that, the present study will investi-
gate whether elF5B affects PD-L1 expression in prostate
cancer cells by interacting with Wigl.

Materials and methods

Cell culture

RWPE-1, a normal prostatic epithelial cell line, and PC-
3 and VCaP, two prostate cancer cells lines were ob-
tained from the American Type Culture Collection
(ATCC, Manassas, VA). All cells were cultured in the
medium recommended by ATCC and incubated in a hu-
midified incubator at 37°C and 5% CO,. Specifically,
RWPE-1 cells were cultured in MEM supplemented with
10% fetal bovine serum (FBS), and the culture medium
was free of antibiotics. PC-3 and VCaP cells were cul-
tured in an F12 medium containing 10% FBS without
antibiotics.

Peripheral blood mononuclear cells (PBMCs) were iso-
lated from white blood cells of healthy donors (Changsha
blood center, Hunan Province, China) by Ficoll -Paque
gradient centrifugation. Subsequently, the PBMCs were
cultured in RPMI 1640 medium supplemented with 10%
EBS, 50 U/ml penicillin and 50 pg/ml streptomycin in an
incubator at 37 °C and 5% CO,.

Cell transfection

Before transfection, PC-3 and VCaP cells in the logarith-
mic growth phase were seeded on several 24-well plates
and cultured until the cell density reached 80%. Follow-
ing the instructions of lipofectamine 2000 transfection
reagent (Invitrogen, USA), NC plasmids and those with
elF5B siRNA interference were transfected in the cells.
Both NC and eIF5B siRNAs were purchased from
Shanghai Tuoran Biotechnology Co., Ltd.

Lentiviruses that expressed sequence shRNAs specific
to elF5B (sh-elF5B) were designed and synthesized by
Shanghai Sangong Biotechnology Co., Ltd. (China) to
knockdown eIF5B in PC-3 and VCaP cells. Nontarget
shRNA lentiviruses (sh-NC) were used as the negative
control. Plasmids with PD-L1 and Wigl overepressions
were obtained from GeneChem Company (China), and
the plasmids were then transfected to the two cell lines
using Lipofectamine 2000 (Invitrogen, USA) following
the manufacturer’s protocol. Subsequently, cells trans-
fected with lentiviruses were selected by puromycin
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(11,000, Solarbio, China) for at least 48 h and thereafter
cultured normally.

Cell proliferation assay

Cell Counting Kit-8 (CCK-8) kit (Boster Biological,
China) was used to detect cells proliferation following
the manufacturer’s instructions. Briefly, cells were
seeded into several 96-well plates with a cell density of
5x10° cells per well and cultured for 72h. Subse-
quently, 10 ul CCK-8 solution was added to each well,
and the cells were incubated for another 1 h. Finally, the
cells’ absorbance at 450 nm was measured by a micro-
plate reader.

Apoptosis analysis

The percentage of apoptotic cells was measured 72h
after transfection, and the measurements were per-
formed using the Annexin V-fluorescein isothiocyanate
(FITC)/propidium iodide (PI) double staining protocol
following the manufacturer’s instructions. The cells were
treated with 0.25% trypsin for 24 h and rinsed with PBS
3 times before being resuspended in 300 uL of binding
buffer. Finally, Annexin V-FITC/PI was added to the
suspension. Cell apoptosis was observed by flow cytome-
try and analyzed by Cell Quest.

Cell migration and invasion assay

Cell migration and invasion were detected using Trans-
well chambers (Costar, USA). For the migration assay,
transfected cells in the logarithmic growth phase were
treated with trypsin and resuspended into individual cell
suspensions, in which the cell density was adjusted to
1.5 x 10° cells/ml. The cell suspensions were added into
the Transwell upper chamber at an amount of 200 ul/
well, and 600 pl of complete medium was added into the
Transwell lower chamber. For the invasion assay, Matri-
gel glue (BD Biosciences, USA) was administered evenly
on the inner membrane of Transwell chambers and air-
dried before use. The cell density in the chambers was
adjusted to 1x10° cells/ml, and a recipe of solutions
that is identical to that in the migration assay was ap-
plied in both chambers. Cells were incubated for 12h
and 24 h for migration and invasion assays, respectively.
After incubation, the cells were fixed with formaldehyde
for 15 min, stained with crystal violet for another15 min,
and inspected with an optical microscope (x 100). Four
visual fields were randomly selected and had the number
of cells within counted. The experiment was performed
in triplicates.

Quantitative real-time PCR (qRT-PCR)

Total RNA was extracted with Trizol (Takara, Japan),
and the cDNA was reverse-transcribed from the total
RNA by an RNA reverse transcription kit (Applied
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Biosystems, USA). An SYBR Green RT-PCR kit (Takara,
Japan) and an ABI prism 7500 instrument (Applied Bio-
systems, USA) were used for RT-PCR, and the reaction
conditions were as follows: pre-denaturation at 95 °C for
3 min, 40 cycles (95°C 30s, 60 °C 45s), and extension at
72 °C for 6 min. The primers were synthesized by Shang-
hai Sangong Biotechnology Co., Ltd. (China), and they
are summarized below:

PD-L1 forward: 5'- TGCGGACTACAAGCGAATCA-
3’; PD-L1 reverse: 5'- GATCCACGGAAATTCTCTGG
TT-3’; GAPDH (internal control) forward: 5-CCAG
GTGGTCTCCTCTGA-3'; GAPDH (internal control)
reverse: 5'-GCTGTAGCCAAATCGTTGT-3". The rela-
tive gene expression levels were calculated by the 27"
method.

Western blot assays

Cells and tissues were collected and lysed with RIPA lysis
buffer (Thermo Fisher Scientific, USA). After centrifuga-
tion, the lysate was collected and detected for its protein
concentration by a BCA kit (Thermo Fisher Scientific,
USA). Following an SDS-PAGE electrophoresis session on
the lysate, the proteins obtained were transferred to sev-
eral PVDF membranes (Millipore, USA), and the mem-
branes were blocked in 5% BSA for 1h before being
incubated with primary antibodies at 4 °C overnight. Anti-
PD-L1 and anti-GAPDH antibodies were purchased from
Abcam (USA) and used following the manufacturer’s
protocol. The PVDF rinsed with TBST three times and
membranes were incubated with an HRP-conjugated sec-
ondary antibody (Santa Cruz, USA) for 1h at room
temperature. Then, the membranes were treated with an
ECL kit (Thermo Fisher Scientific), and images were ac-
quired using the ChemiDoc Imaging system.

Measurement of PBMCs-induced tumor cell-killing

The prostate cancer cells transfected with NC plasmids
or those with elF-5B siRNA interference were seeded
into several 96-well plates at a cell density of 5x 10
cells/well and cultured overnight at 37 °C and 5% CO2.
On the next day, the cancer cells were incubated with
PBMC s at an effect-target ratio of 5:1 for 48 h. The su-
pernatants in each group were collected for co-
incubation, andlactate dehydrogenase (LDH) secretions
were observed by an ELISA kit (Abcam, USA) following
the manufacturer’s instructions. Meanwhile, lymphocytes
in each culture were collected and counted under a light
microscope. The apoptosis of CD4+ T and CD8+ T lym-
phocytes, as well as PD-L1 expression, were detected by
flow cytometry.

Co-immunoprecipitation (ColP) assay
48 h after the transfection, the cells were rinsed twice
with PBS and lysed in lysis buffer (20 mm/L Tris HCI,
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1% np40, 150 mmol/L NaCl, 10% glycerol, and a mixture
of protease inhibitors) for 30 min. The lysate was centri-
fuged at 15000g and 4°C for 10 min, and the super-
natant was cleared with Protein G Agarose beads.
Subsequently, the target protein antibodies were added
for immunoprecipitation, and the precipitated materials
were analyzed by SDS-PAGE and Western blot.

Tumor xenograft assays

All animal procedures were approved by the Ethics
Committee of the First Affiliated Hospital of Zhengzhou
University (Ethics number: Swearton (F) No.2020177). 5-
week-old male BALB/C nude mice were purchased from
Beijing Weitong Lihua Experimental Animal Technology
Co., Ltd., and all mice weighed 20-25 g. Prostate cancer
cells transfected with sh-control or sh-eIF5B were made
into cell suspensions at a concentration of 5 x 107 cells/
ml. Under sterile conditions, 0.1 ml of the cell suspen-
sions above was subcutaneously injected into the right
back of each nude mouse with disposable syringes. The
longest diameter (L), longest transverse diameter per-
pendicular to the longest diameter (W) and the height
(H) of the tumor were measured with a ruler to calculate
the tumor volume (V) following the equation below: V =
L x W x H x 11/6. 24 nude mice with V=100 mm?® were
randomly divided into 4 groups, namely sh-control +
anti-PD-L1, sh-eIF5B + anti-PD-L1 group, sh-control +
IgG control, and sh-elF5B + IgG control groups. In the
first two groups, 200 ug anti-PD-L1 was injected intra-
peritoneally into the mice every 3 days for four times; in
the latter two groups, the mice were injected with the
same dose of IgG instead as the control. 35 days after
tumor transplantation, the mice were euthanized by car-
bon dioxide asphyxiation. Following volume calculations,
the tumor tissues were weighed and examined by HE
staining.

Immunostaining

Tumor tissues were embedded in paraffin and sliced into
slices of 7 um. Subsequently, the slices were fixed with
methanol and permeabilized with 0.1% Triton X-100 in
PBS for 20 min. Following that, the tissues were incubated
with elF5B primary antibodies overnight at 4 °C before be-
ing, incubated in fluorochrome-conjugated or normal sec-
ondary antibodies for 2h at room temperature. A Dako
LSAB detection system (catalog#k0679, DAKO USA) was
used for visualization.

Statistical analysis

SPSS 20.0 was used for statistical analyses. All data were
expressed as mean + standard deviation (SD) and ana-
lyzed using the one-way ANOVA test and Student’s t-
test. Differences with a p < 0.05 were considered statisti-
cally significant.
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Results

Effect of elF5B silencing on prostate cancer cells

Western blot was used to detect the protein expressions
of eIF5B and PD-L1 in human normal prostate epithelial
cells and prostate cancer cells. According to the results,
elF5B and PD-L1 revealed significantly higher expres-
sions in PC-3 and VCaP cells compared to RWPE-1
(Fig. 1A), so we chose PC-3 and VCaP for follow-up ex-
periments. To verify the effect of eIF5B on prostate can-
cer cells, we transfected eIF5B shRNA and its control
into PC-3 and VCaP. Compared to those in the NC
siRNA groups, cancer cells in the eIF5B siRNA groups
demonstrated significantly lower capabilities of prolifera-
tion, migration, and invasion. Besides, the latter cells
also showed a significant rise in the apoptosis rates (P<
0.01, Fig. 1B-E). In a word, our results suggest that inter-
ference with eIF5B expression could inhibit the prolifer-
ation, migration and invasion of prostate cancer cells,
while promoting their apoptosis.

elF5B silencing inhibits PD-L1 expression in prostate
cancer cells

To explore the regulatory correlation between eIF5B and
PD-L1 in prostate cancer cells, we detected the expres-
sion levels of PD-L1 mRNA and PD-L1 protein in PC-3
and VCaP cell lines after interference with elF5B expres-
sion by qRT-PCR and Western blot. Judging from the
results, the expressions of PD-L1, both its mRNA and
protein, were significantly inhibited in the eIF5B siRNA
groups (P<0.01, Fig. 2A and B), suggesting that interfer-
ence with elF5B expression could inhibit PD-L1 expres-
sion in prostate cancer cells.

elF5B silencing enhances the killing capability of PBMCs
on prostate cancer cells

To investigate the effect of eIF5B on the killing capabil-
ity of immune cells, we isolated PBMCs from the periph-
eral blood of healthy people and co-cultured them with
the transfected prostate cancer cells. Our observations
revealed that significantly higher numbers of lympho-
cytes were present in the elF-5B shRNA groups than the
groups without shRNA or those with shRNA and PD-L1
overexpression (P<0.01, Fig. 3A).. Meanwhile, similar
conclusions can be drawn with respect to the number of
CD4 + and CDS8 + cells (P <0.01, Fig. 3B). LDH is an en-
zyme in the cytoplasm of living cells. Under normal con-
ditions, LDH cannot move across the cell membrane.
However, when the target cells are attacked by effector
cells, the permeability of the cell membrane changes and
LDH can be released into the medium. Therefore, in this
study, we used an ELISA kit to observe the LDH amount
as an indicator of PBMC-induced cell-killing. The results
showed that, the LDH release in eIF5B shRNA groups
was significantly higher than that in groups without
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Fig. 4 The regulatory mechanism of Wig1 on elF5B. A: The binding of elF5B to Wig1 was verified by ColP assays (full-length blots are presented in
Additional file 1); The expressions of PD-L1 in prostate cancer cells were detected by gRT-PCR (B) and Western blot (full-length blots are presented in
Additional file 1) (C); Cell proliferation (D), apoptosis (E), cell migration (F), and cell invasion (G) figures of prostate cancer cells; **P < 0.01
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Effect of Wig1 overexpression on prostate cancer cells

ColP assays were used to verify the regulatory correla-
tions between Wigl and elF5B (Fig. 4A). Before IP, Flag-
Wigl was only detected in the Wigl-Flag group, but
elF5B could be detected in both groups. After IP, Flag-
Wigl and elF5B were not detected in the control group,
but both of them were detected in the Wigl-Flag group,
suggesting that Wigl can bind to elF5B. To further ex-
plore the regulatory correlation between Wigl and PD-
L1 in prostate cancer cells, QRT-PCR and Western blot
were used to detect the expressions of PD-L1, both its
mRNA and protein, in the two prostate cancer cell lines
after Wigl overexpression. The results showed that the

cells with Wigl overexpression revealed significantly
lower PD-L1 expression, lower rates of cell proliferation,
migration, and invasion, and a higher rate of cell apop-
tosis (P < 0.01, Fig. 4B-G).. These results suggest that the
regulatory effects of eIF5B on PD-L1 expressions may be
mediated indirectly through Wigl.

elF5B silencing inhibits tumor development

In this study, we constructed sh-eIF5B lentiviruses and
transfected them into PC-3 cells to knock down the ex-
pression level of eIlF5B. PC-3 cells transfected with sh-
elF5B or sh-control were used for tumor transplantation
experiments in vivo. When the tumor grew to a volume
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of 100 mm3, anti-PD-L1 and IgG antibodies were
injected into mice. The mice were sacrificed 30 days
after tumor transplantation, and the tumors were re-
moved photographed, and recorded for their volumes
and weights (Fig. 5A-C). We found that the tumor vol-
umes and weights in the sh-control + IgG control group
were the greatest, followed by the sh-control + anti-PD-
L1 group, the sh-elF5B + IgG control group, and the sh-
elF5B + anti-PD-L1 group decreased; in addition, the dif-
ferences among groups were significant. Subsequently,
with HE staining and flow cytometry sessions, we ob-
served that the damages of tumor tissue morphology
and the content of CD4 + and CDS8 + cells were the smal-
lest in the sh-control + IgG control group, while the two
indicators increased following the order of the sh-
control + anti-PD-L1 group, the sh-eIF5B + IgG control
group, and the sh-elF5B + anti-PD-L1 group (P<0.01,
Fig. 5D and E). These results indicate that PD-L1 anti-
bodies or interference in PD-L1 expression can inhibit
tumor growth, destroy tumor tissue morphology, and in-
crease the contents of CD4+ and CD8+ cells, but with
elF5B, such beneficial outcomes can be enhanced. In
addition, results from qRT-PCR, Western blot and im-
munohistochemical analyses showed that compared with
the sh-control + IgG control group, PD-L1 and elF-5B
didn’t show much difference in their expression levels in
the sh-control + anti-PD-L1 group; however, their ex-
pressions were significantly lower in the two groups with
sh-eIF5B (Fig. 5F-H). These results suggest that the
interference of elF5B expression, instead of PD-L1 anti-
bodies, could inhibit the expression of eIF5B and PD-L1.
Moreover, PD-L1 antibodies could not enhance the
changes in the expression of elF5B and PD-L1 that are
induced by the interference of eIF5B expression.

Discussion
The reasons for tumorigenesis vary in the human body,
and many of them are closely related to the autoimmune
function of the body. Particularly, immune costimulatory
molecules are one of the recent hotspots in immunology
research, and PD-1 and its ligand PD-Llare important
participants of tumor progression. PD-L1 is widely
expressed in tumor cells, and it binds to PD-1 on the sur-
face of T lymphocytes to transmit inhibitory signals to T
cells, thereby inactivating T lymphocyte immune reactions
[14, 15]. Therefore, inhibition of the PD-1/PD-L1 pathway
can enhance T cell function and facilitate tumor cell
death, which is a new strategy for tumor therapy.
Translation in cells is a basic step in regulating gene
expression, and the abnormal translation may lead to tu-
mors. In eukaryotic cells, mRNA translation is regulated
by many elFs. Micha ¢ ] et al. found that eIF4F can regu-
late PD-L1 expression in human melanoma cells by af-
fecting the translation of signal transducer and activator
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of transcription 1 (STAT1), which is an important tran-
scription factor [16]. Luis et al. proved that elF4G1 was
highly expressed in NSCLC cells, and its expression level
was positively correlated with PD-L1 expression [17].
Specifically, eIF5 contains an unusual amino acid named
hypusine that is very important for the proliferation of
eukaryotic cells. Its expression has been confirmed to
rise in many tumors and is believed to participate in the
regulation of cell proliferation and apoptosis [18, 19].
Particularly, eIF5B, a subunit of elF5, has been found to
promote the translation of pro-survival and anti-
apoptotic proteins in glioblastoma multiforme cell lines
[20] but has never been studied in prostate cancer. In
this study, we found compared with normal prostate epi-
thelial cells, the expression of elF5B and PD-L1 were
significantly up-regulated in prostate cancer cells. Inter-
fering the expression of eIlF5B could inhibit the prolifer-
ation of prostate cancer cells and PD-L1 expression,
thereby enhancing the killing capability of PBMCs on
prostate cancer cells. Moreover, PD-L1 overexpression
based on interference of eIlF5B expression can inhibit
the effect of elF5B. In addition, we demonstrated that
both the interference with eIF5B expression or the ad-
ministration of PD-L1 antibodies can inhibit tumor
growth in animals. Our results suggest that inhibition of
elF5B can induce strong anti-tumor immune effects by
down-regulating PD-L1.

p53 gene is one of the most extensively studied tumor
suppressor genes. It is closely related to cell cycle regula-
tions, DNA repair, cell differentiation, and apoptosis
[21-23]. Cortez et al. suggested that p53 mutants could
intervene in the immune escape of tumors by regulating
the expression of PD-L1 [24]. Moreover, p53 has been
verified to mutate in prostate cancer [25]. Wigl, a tran-
scriptional target of p53, encodes an unusual zinc finger
protein that participates in post-transcriptional gene
regulation. Wild-type p53 can up-regulate the expression
of Wigl, and Wigl overexpression can inhibit the
growth of tumor cells [26, 27]. In this study, we demon-
strated that Wigl overexpression could inhibit PD-L1
expression and proliferation of prostate cancer cells,
which is consistent with the results of Cortez et al. Fur-
thermore, previous studies have shown that Wigl can
bind to eIF5B at the initial stage of translation, resulting
in translation inhibition [13]. Such an idea was con-
firmed in this study. With Wigl overexpression, PD-L1
dropped and cancer cell apoptosis was promoted, sug-
gesting that elF5B regulates PD-L1 expression indirectly
through Wigl.

Conclusion

In general, we confirmed that eIF5B can promote the ex-
pression of PD-L1 by interacting with Wigl. Interference
of eIF5B expression can inhibit the proliferation,
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Fig. 5 Tumor transplantation in vivo confirmed that interference with elF5B expression inhibits tumor growth. For each group: (A) tumor tissue
photos; (B) tumor tissue volumes; (C) tumor tissue weights; (D) tumor tissue morphology observed by HE staining; (E) CD4+ T and CD8+ T cells in
tumor tissues observed by flow cytometry; (F) gRT-PCR observations on the PD-L1 expression; (G) Western blot observations on the PD-L1
expression (full-length blots are presented in Additional file 1); (H) immunohistochemical detection of the elF5B levels; **P < 0.01

migration, invasion, and immunosuppressive response of
prostate cancer cells, as well as tumor growth. However,
our current study still failed to address several issues.
Firstly, the binding of eIF5B and Wigl, which was de-
tected by ColP assays, may not be direct, and there may
be a third intermediate party. Secondly, the regulatory
effects of elF5B on the expression of PD-L1 in prostate
cancer cells have only been confirmed at the cellular
level, and further verification at the clinical level is
needed for greater clinical significance.
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