1 Death in the taste bud: Morphological features of dying taste cells and engulfment by

- 2 Type I cells
- 3 Abbreviated Title: Morphological features of dying murine taste cells
- 4 Courtney E. Wilson, Robert S. Lasher, Ernesto Salcedo, Ruibiao Yang, Yannick Dzowo,
- 5 John C. Kinnamon, Thomas E. Finger
- 6 Rocky Mountain Taste & Smell Center, University of Colorado School of Medicine, CU
- 7 Anschutz Medical Campus, Aurora, CO 80045
- 8
- 9 Corresponding author: <u>courtney.wilson@cuanschutz.edu</u>
- 10 Number of pages: 37
- 11 Number of figures: 10
- 12 Number of tables: 1
- 13 Number of words:
- 14 Abstract: 236
- 15 Introduction: 646
- 16 Discussion: 1500
- 17 The authors declare no conflicts of interest.
- 18 This work was supported by National Institutes of Health National Institute on Deafness
- and Other Communication Disorders grants R01 DC017679, R01 DC014728, and R21
- 20 DC013186. The authors would like to acknowledge Dr. Graham Kidd and Emily Benson at
- 21 the Lerner Research Institute at the Cleveland Clinic for their contribution to the data
- 22 acquisition, which lead to this manuscript.

23 Abstract

24 Taste buds comprise 50-100 epithelial derived cells, which are renewed throughout the 25 life of an organism. Immature cells enter the bud at its base, maturing into one of three 26 distinct cell types. How taste cells die and/or exit the bud, however, remains unclear. 27 Here we present morphological data obtained through Serial Blockface Scanning 28 Electron Microscopy of murine circumvallate taste buds, revealing several taste cells at 29 the end of their life (4-6 per bud). Cells we identify as dying share certain morphological 30 features typical of apoptosis: swollen endoplasmic reticulum, large lysosomes, 31 degrading organelles, distended outer nuclear membranes, heterochromatin 32 reorganization, cell shrinkage, and cell and/or nuclear fragmentation. Based on these 33 features, we divide the cells into "early" and "late" stage dying cells. Most early stage 34 dying cells have Type II cell morphologies, while a few display Type III cell features. 35 Many dying cells maintain contacts with nerve fibers, but those fibers often appear 36 detached from the main trunk of an afferent nerve fiber. Dying cells, like mature Type II 37 and Type III taste cells, are surrounded by Type I taste cells, the glial-like cells of the bud. 38 In many instances Type I cells appear to be engulfing their dying neighbors, suggesting a 39 novel, phagocytic role for Type I cells. Surprisingly, virtually no Type I cells, which have 40 the shortest residence time in taste buds, display features of apoptosis. The ultimate 41 fate of Type I cells therefore remains enigmatic.

42

43

45 Significance Statement

46	Our examination of serial EM sections through murine taste buds sheds light on the life
47	cycle of taste cells—crucial components of our sense of taste. We find that dying taste
48	cells exhibit features typical of programmed cell death, or apoptosis. Many dying cells
49	retain contacts with nerve fibers, but those fibers are often disconnected from the
50	nerve trunk, suggesting that they cannot signal to the brain. Interestingly, most dying
51	cells are Type II cells, which detect bitter, sweet, or umami. Our data also suggest that
52	glial-like Type I cells act as "undertakers" within taste buds, engulfing dying neighbors.
53	Surprisingly, Type I cells, despite having the shortest lifespan, do not show signs of
54	dying; their ultimate fate remains enigmatic.

55

57 Introduction

58	Taste buds comprise epithelial-derived cells, which are renewed repeatedly. Older cells
59	die or leave the taste bud while newly post-mitotic immature cells enter from the base
60	of the bud. To maintain accurate transmission of information to the central nervous
61	system (CNS) in the face of wholesale receptor cell replacement, taste ganglion cells
62	remodel their peripheral intragemmal arbors to disconnect from dying cells and
63	reconnect to maturing taste cells (Whiddon et al., 2023).
64	
65	We examined serial electron micrographs through taste buds to identify dying taste
66	cells, predicting that the numbers and types of dying cells would be proportionate to
67	both their relative abundance in the taste bud and the reported half-life for each
68	population. Taste buds contain three types of mature taste cells, each unique in
69	morphology, lifespan, and function. Type I cells, which constitute 60% of the mature
70	cells in the bud (Yang et al., 2020), are considered glial-like (Murray et al., 1969; Pumplin
71	et al., 1997), with an estimated lifespan of ~7 and ~16 days in rat and mouse,
72	respectively (Farbman, 1980; Perea-Martinez et al., 2013). Type II cells, about one
73	quarter of the cells in a bud, are spindle-shaped receptor cells and live for \sim 14-30 days
74	(Perea-Martinez et al., 2013; Gross et al., 2017; Yang et al., 2020). Each responds to only
75	one of the classical taste qualities: bitter, sweet, or umami, and perhaps amiloride-
76	dependent sodium (Ohmoto et al., 2020). Type II cells communicate to nerve fibers via
77	channel synapses, involving large-pore, voltage-gated channels associated with
78	"atypical" mitochondria (Royer and Kinnamon, 1988; Chaudhari and Roper, 2010;

79	Taruno et al., 2013; Romanov et al., 2018). Type III cells are spindle-shaped cells, which
80	constitute about 15-17% of the mature cells in a bud and are the most long-lived taste
81	cells, with a half-life of at least 22 days (Perea-Martinez et al., 2013). Type III cells
82	transduce ionic taste qualities, i.e. sour and highly salty stimuli, and communicate to
83	nerves via vesicular synapses (Kinnamon et al., 1985; Yee et al., 2001; Huang et al.,
84	2008; Yang et al., 2020).
85	
86	To maintain structural architecture, taste buds must lose and gain cells at roughly the
87	same rate. Organisms rid themselves of aging or unhealthy cells by three general
88	mechanisms: apoptosis, autophagy, and necrosis (D'Arcy, 2019). Apoptosis is a form of
89	programmed cell death resulting in characteristic ultrastructural changes: chromatin
90	condensation, nuclear fragmentation, cell shrinkage, and ultimately the formation of
91	apoptotic bodies that fragment off the cell. In contrast, in autophagy, which can either
92	protect or kill a cell, macroproteins and organelles are sequestered into
93	autophagosomes and are degraded. The process of necrosis results from acute injury to
94	the cell; necrotic cells swell and rupture, spilling their contents and triggering an

95 inflammatory response (D'Arcy, 2019; Chen et al., 2020). Only a few studies of cell death

96 in the taste bud exist, and all report instances of apoptosis (Suzuki et al., 1996A; Takeda

97 et al., 1996; Zeng and Oakley, 1999; Zeng et al., 2000; Huang and Lu, 2001; Ueda et al.,

98 2008).

100	Here, using Serial Blockface Scanning Electron Microscopy (sbfSEM), we examine murine
101	circumvallate taste cells for ultrastructural signs of cell death. This technique allows for
102	the high-resolution imaging of serial sections through circumvallate taste tissue blocks
103	(Yang et al., 2020; Wilson et al., 2022). In these buds, we find cells with ultrastructural
104	features consistent with apoptosis. Given that Type I cells are the most abundant taste
105	cell type and have the shortest half-life, we predicted that the majority of dying taste
106	cells would be Type I cells. This was not the case; in fact, we observed no apoptotic Type
107	I cells. Rather, apoptotic Type II and III cells are all at least partially surrounded by Type I
108	taste cells, some quite substantially so. This arrangement and the presence of abundant,
109	large lysosomes in Type I cells adjacent to dying cells suggests that Type I cells engulf
110	and degrade dying cells within the taste bud.
111	
111 112	Methods
111 112 113	Methods
111 112 113 114	Methods Serial Block Face Scanning Electron Microscopy
 111 112 113 114 115 	Methods Serial Block Face Scanning Electron Microscopy As reported previously, Serial Blockface Scanning Electron Microscopy (sbfSEM) [see
 111 112 113 114 115 116 	Methods Serial Block Face Scanning Electron Microscopy As reported previously, Serial Blockface Scanning Electron Microscopy (sbfSEM) [see (Yang et al., 2020)] was used to generate two datasets from adult (>45 days) mouse
 111 112 113 114 115 116 117 	Methods Serial Block Face Scanning Electron Microscopy As reported previously, Serial Blockface Scanning Electron Microscopy (sbfSEM) [see (Yang et al., 2020)] was used to generate two datasets from adult (>45 days) mouse circumvallate taste buds: DS2, composed of 563 sections, and TF21, composed of 633
 111 112 113 114 115 116 117 118 	Methods Serial Block Face Scanning Electron Microscopy As reported previously, Serial Blockface Scanning Electron Microscopy (sbfSEM) [see (Yang et al., 2020)] was used to generate two datasets from adult (>45 days) mouse circumvallate taste buds: DS2, composed of 563 sections, and TF21, composed of 633 sections. The data used in the present study were obtained primarily from two complete
 111 112 113 114 115 116 117 118 119 	Methods Serial Block Face Scanning Electron Microscopy As reported previously, Serial Blockface Scanning Electron Microscopy (sbfSEM) [see (Yang et al., 2020)] was used to generate two datasets from adult (>45 days) mouse circumvallate taste buds: DS2, composed of 563 sections, and TF21, composed of 633 sections. The data used in the present study were obtained primarily from two complete and one nearly complete taste buds from TF21 (Fig.1). A small number of cells from DS2

121 analysis of lysosomes. The original image data are freely available at the Electron

122 Microscopy Public Image Archive, part of the European Bioinformatics Institute (EMBL-123 EBI), in dataset EMPIAR-10331. Every taste cell in each section was assigned a unique 124 identifier and was analyzed using Reconstruct software (Synapse Web Reconstruct, 125 RRID:SCR 002716) (Fiala, 2005) to determine cell type and generate 3D reconstructions. 126 127 Identifying taste cells 128 Mammalian taste buds contain three basic types of mature taste cells: Type I, II, and III 129 cells. We identified cells as being part of one of these categories based on several 130 morphological features described in previous studies (Yang et al., 2020) (Figure 1). Type 131 I cells tend to have elongate, invaginated nuclei, as well as thin, lamellar processes that 132 extend around and between neighboring taste cells. While they often wrap around and 133 border innervating nerve fibers, they do not display synaptic morphology (either 134 atypical mitochondria or synaptic vesicles) at these sites of contact. The apical structure of Type I cells falls into two main categories: bushy, with many short microvilli, or 135 136 arboriform, with one main microvillus with smaller microvillar "branches" (Yang et al., 137 2020). Type II cells are elongate, have a somewhat flattened fusiform shape, and 138 relatively smooth, ovoid nuclei. The majority of Type II cells contain so called "atypical" 139 mitochondria. These large mitochondria are characterized by tubular rather than 140 stacked cristae and exist at points of synaptic contact from Type II cells onto afferent 141 nerve fibers (Royer and Kinnamon 1988; Romanov et al., 2018) (Figure 1B). At their 142 apical regions, Type II cells (e.g., Figure 2A) generally feature a single, large microvillus 143 that extends far into the taste pore. Type III cells are elongate and spindle-shaped, with

144	a single, large microvillus that extends far into the taste pore and nuclei that are
145	elongate and slightly invaginated (Yee et al., 2001; Yang et al., 2020). They are the only
146	cells in the taste bud that form conventional, vesicular synapses onto afferent nerve
147	fibers. These points of synaptic contact feature clear, 40-60nm diameter vesicles
148	clustered at the plasma membrane region bordering the nerve fiber (Figure 1C).
149	
150	Identifying lysosomes
151	The morphology of lysosomes can vary greatly over time and location in a cell (e.g., Dr.
152	Jastrow's electron microscopic atlas, <u>http://www.drjastrow.de/WAI/EM/EMAtlas.html</u> .)
153	Taste cell lysosomes appear to fall into two categories. The first category contains
154	roughly spherical membrane-bound vesicles of about 150-600 nm in diameter
155	containing packed, electron dense granules. The second category contains larger,
156	irregularly shaped structures up to 1-2 microns in the longest dimension. These larger
157	lysosomes have inclusions of electron dense material embedded in a matrix comprising
158	a combination of somewhat electron dense material and electron lucent material. We
159	segmented profiles of lysosomes in every section of selected cells, being careful not to
160	include any tangential or cross-sections of mitochondria. Counts of lysosomes were
161	performed using images taken from 3D reconstructions of cells primarily from dataset
162	TF21.
163	

164 Estimating ER distention

165	To estimate the	size of dying cell	endoplasmic reticulum	regions as compared to those
-----	-----------------	--------------------	-----------------------	------------------------------

- 166 of healthy cells, we chose three healthy and three dying cells at random. In these cells,
- 167 we randomly chose among sections containing the cell nucleus, using an online random
- 168 number generator to select the section number, and used Photoshop (Adobe) to
- 169 measure 5 separate sections of ER at their widest points from each cell. These values
- 170 were then averaged for our estimates.
- 171
- 172 Nuclear Reconstructions and Display
- 173 Nuclear and taste bud perimeter traces were exported from the Reconstruct series files
- 174 into MATLAB (Mathworks, Natick, MA) using custom MATLAB scripts
- 175 (<u>https://github.com/salcedoe/Dying_Taste_Cell_analysis</u>). These traces were exported as
- a series of X, Y, and Z geometric vertices, which were organized in a table and sorted by
- 177 cell identity and cell type. Vertices from individual nuclei were bound into 3D polyhedral
- meshes using the alphaShape function and visualized by plotting as 3D surface polygons.
- 179
- 180 Lysosome and Cell Volume Analysis
- 181 Cell and lysosomal traces were imported as geometric vertices into MATLAB as
- 182 described for the nuclear reconstructions. The vertices were then grouped by cell
- 183 identity and cell type. To determine lysosome size, vertices from lysosome traces were
- 184 converted into Point Cloud objects using the pointCloud tool from the MATLAB
- 185 Computer Vision Toolbox. These point clouds were then segmented into distinct
- 186 lysosome clusters based on a set Euclidean distance using the MATLAB pcsegdist

- 187 function. Individual lysosome volumes were calculated by converting the lysosome point
- 188 cloud clusters into 3D polyhedral meshes using the MATLAB alphaShape function, which
- then calculated the encased volume of each mesh. All generated 3D polyhedral surface
- 190 meshes were visually inspected for morphological accuracy. Surface defects (e.g. large
- 191 holes in the surface) were repaired using Manifold plus
- 192 (https://github.com/hjwdzh/ManifoldPlus) and Meshfix 2.1
- 193 (https://github.com/MarcoAttene/MeshFix-V2.1). Taste cell volumes were then
- 194 calculated from these inspected surface meshes. All cell meshes can be found on the
- 195 github repository in the Lysosome Analysis/cellMeshes folder.
- 196
- 197 Statistical Analysis
- 198 MATLAB was used to calculate the statistics for the lysosome sizes. Comparisons
- between separate cell categories (i.e. healthy Type II cells, early stage dying Type II cells,
- 200 healthy Type III cells, late stage dying cells, etc.) with regards to lysosome volumes were
- 201 performed with Kruskal-Wallis and ANOVA tests, depending on whether datasets
- 202 qualified as skewed by a Kolmogorov-Smirnov test. Comparisons between separate cell
- 203 categories with regards to cell volumes were performed using estimation statistics on
- the median difference. (estimationstats.com ; Ho et al., 2019). The results of these cell
- volume estimation statistics are presented in **Supplemental Figure 1.**

206

207 *Code/Software Accessibility*

- 208 Code was generated for lysosome volume analysis and is readily available on GitHub
- 209 (https://github.com/salcedoe/Dying Taste Cell analysis).
- 210
- 211 Results
- 212
- 213 General features of dying taste cells and their nuclei

214 The taste cells that we identify as dying share several distinct morphological features

that distinguish them from mature taste cells (Figure 2). In the cytoplasm of dying cells,

abundant, swollen endoplasmic reticulum and large lysosomes are among the most

217 readily apparent and common of these features. The endoplasmic reticulum of dying

cells appears swollen in comparison to that of mature taste cells; the width (roughly

219 perpendicular to the longitudinal axis) of ER segments in dying cells is ~250nm, while

the same measurement in healthy cells is ~90nm (Figure 2B, B', C, C'). Healthy cells

221 contain relatively small lysosomes, with median individual lysosome volumes ranging

from 0.005-0.06 μ m³ per cell. In contrast, lysosomes in dying cells tend to be larger, with

median lysosome volumes ranging from 0.004-0.12 μ m³ per cell (**Figure 2E, F, Figure 4**).

224 Lysosome volumes differed significantly between the six different groups—I, II, III, IV,

early dying, and late dying [Kruskal-Wallis test, H(5, n=3904) = 328.2, p<0.0001]. When

we directly compared the lysosomes from healthy and early dying Type II cells in a post-

- hoc, multiple comparison analysis, we found the lysosomes in the dying cells to be
- significantly larger than the lysosomes in the healthy cells (p<0.0001). Mitochondria in
- 229 dying cells often display signs of degradation—instead of the stacked cristae of healthy

230	mitochondria or the tubular cristae of atypical mitochondria, mitochondria in dying cells
231	often contain irregular, sparse cristae (Figure 2G). Golgi bodies in dying cells, like the
232	endoplasmic reticulum, appear swollen (Figure 21, 1') when compared to those of
233	healthy, mature taste cells (Figure 2H, H'). A subset of dying taste cells feature more
234	obvious signs of apoptosis: cell shrinkage and even cell fragmentation into apoptotic
235	bodies (Figure 2A, D). We deem these cells "late stage" dying cells, as opposed to the
236	"early stage" dying cells, which are not fragmented and are still identifiable by cell type.
237	Late stage dying cells are smaller than healthy cells, ranging in volume from 403-457
238	μm^3 , while healthy Type II and III cells for which volume was measured range from 524-
239	1172 μm^3 . Interestingly, early stage dying Type II and III cells tend to be slightly larger
240	than their healthy counterparts as well as late stage dying cells, ranging from 319-1984
241	μm^3 (Figure 3, Supplementary Figure 1). Late stage dying cells are fragmented into
242	multiple separate objects. We presume these objects to be fragmented apoptotic
243	bodies when they are in proximity to the main cell body and mirror its cytosolic qualities
244	(Figure 2D).
245	

Nuclei in dying cells likewise differ from those of mature taste cells (Figure 5). In dying
cells that feature swollen endoplasmic reticulum and large lysosomes, the nuclear
membranes exhibit clear, distended regions of separation between the inner and outer
nuclear lamellae (Figure 5B, C). The degree of nuclear membrane separation varies
among dying cells, with individual distended regions ranging from ~160 to 500 nm
between the inner and outer leaflets (Figure 5B, C, E', G'). Since this intra-membrane

252	region is contiguous with the inner endoplasmic reticular space (Lindenboim et al.,
253	2020), the distended nuclear membrane of dying cells may be an extension of the
254	swollen endoplasmic reticulum, or vice versa. In a small subset of dying cells, nuclei
255	feature accumulations of dense heterochromatin, a common characteristic of apoptotic
256	cells (D'Arcy, 2019; Snigirevskaya and Komissarchik, 2019) (Figure 5E', G'). In one cell
257	that appears to have fragmented into multiple apoptotic bodies, the nucleus is likewise
258	fragmented into multiple bodies, which is consistent with caspase-induced breakdown
259	of nuclear lamins (for review, Fink and Cookson, 2005) (Figure 5E, E'). Other nuclei in
260	late stage dying cells possess large invaginations, which are perhaps harbingers to
261	nuclear fragmentation (Figure 5G, G').
262	

263 Synapses in dying cells

264 The genesis and degeneration of taste cells necessitates remodeling of synaptic contacts 265 and nerve fibers. To ascertain whether dying cells might still be communicating to taste 266 nerves, we investigated possible synapses between dying cells and afferent nerve fibers. 267 Late stage dying cells did not exhibit structures consistent with synapses onto afferent 268 nerve fibers. At points of contact with nerve fibers, late stage dying cells lacked both the 269 atypical mitochondria that characterize Type II cell synapses onto nerve fibers as well as 270 the pre-synaptic clusters of vesicles that characterize Type III cell synapses onto nerve 271 fibers (Figure 6A).

273 In contrast, most early stage dying cells were Type II cells still showed the presence of 274 atypical mitochondria characteristic of synaptic contacts from this cell type. These 275 atypical mitochondria appeared at sites of contact with nerve fibers, but these nerve 276 fibers did not always exit the taste bud, suggesting nerve fiber fragmentation. This 277 observation suggests that early stage dying Type II cells retain gross synaptic structures, 278 but may not always be capable of signaling information to the CNS since the nerve fiber 279 has fragmented (Figure 6B, C) and is no longer connected to the CNS. The atypical 280 mitochondria in early stage dying Type II cells feature irregular, "loose" cristae (Figure 281 **6B**) when compared to the tubular cristae of atypical mitochondria in mature, healthy 282 Type II cells (Figure 1B). 283 A minority of the early stage dying cells are Type III cells. These cells share similar 284 cytoplasmic quality with early stage dying Type II cells, but lack atypical mitochondria. 285 Instead, at points of contact with nerve fibers, we observe clear, membrane enclosed profiles that are larger than typical synaptic vesicles. Synaptic vesicles in healthy Type III 286 287 cells range from 40-60 nm (Yang et al., 2020); membrane-bound objects at the site of 288 contact between a dying Type III cell and a bordering nerve fiber range from ~30-300 289 nm. We tentatively mark these structures as degrading synaptic contacts, although the 290 occurrence of signal transmission at these sites is unknowable with our current methods 291 (Figure 6D, E). As with some fibers innervating early stage dying Type II cells, some 292 nerve fibers contacting the putative early stage dying Type III cells do not exit the bud, suggesting nerve terminal fragmentation (Figure 6F). In TF21_TB2, from which we have 293 294 a complete connectome (Wilson et al., 2022), 4 of 7 (57%) nerve fibers innervating dying

- cells are fragments that do not appear to exit the bud, while just 8 of 25 (32%) of nerve
- fibers innervating healthy cells appear to be fragments.
- 297
- 298 Type I cells engulf dying cells

299	Apoptotic cells elsewhere in the body are generally phagocytosed by elements of the
300	immune system, often prior to the development of apoptotic bodies (D'Arcy, 2019). In
301	the nasal epithelium, which is largely devoid of immune cells, sustentacular cells
302	phagocytose neighboring epithelial cells (Suzuki et al., 1996B). Type I cells are
303	considered the glial-like cells of the taste bud (for review, Chaudhari and Roper 2010).
304	Type I cells possess diaphanous processes that extend around and between neighboring
305	taste cells and are well positioned to engulf dying cells and any apoptotic bodies they
306	might generate. Indeed, we observe signs of Type I cells engulfing dying cells and their
307	fragmented apoptotic bodies (Figure 7A-C). In addition, membrane bound objects
308	matching the cytosolic presentation of a dying cell are often seen in the cytoplasm of
309	immediately adjacent Type I cells (Figure 7C, E). In regions of Type I cells that border
310	dying cells, lysosomes tend to be larger, much like the lysosomes in the dying cells
311	themselves (Figure 4, Figure 7D, D"). The 3 largest individual lysosomes in Type I cells
312	range from 7.5-9.1 μm^3 , which is several times the volume of the median volume
313	lysosomes in either healthy or dying cells. In one case, a Type I cell that neighbors an
314	early stage dying cell appears to have engulfed large, vacuous, membrane enclosed
315	bodies. These bodies closely resemble the cytosolic appearance of the dying cell rather
316	than the Type I cell itself. Thus, we presume this material originated in the dying cell

- 317 (Figure 7E). We have never observed either immune cells or other non-taste cells within
- 318 the confines of the taste bud that could be involved in the elimination of dying cells.
- 319
- 320 Dying taste cells in the context of the bud
- 321 In total, we identify 21 dying cells in 5 different taste buds over two separate datasets.
- 322 In the two taste buds wholly contained within the segmented block of tissue, 4 out of 84
- 323 and 5 out of 86 total taste cells appear to be dying according to our previously discussed
- 324 morphological criteria. Of these dying cells, early stage dying cells are still identifiable as
- 325 belonging to a mature taste cell type. These cells feature some, but not all,
- 326 characteristics of dying cells. They tend to display swollen endoplasmic reticulum,
- 327 degrading mitochondria, blebby nuclear membranes, swollen Golgi bodies, and large
- 328 lysosomes. Of these early stage cells, most are Type II cells that maintain aspects of Type
- 329 II cell morphology and atypical mitochondria. The remaining early stage dying cells share
- 330 qualities with mature Type III cells. Late stage dying cells, however, could not be
- identified as to taste cell subtype, because of the more advanced signs of cell
- 332 degradation: cell fragmentation, nuclear fragmentation, and notable reorganization of
- dense regions of heterochromatin in the nucleus. We thus label these cells as "unknown
- type" (Figure 8A, Figure 9).
- 335
- 336 Location of dying cells within the taste bud
- 337 Post-mitotic, immature Type IV taste cells are known to enter the taste bud near the
- basilar membrane and inhabit the bottom 1/3 of the bud (Barlow, 2015; Yang et al.,

339	2020). As they mature, taste cells extend into the upper portions of the bud, eventually
340	reaching the taste pore. We hypothesized that dying cells would be restricted to the
341	upper regions of the taste bud, farther away from their origins in the basal regions of
342	the bud. Indeed, the nuclei of dying cells tend to be in the top 1/3 of the taste bud,
343	although taste cells at the upper extremities of the bud do not all display hallmarks of
344	degeneration (Figure 8B).
345	
346	Discussion
347	
348	The data we present suggest an apoptotic pathway for the death of Type II and III taste
349	receptor cells (Figure 9). As the cells progress towards death, the ER and Golgi swell,
350	lysosomes enlarge, mitochondrial cristae become disorganized, and the inner and outer
351	leaflets of the nuclear membrane separate (Figures 2, 4, and 5). These features are
352	consistent with apoptosis (D'Arcy, 2019; Snigirevskaya and Komissarchik, 2019), and
353	agree with reports of apoptotic markers within taste buds (Zeng and Oakley, 1999; Zeng
354	et al., 2000; Huang and Lu, 2001; Takeda et al., 1996). Early stage dying cells tend to be
355	larger than healthy or late stage cells, indicating that cells swell slightly before late stage
356	cell death (Figure 3). As cells progress to the late dying stage, heterochromatin
357	reorganization becomes more pronounced, cell volume reduces, and apoptotic bodies
358	separate from the main cell body (Figures 2, 3, and 5).
359	

360	We conclude that the dying cells we describe are undergoing apoptosis. If taste cells
361	were dying by non-apoptotic methods, we would expect different morphologies. Cells
362	undergoing necrosis manifest substantial cell swelling, extracellular spillage of cell
363	contents, and infiltration of immune cells (D'Arcy, 2019; Lakshmanan et al., 2022).
364	Instead, we observe cell shrinkage in late stage dying cells, formation of putative
365	apoptotic bodies, and no evidence of immune cell infiltration. Interestingly, early stage
366	dying cells are slightly larger than healthy cells (Figure 3, Supplementary Figure 1). That
367	cells swell before shrinking is not necessarily inconsistent with apoptosis. Reduced ATP
368	production on account of degrading mitochondria might disrupt the Na ⁺ /K ⁺ -ATPase,
369	which can result in swelling (Chen et al., 2014). In autophagy, dying cells would form
370	autophagosomes, which sequester and degrade macroproteins and organelles
371	(Eskelinen et al., 2011). We do not observe such structures in dying Type II or III cells,
372	although autophagosome-like structures occasionally appear in Type I cells. However,
373	we cannot determine if these structures indicate cell death or repair.
374	
375	In the two complete buds contained within the samples, few cells per bud appear to be
376	undergoing apoptosis: 4 of 84 (4.7%) and 5 of 86 (5.8%). Some previous studies estimate
377	the dying cell population at 1-3 dying cells per bud (Ueda et al., 2008; Huang and Lu,
378	2001; Takeda et al., 1996), while others estimate it at \sim 9 cells per bud (Zeng and Oakley,
379	1999; Zeng et al., 2000) (Table 1). Our observed prevalence of apoptotic cells may be
380	higher than the lower estimates due to the relatively short period (1-3 hrs) during which
381	an apoptotic cell is positive for classical apoptotic markers, i.e. TUNEL and ssDNA

382	(Gavrieli et al., 1992). The studies that estimated a larger dying cohort used p53 and
383	Caspase-2 as markers, both of which are initiating apoptotic factors whose presence
384	likely precedes the morphological changes we report (Zeng and Oakley 1999; Zeng et al.,
385	2000, Bouchier-Hayes and Green, 2012). Beidler and Smallman (1965) reported that rat
386	taste buds lose approximately half their cells every 10 days. If mouse taste buds are
387	similar, we expect 4-5 dying cells per day in a bud of 80-100 cells. Our results are
388	consistent with this estimate.
389	
390	Of early stage dying taste cells, the majority are Type II cells and a few are Type III cells.
391	Buds contain fewer Type III than Type II cells, and Type III cells are the longest-lived,
392	making it less likely that we would observe them dying in a single snapshot of a dynamic
393	organ. Surprisingly, we do not observe apoptotic Type I cells. Type I cells are the most
394	common (~50% of all cells; Yang et al., 2020), and are described as the shortest-lived
395	(Farbman, 1980; Perea-Martinez et al., 2013; Gross et al., 2017; Yang et al., 2020). If a
396	bud contains ~100 cells, we expect ~50 to be Type I cells. If, as according to the
397	estimates of Beidler and Smallman (1965) and Yang et al (2020), half of this population
398	is renewed every 10 days, then we would expect ~2.5 Type I cells dying per day in each
399	taste bud. Since this estimate is based on the entire taste cell population, and Type I
400	cells reportedly have the shortest lifespan (Farbman, 1980; Hamamichi et al., 2006;
401	Perea-Martinez et al., 2013; Gross et al., 2017), the estimate is likely conservative.
402	However, we do not observe apoptotic Type I cells. What then, is their ultimate fate?
403	Ueda and colleagues reported a population of apoptotic cells interpreted as Type I cells

404	in rats (Ueda et al., 2008). The marker used to identify these cells (human blood antigen
405	H) is, however, not specific to Type I cells (Ueda et al., 2003). Other estimates of Type I
406	cell lifespans are based on perdurance of nucleotide labeling during progenitor cell
407	division; Farbman (1980) estimated "dark" cells (an earlier term apparently equivalent
408	to Type I cells) to have a lifespan of ~7 days, and Perea-Martinez (2013) and colleagues
409	found cells lacking Type II or III markers (presumed Type I cells) to have a \sim 16 day
410	lifespan. If Type I cells are exiting the bud rather than dying, previous studies would not
411	necessarily capture that process. Conceivably, Type I cells may exit the taste bud apically
412	or laterally, to be eventually sloughed off the lingual epithelium with non-taste
413	epithelial cells. Alternatively, Type I cells may be dying too quickly to capture in our
414	sampling paradigm, or may die via an alternative cell death process which shows no
415	obvious morphological features. We do occasionally observe autophagosome-like
416	profiles in Type I cells, but cannot determine whether these structures indicate cell
417	death, cell repair, or phagocytosis of neighboring dying cells. Possibly, the Type I cells
418	undergo autophagy following phagocytosis of other dying cells. The cells we describe as
419	late stage dying cells could include Type I cells, but are more rare than expected. Our
420	data do not resolve how and whether Type I cells die or otherwise exit the taste bud.
421	
422	Early stage dying Type II and III cells feature synaptic structures in various stages of
423	degradation, suggesting impaired signaling to nerves. Moreover, these dying cells often

424 contact postsynaptic nerve fibers that, seemingly, do not exit the bud and thus cannot

425 signal to the CNS. In the face of wholesale turnover of taste receptor cells, taste nerves

426	are constantly remodeling (Whiddon et al., 2023). Large "end-bulbs" are associated with
427	nerve branch retraction (Zaidi et al., 2016; Whiddon et al., 2023) and we occasionally
428	observe enlarged nerve processes near late stage dying cells (Figure 6A). More often,
429	synapses from dying cells contact nerve fiber fragments (Figure 6B-F). Considering these
430	data, we hypothesize that nerve fiber fragments that receive synapses from early stage
431	dying cells have separated from their trunk nerve fibers as a part of the remodeling
432	process. Such nerve fragments are not reported by Whiddon et al (2023), who rely on
433	sparse GFP label to follow individual fibers within a taste bud. A possible explanation for
434	this discrepancy is that once a nerve fiber fragment detaches from the nerve trunk, it's
435	ability to maintain pH homeostasis degrades, which would cause cytoplasmic
436	acidification and could quench the GFP fluorescence (Roberts et al., 2016). We cannot,
437	however, rule out the possibility that these nerve fiber fragments are attached to fibers
438	exiting the bud, but that our data do not allow us to accurately trace the full nerve
439	profile. In our dataset, it can be challenging to follow processes with diameters less than
440	70 nm (the section thickness) as they wend their way between other cell and fiber
441	processes.

442

Our data present a novel role for Type I cells in the taste bud, i.e. Type I cells engulf and
remove neighboring apoptotic cells. In many tissues, immune cells fill this phagocytic
role (D'Arcy, 2019) but we find no evidence for immune cells within taste buds. Type I
cells, considered the glial-like support cells of the taste bud, are well poised for a
phagocytic role. Precedence exists for supporting cells in sensory epithelia engulfing

448	dying cells, as in the olfactory epithelium (Suzuki et al., 1996B). Previous studies found
449	Type I taste cells containing large, dense bodies within their cytosol (Takeda et al., 1996;
450	Farbman, 1969; Fujimoto and Murray 1970; Olivieri-Sangiacomo, 1970; Farbman, 1985).
451	Our data are consistent with these observations, leading us to the hypothesis that Type I
452	cells phagocytose and degrade materials from apoptotic Type II and III cells.
453	
454	These data point to apoptosis as a major mechanism of death for murine taste cells. The
455	dying cells we identify feature several hallmarks of apoptosis, and can be categorized
456	into either early or late stages of death. Those that retain synaptic contacts with nerve
457	fibers during early stages of cell death are likely impaired in their ability to communicate
458	to the CNS, as many of their target nerve fibers are fragmented. Type I cells appear to
459	engulf dying cells, identifying a novel, phagocytic role for Type I taste cells. We do not,
460	however, identify morphologically recognizable Type I cells in the process of cell death.
461	Whether, how, and when Type I cells die or exit the taste bud remains unclear.
462	

463 **References**

- 464 Barlow LA (2015). Progress and renewal in gustation: new insights into taste bud development.
- 465 *Development, 142*(21), 3620-3629.

466

- 467 Beidler LM, Smallman RL (1965). Renewal of cells within taste buds. J Cell Biol, 27(2),
- 468 263-272.

469

- 470 Bouchier-Hayes, L., & Green, D. R. (2012). Caspase-2: The orphan caspase. *Cell Death Differ*,
- 471 *19*(1), 51-57.

472

473 Chaudhari N, & Roper SD (2010). The cell biology of taste. J Cell Biol, 190(3), 285-296.

474

- 475 Chen D, Song M, Mohamad O, Yu SP (2014). Inhibition of Na+/K+-ATPase induces hybrid
- 476 cell death and enhanced sensitivity to chemotherapy in human glioblastoma cells. BMC

477 Cancer, 14, 716.

478

- 479 Chen Y, Hua Y, Li X, Arslan IM, Zhang, W., & Meng, G. (2020). Distinct Types of Cell Death
- 480 and the Implication in Diabetic Cardiomyopathy. Front Pharmacol, 11, 42.

- 482 Clapp TR, Medler KF, Damak S, Margolskee RF, Kinnamon SC (2006). Mouse taste cells
- 483 with G protein-coupled taste receptors lack voltage-gated calcium channels and SNAP-
- 484 25. BMC Biol, 4, 7.

485

- 486 D'Arcy MS (2019). Cell death: a review of the major forms of apoptosis, necrosis and
- 487 autophagy. Cell Biol Int, 43(6), 582-592.

488

- 489 Eskelinen EL, Reggiori F, Baba M, Kovacs AL, Seglen PO (2011). Seeing is believing: the
- 490 impact of electron microscopy on autophagy research. Autophagy, 7(9), 935-956.

491

- 492 Farbman AI (1969). Fine structure of degenerating taste buds after denervation. Journal
- 493 of Embryology and Experimental Morphology, 22(1), 55-68.

494

- 495 Farbman AI (1980). Renewal of taste bud cells in rat circumvallate papillae. Cell Tissue
- 496 Kinet, 13(4), 349-357.

497

- 498 Farbman AI, Hellekant G, Nelson A (1985). Structure of taste buds in foliate papillae of
- the rhesus monkey, Macaca mulatta. Am J Anat, 172(1), 41-56.

500

- 501 Fiala JC (2005). Reconstruct: a free editor for serial section microscopy. J Microsc, 218(Pt
- 502 1), 52-61.

503

- 504 Fink SL, Cookson BT (2005). Apoptosis, pyroptosis, and necrosis: mechanistic description
- 505 of dead and dying eukaryotic cells. Infect Immun, 73(4), 1907-1916.

- 507 Fujimoto S, Murray RG (1970). Fine structure of degeneration and regeneration in
- 508 denervated rabbit vallate taste buds. Anat Rec, 168(3), 383-413.
- 509
- 510 Gavrieli Y, Sherman Y, Ben-Sasson SA (1992). Identification of programmed cell death in
- 511 situ via specific labeling of nuclear DNA fragmentation. J Cell Biol, 119(3), 493-501.
- 512
- 513 Gross L, Scott JK, Castillo Azofeifa D, Gaillard D, Barlow LA (2017). Molecular genetic
- 514 lineage tracing of taste bud cells in adult mice. AChemS, Bonita Springs, FL.
- 515
- 516 Hamamichi R, Asano-Miyoshi M, Emori Y (2006). Taste bud contains both short-lived and
- 517 long-lived cell populations. Neuroscience, 141(4), 2129-2138.
- 518
- 519 Ho J, Tumkaya T, Aryal S, Choi H, Claridge-Chang A (2019). Moving beyond P values: data
- analysis with estimation graphics. Nat Methods, 16(7), 565-566.
- 521
- 522 Huang YA, Maruyama Y, Stimac R, Roper SD (2008). Presynaptic (Type III) cells in mouse
- taste buds sense sour (acid) taste. J Physiol, 586(12), 2903-2912.
- 524
- 525 Huang YJ, Lu KS (2001). TUNEL staining and electron microscopy studies of apoptotic
- 526 changes in the guinea pig vallate taste cells after unilateral glossopharyngeal

527 denervation. Anat Embryol (Berl), 204(6), 493-501.

529	Kinnamon JC, Taylor BJ, Delay RJ, Roper SD (1985). Ultrastructure of mouse vallate taste
530	buds. I. Taste cells and their associated synapses. J Comp Neurol, 235(1), 48-60.
531	
532	Lakshmanan HG, Miller E, White-Canale A, McCluskey LP (2022). Immune responses in
533	the injured olfactory and gustatory systems: a role in olfactory receptor neuron and
534	taste bud regeneration? Chem Senses, 47.
535	
536	Lindenboim L, Zohar H, Worman HJ, Stein R (2020). The nuclear envelope: target and
537	mediator of the apoptotic process. Cell Death Discov, 6, 29.
538	
539	Medler KF, Margolskee RF, Kinnamon SC (2003). Electrophysiological characterization of
540	voltage-gated currents in defined taste cell types of mice. J Neurosci, 23(7), 2608-2617.
541	
542	Murray RG, Murray A, Fujimoto S (1969). Fine structure of gustatory cells in rabbit taste
543	buds. J Ultrastruct Res, 27(5), 444-461.
544	
545	Ohman LC, Krimm RF (2021). Whole-Mount Staining, Visualization, and Analysis of
546	Fungiform, Circumvallate, and Palate Taste Buds. J Vis Exp(168).
547	
548	Ohman LC, Krimm RF (2021). Variation in taste ganglion neuron morphology: insights
549	into taste function and plasticity. Curr Opin Physiol, 20, 134-139.
550	

551	Ohmoto M, Jyotaki M, Foskett JK, Matsumoto I (2020). Sodium-Taste Cells Require Skn-
552	1a for Generation and Share Molecular Features with Sweet, Umami, and Bitter Taste
553	Cells. eNeuro, 7(6).
554	
555	Olivieri-Sangiacomo C (1970). Ultrastructural modifications of denervated taste buds. Z
556	Zellforsch Mikrosk Anat, 108(3), 397-414.
557	
558	Perea-Martinez I, Nagai T, Chaudhari N (2013). Functional cell types in taste buds have
559	distinct longevities. PLoS One, 8(1), e53399.
560	
561	Pumplin DW, Yu C, Smith DV (1997). Light and dark cells of rat vallate taste buds are
562	morphologically distinct cell types. J Comp Neurol, 378(3), 389-410.
563	
564	Roberts TM, Rudolf F, Meyer A, Pellaux R, Whitehead E, Panke S, Held M (2016).
565	Identification and Characterisation of a pH-stable GFP. Sci Rep, 6, 28166.
566	
567	Rodriguez YA, Roebber JK, Dvoryanchikov G, Makhoul V, Roper SD, Chaudhari N (2021).
568	"Tripartite Synapses" in Taste Buds: A Role for Type I Glial-like Taste Cells. J Neurosci,
569	41(48), 9860-9871.
570	
571	Romanov RA, Lasher RS, High B, Savidge LE, Lawson A, Rogachevskaja OA, Zhao H,
572	Rogachevsky VV, Bystrova MF, Churbanov GD, Adameyko I, Harkany T, Yang R, Kidd GJ,

- 573 Marambaud P, Kinnamon JC, Kolesnikov SS, Finger TE (2018). Chemical synapses without
- 574 synaptic vesicles: Purinergic neurotransmission through a CALHM1 channel-
- 575 mitochondrial signaling complex. Sci Signal, 11(529).
- 576
- 577 Roper SD (2013). Taste buds as peripheral chemosensory processors. Semin Cell Dev
- 578 Biol, 24(1), 71-79.
- 579
- 580 Royer SM, Kinnamon JC (1988). Ultrastructure of mouse foliate taste buds: synaptic and
- 581 nonsynaptic interactions between taste cells and nerve fibers. J Comp Neurol, 270(1),
- 582 11-24, 58-19.
- 583
- 584 Snigirevskaya ES, Komissarchik YY (2019). Ultrastructural traits of apoptosis. Cell Biol Int,
- 585 43(7), 728-738.
- 586
- 587 Suzuki Y, Takeda M, Farbman AI (1996). Supporting cells as phagocytes in the olfactory
- 588 epithelium after bulbectomy. J Comp Neurol, 376(4), 509-517.
- 589
- 590 Suzuki Y, Takeda M, Obara N, Nagai Y (1996). Phagocytic cells in the taste buds of rat
- 591 circumvallate papillae after denervation. Chem Senses, 21(4), 467-476.
- 592
- 593 Takeda M, Suzuki Y, Obara N, Nagai Y (1996). Apoptosis in mouse taste buds after
- denervation. Cell Tissue Res, 286(1), 55-62.

596	Taruno A, Vingtdeux V, Ohmoto M, Ma Z, Dvoryanchikov G, Li A, Adrien L, Zhao H, Leung
597	S, Abernethy M, Koppel J, Davies P, Civan MM, Chaudhari N, Matsumoto I, Hellekant G,
598	Tordoff MG, Marambaud P, Foskett JK (2013). CALHM1 ion channel mediates purinergic
599	neurotransmission of sweet, bitter and umami tastes. Nature, 495(7440), 223-226.
600	
601	Ueda K, Fujii M, El-Sharaby A, Honma S, Wakisaka S (2003). Human blood group antigen
602	H is not the specific marker for type I cells in the taste buds. Arch Histol Cytol, 66(5),
603	469-473.
604	
605	Ueda K, Ichimori Y, Maruyama H, Murakami Y, Fujii M, Honma S, Wakisaka S (2008).
606	Cell-type specific occurrence of apoptosis in taste buds of the rat circumvallate papilla.
607	Arch Histol Cytol, 71(1), 59-67.
608	
609	Whiddon ZD, Marshall JB, Alston DC, McGee AW, Krimm RF (2023). Rapid structural
610	remodeling of peripheral taste neurons is independent of taste cell turnover. PLoS Biol,
611	21(8), e3002271.
612	
613	Wilson CE, Lasher RS, Yang R, Dzowo Y, Kinnamon JC, Finger TE (2022). Taste Bud
614	Connectome: Implications for Taste Information Processing. J Neurosci, 42(5), 804-816.
615	

- 616 Yang R, Crowley HH, Rock ME, Kinnamon JC (2000). Taste cells with synapses in rat
- 617 circumvallate papillae display SNAP-25-like immunoreactivity. J Comp Neurol, 424(2),
- 618 205-215.
- 619
- 620 Yang R, Dzowo YK, Wilson CE, Russell RL, Kidd GJ, Salcedo E, Lasher RS, Kinnamon JC,
- 621 Finger TE (2020). Three-dimensional reconstructions of mouse circumvallate taste buds
- 622 using serial blockface scanning electron microscopy: I. Cell types and the apical region of
- 623 the taste bud. J Comp Neurol, 528(5), 756-771.
- 624
- 625 Yee CL, Yang R, Bottger B, Finger TE, Kinnamon JC (2001). "Type III" cells of rat taste
- 626 buds: immunohistochemical and ultrastructural studies of neuron-specific enolase,

627 protein gene product 9.5, and serotonin. J Comp Neurol, 440(1), 97-108.

- 628
- 629 Zaidi FN, Whitehead MC (2006). Discrete innervation of murine taste buds by peripheral
- 630 taste neurons. J Neurosci, 26(32), 8243-8253.

631

- 632 Zeng Q, Oakley B (1999). p53 and Bax: putative death factors in taste cell turnover. J
- 633 Comp Neurol, 413(1), 168-180.

- 635 Zeng, Q., Kwan, A., & Oakley, B. (2000). Gustatory innervation and bax-dependent caspase-2:
- 636 participants in the life and death pathways of mouse taste receptor cells. J Comp Neurol,
- *424*(4), 640-650.

638 Table 1. Reported numbers of dying cells in taste buds.

Citation	Animal model	Death identification method	Observed dying cells per section	lf bud = 40 μm across, dying cells/bud
Ueda et al 2008	Rat	ssDNA stain	1.2 cells / 16 μm section	~3
Zeng & Oakley 1999	Mouse	p53 (early death signal)	11.4%	11.4% (~9 cells)
Zeng et al 2000	Mouse	Caspase-2 (protease)	11% +/- 0.8%	11% (~9 cells)
Huang & Lu 2001	Guinea pig	Tunel stain	~1-2 tunel+ cells / 20 μm section	2-4
Takeda et al 1996	Mouse	Tunel stain	~0.14 tunel+ cells / 6 μm section	0.93

639

641	Figure 1. Taste cell types and synapses in murine circumvallate taste buds. A. Electron
642	micrograph of a circumvallate mouse taste bud with overlaid individual reconstructions
643	of a Type I cell (green), Type II cell (blue), Type III cell (red), and Type IV immature cell
644	(purple). Scale bar is 10 μ m. B. Micrograph of the channel synapse between a Type II cell
645	(blue) and adjacent nerve fiber (yellow) with arrows indicating the large, atypical
646	mitochondria characteristic of Type II cell synapses. Scale bar is 1 μm for both ${\bm B}$ and ${\bm C}.$
647	C. Micrograph of the synapse between a Type III cell (red) and adjacent nerve fiber
648	(yellow) with arrow indicating the cluster of vesicles at the pre-synaptic membrane.
649	
650	Figure 2. Morphological features of healthy and dying taste cells. A. Reconstruction of
651	a healthy, mature Type II cell (blue) in the taste bud shell (gray). Scale bar is 10 μ m. B.
652	Micrograph of a healthy Type II cell, with arrows indicating endoplasmic reticulum (ER).
653	Scale bar is 2 μ m and applies to B, C, E, and F . B' . Enlarged region of healthy Type II
654	cytosol showing normal ER (arrows). Scale bar is 1 μ m. C. Micrograph of a dying Type II
655	cell, with arrows indicating examples of swollen endoplasmic reticulum. C'. Enlarged
656	region of dying Type II cell cytosol, featuring swollen endoplasmic reticulum. Scale bar is
657	1 μ m. D. Reconstruction of a dying cell of unknown type (purple) in the taste bud shell
658	(gray). Scale is the same as in A. D'. Enlarged region of dying taste cell reconstruction in
659	D. Arrow indicates the point of separation between the main dying cell and its apical
660	fragment. E. Micrograph of healthy Type II cell, with an arrow indicating the only visible
661	lysosome in this cell profile. F. Micrograph of a dying Type II cell, with arrows indicating
662	some of the numerous lysosomes apparent in the cell cytosol. G. Micrograph depicting

663	two healthy Type I cells (green, left) and a dying Type II cell (purple, right). Arrows
664	indicate mitochondria in healthy cells (left 2) and those of the dying cell (right 4). Scale
665	bar is 1 μ m and applies to G, H, H', I, and I' . H. Micrograph of healthy cell cytosol with
666	arrows indicating Golgi bodies. H'. Enlarged region of cytosol including a healthy Golgi
667	apparatus. I. Micrograph of a dying Type II cell with arrows indicating swollen Golgi
668	bodies. I'. Enlarged region of the swollen Golgi apparatus of a dying cell.
669	
670	Figure 3. Cell volumes of taste cells. Graph depicts total cell volumes of healthy Type II

and III cells (left), early dying Type II and III cells (middle, light gray), and late stage dyingcells (right, dark gray).

673

674 Figure 4. Lysosomes in taste cells. A. Reconstructions of selected taste cells (grey) and 675 their lysosomes (color coded by size from small (blue) to large (red)). Reconstructions 676 are divided into cell types: IV, III, II, I, early dying (ed), and late dying (ld). B. Lysosome 677 count per cell (left) and lysosome median volume by cell (right). Each data point 678 represents a single cell. Data is binned by cell type, as in A. C. Swarm charts of lysosome 679 volumes of healthy Type II cells and early stage dying Type II cells showing the entire 680 range of volumes (left) and a cropped view (right) of the volumes below 1µm³. Black 681 squares indicate mean volume, while diamonds indicate median volume. D. 682 Reconstructions of the lysosome meshes from healthy Type II cells (blue) and an early 683 stage dying Type II cells (purple). Inset shows an enlarged view of the perinuclear area 684 from a healthy and dying cell.

685 Figure 5. Morphological features of healthy and dying taste cell nuclei. A.

686	Reconstruction of healthy Type II cell nucleus (blue) with distended regions between
687	inner and outer nuclear membranes reconstructed in gray. B. Micrograph of a healthy
688	Type II cell nucleus (that reconstructed in A) (blue, left) and a nucleus of a dying Type II
689	cell on the right (purple) showing distended regions between the inner and outer
690	nuclear membrane. Scale bar is 2 μm , and applies to all micrographs in this figure. C.
691	Reconstruction of the nucleus shown in B , showing in the inner nuclear region in purple,
692	and the distended regions between the inner nuclear membrane in lighter purple. Of
693	the dying cell nuclei, this is the only nucleus for which these distended regions were
694	segmented and reconstructed. Thus, the reconstructions in E and G do not feature
695	equivalent reconstructions of the distended nuclear membrane regions. D, D'.
696	Reconstruction (D) and micrograph (D ') of healthy Type II cell nucleus. E, E'.
697	Reconstruction (E) and micrograph (E') of a fragmented nucleus of a dying cell of
698	unknown type. Arrows indicate regions of heterochromatin expansion. F, F'.
699	Reconstruction (F) and micrograph (F') of a healthy Type III cell nucleus. G, G'.
700	Reconstruction (G) and micrograph (G') of the shrunken nucleus of a dying cell of
701	unknown type. Arrows indicate regions of heterochromatin expansion.
702	
703	Figure 6. Synapses in dying cells. A. Micrograph of the point of contact between a late

stage dying cell of unknown type (purple) and an adjacent nerve fiber (yellow). Asterisk

705 ~ indicates region of contact. Scale bar is 1 μm and applies to all micrographs in this

704

figure. **B.** Synaptic sites between two nerve fibers (yellow-green and yellow) and a dying

707	Type II cell (purple). Arrows indicate atypical mitochondria (red), which feature
708	abnormal cristae patterns. C. Reconstruction of a dying Type II cell (purple) and the
709	three nerve fibers that receive synapses from it in the taste bud shell (gray). Atypical
710	mitochondria are red. Only the orange fiber exits the base of the taste bud. The green
711	and pink fibers appear to be nerve fiber fragments. Scale bar 10 $\mu\text{m}.\textbf{D.}$ Micrograph
712	showing a region of contact between a dying Type III cell (purple) and the adjacent
713	nerve fiber (yellow). E. Enlarged micrograph showing a different point of contact
714	between the dying Type III cell (purple) and the nerve fiber (yellow) in D . Arrows
715	indicate large, swollen structures (upper arrow) and typical synaptic vesicle structures
716	(lower arrow) at the point of contact with the nerve fiber. F. Reconstruction of a dying
717	Type III cell (purple) and the nerve fiber it borders. This nerve fiber is a fragment and
718	does not exit the base of the bud.

719

720 Figure 7. Type I cells as they relate to dying cells. A. Reconstruction of a late stage dying 721 cell (purple) and the two Type I cells (green) that surround it. **B.** Micrograph of an early 722 stage dying Type II cell (purple) and a neighboring Type I cell (green). Asterisk indicates a 723 region of the dying cell nearly surrounded by the neighboring Type I cell, likely an area 724 of phagocytosis. **C.** Micrograph of a late stage dying cell (purple) and the bordering Type 725 I cell (green). Arrow indicates a presumed apoptotic body, which is completely 726 surrounded by the Type I cell. **D.** Reconstruction of a late stage dying cell (purple) and 727 the neighboring Type I cell (green). Lysosomes in the Type I cell are depicted in pink. D'. 728 Rotated, enlarged view of the Type I cell partially surrounding the dying cell. D".

729	Enlarged region of D which highlights the lysosomes (pink) in the region of the Type I cell
730	that borders the dying cell. D . Enlarged region of D which highlights the lysosomes
731	(pink) in the region of the Type I cell that does not border the dying cell. E. Micrograph
732	of a Type I cell (green) that borders an early dying cell (purple). Arrows indicate large,
733	membrane enclosed profiles that the Type I cell may have engulfed from the dying cell.
734	E'. Enlarged region of E which highlights the membrane continuity between the dying
735	cell and one such profile that is perhaps in the process of being engulfed by the
736	neighboring Type I cell.
737	
738	Figure 8. Dying cells in the context of the bud. A. Pie charts depicting the cell type
739	composition of two taste buds: TF21 TB1 and TF21 TB2. These two taste buds are the
740	only taste buds that are fully contained in the boundaries of the tissue block. B. Diagram
741	depicting the locations of cell nuclei within the taste bud TF21 TB2 according to cell
742	type. Immature Type IV cell nuclei (pink-purple) are on the left, followed by Type III cell
743	nuclei (red), Type II cell nuclei (blue), Type I cell nuclei (green) and dying cell nuclei
744	(dusty purple). One nucleus in the Type II cell panel is labeled as purple (asterisk),
745	because the cell it inhabits is immature and we cannot discern whether it would have
746	developed into a Type II or Type III cell. The taste bud and nuclei are shown in profile
747	(top row) and from a top down view of the taste bud (bottom).
748	
749	Figure 9. Pathway to death. Reconstructions of cells summarizing the pathway from

birth to death of a taste cell. From left to right: dividing basal cell, Type IV immature

- taste cell, Immature Type II or III taste cell, Type II mature taste cell, Type II early stage
- 752 dying cell, Late stage dying cell of unknown type.
- 753

754 Supplementary Figure 1. Estimation statistics for the median difference of cell

- volumes between cell categories. The median differences between healthy and late
- stage dying cells (**A**); early stage and late stage dying cells (**B**); healthy Type II and early
- stage dying Type II cells (**C**); and healthy Type III and early stage dying Type III cells (**D**) as
- shown in Gardner-Altman estimation plots generated using estimationstats.com (Ho et
- al., 2019). For each comparison, both groups are plotted on the left axes; the mean
- 760 difference is plotted on a floating axes on the right as a bootstrap sampling distribution.
- 761 The mean difference is depicted as a dot; the ends of the vertical error bar (black)
- 762 indicate the 95% confidence interval. All calculated confidence intervals indicate that
- the compared groups are different.

cell volumes

F

10 µm

TF21 TB3 TC06-T3 NF_06

TF21_TB2_T4C-01 immature cell type undetermined TF21_TB2_T3C19 immature Type II or Type III

TF21_TB2_TCdying02 late stage dying cell type unknown

DS2_basalcell05 basal

10 µm

