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Cardiac potassium channels encoded by human ether-a-
go-go—related gene (ZERG) are major targets for structurally
diverse drugs associated with acquired long QT syndrome. This
study characterized hERG channel inhibition by a minimally
structured high-affinity hERG inhibitor, Cavalli-2, composed of
three phenyl groups linked by polymethylene spacers around a
central amino group, chosen to probe the spatial arrangement of
side chain groups in the high-affinity drug-binding site of the
hERG pore. hERG current (l,grg) recorded at physiological
temperature from HEK293 cells was inhibited with an IC;, of
35.6 nm with time and voltage dependence characteristic of
blockade contingent upon channel gating. Potency of Cavalli-2
action was markedly reduced for attenuated inactivation mutants
located near (S620T; 54-fold) and remote from (N588K; 15-
fold) the channel pore. The S6 Y652A and F656A mutations
decreased inhibitory potency 17- and 75-fold, respectively,
whereas T623A and S624A at the base of the selectivity filter
also decreased potency (16- and 7-fold, respectively). The S5
helix F557L mutation decreased potency 10-fold, and both
F557L and Y652A mutations eliminated voltage dependence of
inhibition. Computational docking using the recent cryo-EM
structure of an open channel hERG construct could only par-
tially recapitulate experimental data, and the high dependence
of Cavalli-2 block on Phe-656 is not readily explainable in that
structure. A small clockwise rotation of the inner (S6) helix of
the hERG pore from its configuration in the cryo-EM structure
may be required to optimize Phe-656 side chain orientations
compatible with high-affinity block.

The human ether-a-go-go—related gene encodes the hRERG*
potassium (K™) channel, which carries the rapid delayed recti-
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fier repolarizing current (/i) in human cardiac myocytes. This
current contributes to ventricular action potential repolariza-
tion and effectively controls the duration of the QT interval in
humans (1-3). The repolarizing properties of hERG are medi-
ated by rapid channel inactivation following channel opening
upon membrane depolarization followed by rapid recovery
from inactivation and slow channel closing (deactivation) at
repolarizing membrane potentials (1, 2). hRERG continues to be
of intense pharmacological interest due to the wide variety of
cardiac and noncardiac drugs that block the channel with the
potential to cause acquired long QT syndrome (aLQTS) and tor-
sades de pointes (TdP) arrhythmia, which can lead to sudden car-
diac death (3, 4). Accordingly, new pharmaceutical compounds
must undergo electrophysiological screening for hERG/I, block
early during drug development (3, 5).

A substantial body of research has established that the major-
ity of hERG-blocking drugs bind within the channel pore that
comprises the S5 and S6 helices and a connecting loop that lies
in or near the extracytoplasmic membrane surface (2, 4, 6, 7).
The latter sequence contains a long extracellular domain that is
involved in rapid C-type inactivation at moderate depolarized
potentials, a pore helix, and a canonical selectivity filter
sequence (see Fig. 1 and Ref. 8). The hERG pore is a tetramer
(4 X S5-S6), and each monomer is connected by a short S4-S5
linker to separate four transmembrane helix voltage sensor
domains (transmembrane helices S1-S4) that couple gating of
the K -conducting pore to changes in the membrane potential
(see Fig. 1). Because channel block by almost all hRERG-blocking
drugs is attenuated by mutations of one or both of two key
residues (Tyr-652 and Phe-656) on the S6 helix that forms
much of the lining of the K conductance pathway, these drugs,
particularly the large number that contain a positively charged
amino group, are proposed to bind within the K conduction
pathway at some point below the bottom of the selectivity filter
(see Fig. 1). Many positively charged hERG blockers access this
region of the channel pore when the channel is gated open upon
membrane depolarization.

Alanine-scanning mutagenesis has been used to further
define the binding determinants for several hERG blockers,
including MK-499 (9), propafenone (10), vesnarinone (11),
cisapride (12), terfenadine (12), quinidine (13), chloroquine
(14), dofetilide (15), E-4031 (15), ibutilide (16, 17), clofilium (16,
17), disopyramide (18), ranolazine (19), lidocaine (19), and
amiodarone (20). In general, a selection of residues that line the

SASBMB

© 2018 by The American Society for Biochemistry and Molecular Biology, Inc.  Published in the US.A.


http://www.jbc.org/cgi/content/full/RA117.000363/DC1
mailto:Jules.Hancox@bristol.ac.uk
mailto:c.dempsey@bristol.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1074/jbc.RA117.000363&domain=pdf&date_stamp=2018-3-15

A

VSD S1-54

hERG channel block by Cavalli-2

Figure 1. Open pore cryo-EM structure of a hERG construct from Wang and MacKinnon (8). A is a top-down view illustrating the subunit arrangement of
the hERG construct membrane domain tetramer. The voltage sensor domain (VSD) (transmembrane helices S1-S4) of one subunit is colored blue. B, side view
of the pore domain comprising the S5 helix, pore helix, selectivity filter (SF), and S6 helix; the extracellular turret linking the top of S5 and the N-terminal end
of the pore helix has some missing atom density. Amino acid residues mutated in this study or otherwise described in the text are highlighted.

hERG conduction pathway (Thr-623, Ser-624 at the bottom of
the pore helix, and Tyr-652 and Phe-656 on S6) is important for
drug block; the wide variation in the structures of hERG block-
ers is proposed to arise from the large set of residues (e.g. eight
Tyr-652 and Phe-656 aromatic side chains in total) available
for drug interactions. Attenuation of channel inactivation in
N558K (21) and especially S620T hERG mutants (22) (see Fig. 1
for location of these residues) is associated with partial (N588K)
or stronger (S620T) attenuation of hERG block by high-affinity
blockers, indicating that retention of inactivation is necessary
for block. Interestingly, the noninactivating EAG channels, in
the same channel family as hERG, possess aromatic residues in
positions equivalent to Tyr-652 and Phe-656 but do not exhibit
the same susceptibility to drug block (22, 23). Inactivation is
thought to involve conformational changes that alter the con-
figurations of side chains that interact with drugs in the pore
cavity (24). Whether this indicates that these blockers bind
more strongly to the inactivated state has not been established.
Until very recently a structure for the hERG membrane
domain was unavailable, and homology models of the hERG
pore have been used to distinguish residues that may interact
directly with hERG-blocking drugs and those whose mutation
to alanine reduces drug block by nondirect, allosteric effects (6,
10, 25-29). The latter side chains include those of Val-625,
which lies behind the K™ selectivity filter and is almost certainly
inaccessible to direct interaction with blockers in the channel
pore, and Val-659, which likely lies on the side of the S6 helix
directed away from the K™ permeation pathway (see Fig. 1). Atten-
uation of channel block in V625A and V659A mutants probably
results from the attenuation of inactivation in these mutants in
parallel with attenuation of high-affinity block in inactivation-de-
ficient mutants N558K and S620T. The effect of T623A hERG in
attenuating drug block might also result from nondirect effects
because, in drug docking with some hERG pore models, drug
poses that make simultaneous interactions with Tyr-652 and/or
Phe-656 as well as Thr-623 are often not found (25, 27, 29).
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One way to better define hERG pore domain side chains that
interact directly with blockers is to use structurally simplified
molecules that retain high blocking affinity but can make only a
minimal set of interactions. A series of “minimal hERG block-
ers” was described by Cavalli et al. (30) that consist of three
phenyl (or fluorophenyl) groups linked by polymethylene spac-
ers around a central amino group. High-affinity analogues of
the Cavalli series might be expected to make three aromatic
interactions with aromatic side chains in the hERG pore and
one “polar” interaction involving the positively charged amino
group and so should be useful in assessing the spatial relation-
ships of aromatic side chains within the pore. Here, we describe
the blocking effect of one of the Cavalli series (“Cavalli-2”; see
Fig. 2A) on wildtype (WT) hERG and a series of alanine replace-
ment mutants involving hERG pore residues previously shown
to be important for drug block. A recent study reported a sig-
nificant reduction of drug block in a hERG F557L mutant with
a suggestion that this residue on the S5 helix (see Fig. 1) might
directly interact with some hERG blockers (28); we have included
this mutant together with our alanine scan for Cavalli-2 channel
block. The recent high-resolution open pore structure of a hERG
construct using cryo-EM (Ref. 8 and see Fig. 1) allows our mutant
data on Cavalli-2 block to be interpreted in the context of an open
pore structure existing at a neutral (0-mV) membrane potential.
The interpretation of interaction of Cavalli-2 with hERG pore res-
idues in high-affinity bound states is also of interest in the context
of the strong structural similarity of Cavalli-2 with prenylamine,
one of the many drugs removed from the market due to cardiac
side effects likely resulting from hERG channel block (31).

Results
Concentration dependence of I, inhibition by Cavalli-2

Five concentrations of Cavalli-2 on I, ;5 were investigated
using the protocol shown in Fig. 2B, which has been used in
prior studies from our laboratory (18-20, 32—34). From —80
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Figure 2. Effect of Cavalli-2 on WT /, gg¢. A, structure of the “minimally structured” compound Cavalli-2. B, upper panel, shows representative traces recorded
in 4 mm normal [K*], elicited by depolarizing voltage command (lower panel) in the absence (black) and presence (gray) of 30 nm Cavalli-2 (Cav-2) after 5 and
5.5 min to demonstrate steady-state block. C, concentration-response relationships for inhibition of /, g tails at —40 mV by Cavalli-2 (n = 5 for each point). D,
voltage dependence of Cavalli-2 block (black dotted line) and voltage-dependent activation relationships for /, ¢z in control (black continuous line) and in the
presence of 30 nm Cavalli-2 (gray line) (n = 6). Vys = —16.0 = 3.6 mVand k = 5.37 = 0.75and V, s = —21.2 = 2.9 mV and k = 5.03 = 1.50 in control and in the
presence of 30 nm Cavalli-2, respectively. E, representative l,grg records in control (black) and in the presence of 30 nm Cavalli-2 (red line) elicited by
the superimposed action potential waveform. F, scatter plot comparing fractional block of I,z by 30 nm Cavalli-2 using the standard protocol and action
potential waveform. n = 6; p < 0.05, unpaired t test. Error bars represent means = S.E. ns, not significant.

mV, a 2-s activating step to +20 mV was followed by a 6-s step
to —40 mV to elicit [, prg tails. I, prg tail magnitude was mea-
sured relative to the brief depolarizing prepulse to —40 mV
(18-20, 32—34), and fractional inhibition of [, zr was calcu-
lated using Equation 1. [, zrg inhibition developed progres-
sively over 5 min. In the example traces shown in Fig. 2B, the
I prg tail was inhibited by ~50% by 30 nm Cavalli-2 with a mean
level of inhibition of 50.2 = 2.0% (n = 7). Washout was
attempted in five cells with partial recovery to 59.5 * 4.1% of
control amplitude. Fig. 2C shows the mean concentration-re-
sponse relationship for /; . tail inhibition by Cavalli-2; a fit to
the data using Equation 2 yielded a half-maximal inhibitory
concentration (IC;,) value of 35.6 nm (confidence interval (CI),
30.9-41.1) with a Hill slope of 0.69 (CI, 0.62—0.77). Voltage
dependence of inhibition was assessed using a similar, modified
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protocol with test depolarizations to voltages between —30 and
+60 mV (Fig. S1). In each of control and Cavalli-2, the I zrg
activation relationship was derived from current-voltage plots
of I, g tails, and V. and k values were derived from these
using a fit to the data with Equation 3. These values were used to
calculate activation variables between —60 and +60 mV. In
control, the mean V,, ; and k values were, respectively, —16.0 =
3.5 mV and 5.4 * 0.8; in 30 nm Cavalli-2, these values were
—21.1 £29mVand 5.0 = 1.5 (V, 5, p < 0.05; slope, not signif-
icant, paired ¢ test; n = 5). Fractional inhibition of [, zrg was
voltage-dependent over the tested range (p < 0.05, one-way
ANOVA). [, prg tail inhibition was steeply dependent on volt-
age at membrane potentials coinciding with the rising phase of
the I, rrg activation relationship. An increase in [, .y g Was seen
at —30 mV in Cavalli-2, which correlated with the leftward shift
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Figure 3. The time dependence of I,z inhibition by Cavalli-2. A, representative traces of I,,gzg in control (upper panel) and in the presence of 30 nm Cavalli-2
(lower panel) elicited by the “envelope-of-tails” protocol shown at the bottom of the lower panel. B, time dependence of normalized tail /; gz in control (black)
and in the presence of 30 nm Cavalli-2 (gray) (n = 6). Data at each time point were normalized to the maximum tail current elicited by the protocol in control.
Lines connect successive points in each plot. C, time dependence of fractional block of /g by 30 nm Cavalli-2 fitted with a monoexponential function (n = 6;
time constant = 140.9 = 33.4ms). D, scatter plot comparing t, of I, g deactivation in control and after application of 30 nm Cavalli-2 (Cav-2) using the protocol

shown in Fig. 2B. n = 6; unpaired t test. Error bars represent means = S.E.

in voltage-dependent activation. Notably, fractional inhibition
also showed some increase over voltages at which the activation
relationship had reached a plateau. This feature was used to
probe block further using Woodhull analysis (Equation 4 (35,
36)), yielding a & value of 0.2. In separate experiments, [, zrg
inhibition during a physiological (ventricular action poten-
tial (AP)) waveform was assessed using AP voltage clamp
(Fig. 2E). Fig. 2F shows that 30 nm Cavalli-2 inhibited peak
I, grg during the AP by 42.3 £ 6.7%, which was not signifi-
cantly different from that with the standard protocol shown
in Fig. 2B (unpaired ¢ test; n = 6).

Development of inhibition during an envelope-of-tails
protocol

The results shown in Fig. 2 were suggestive of strong depen-
dence of [, .z inhibition on channel gating. This was investi-
gated further using an envelope-of-tails protocol (34, 37—40),
shown in Fig. 3A, lower panel. The protocol was first applied in
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control solution and then discontinued while the cell under
study was rested in the presence of Cavalli-2 for 5 min. The
protocol was then reapplied once in the presence of Cavalli-2,
and fractional block of the [,z tail was evaluated for each of
the different duration voltage commands. In both control and
Cavalli-2, the magnitude of the I, . tail increased progres-
sively with test pulse duration, but control and 30 nm Cavalli-2
traces were similar for very short commands and diverged for
longer duration commands as shown in Fig. 3B. Fig. 3C shows a
plot of mean fractional inhibition against pulse duration for this
protocol. For the shortest activating pulses, little or no I, zrg
block was seen, and inhibition developed progressively with
longer duration pulses. The time course of development of
I, zrg inhibition during the envelope-of-tails protocol was fitted
with a single exponential equation, yielding a Tvalue of 129.1 =
23.1 ms (n = 5).

I prg tails on repolarization to —40 mV elicited by the stan-
dard protocol in Fig. 2B were used to assess effects of Cavalli-2

J. Biol. Chem. (2018) 293(18) 7040-7057 7043
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Figure 4. Effect of Cavalli-2 on hERG channel availability. A, upper traces show WT J, ¢ €licited by the “availability protocol” (from a holding potential of
—80 mV, the membrane was depolarized to +40 mV (500 ms) and then briefly (2 ms) repolarized to a test potential ranging from —140 to +50 mV before
returning to +40 mV). The full protocol is shown in the inset; the traces focus on the boxed area from the full protocol in control (A, panel i) and in the presence
of 30 nm Cavalli-2 (A, panel ii). B, voltage dependence of the normalized resurgent current elicited by the third step of the availability protocol in control (black)
and in the presence of 30 nm Cavalli-2 (Cav-2) (gray) (n = 6). Vs = —56.0 £ 1.9mVand k=213 = 1.9and V, s = —62.4 = 1.4mVand k = 20.1 = 1.3 in control
and in the presence of 30 nm Cavalli-2, respectively. C, scatter plots comparing time constants of /, .z inactivation calculated by fitting the peak transient
current at +40 mV after a 2-ms step to —120 mV with a monoexponential decay function (n = 6; NS, not significant, p > 0.05, Wilcoxon matched-pairs
signed-rank test). D, current records in control (thick black line) and after application of 30 nm Cavalli-2 (gray line) elicited by the voltage protocol shown (lower
trace) applied from a holding potential of —80 mV. The thin black line shows current remaining after application of 5 um E-4031. E, scatter plot comparing level
of | grg block at 2 (0 mV), 5 (+40 mV), and 10 s (0 mV). n = 5; **, p < 0.005, one-way ANOVA. Scatter plots in C and £ show individual data points. All error bars
represent means = S.E.

on I g deactivation. Values for t, deactivation were calcu-
lated from the peak tail current to the end of the repolarizing
pulse in control and after application of 30 nm Cavalli-2. No
significant change in t, deactivation was observed in the pres-
ence of Cavalli-2 (unpaired ¢ test; n = 6).

Inactivation

Taken together, the data in Figs. 2 and 3 indicate that the
inhibitory action of Cavalli-2 is strongly contingent upon hERG
channel gating. The action of several high-affinity /. inhib-

7044 J Biol. Chem. (2018) 293(18) 7040-7057

itors is significantly dependent on inactivation gating (21, 22,
41). Several approaches were taken to investigate the role of
inactivation gating in the action of Cavalli-2. First, a standard
three-step protocol (Fig. 44, panel i, inset) was used to deter-
mine voltage-dependent availability of I .z in control condi-
tions and in the presence of Cavalli-2. Fig. 4B shows mean plots
of I, zrg availability, fitted with Equation 5. The V, 5 of I, zrg
inactivation in control was —54.2 = 2.2 mV, and k was 22.1,
whereas in 30 nm Cavalli-2, the V, ; was —65.8 = 1.1, and k was
19.9 £ 1.1. Thus, Cavalli-2 caused a modest but statistically

SASBMB
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significant leftward shift in voltage-dependent inactivation
(p = 0.0005; paired t test; n = 6), consistent with stabilization of
the inactivated state by the drug. /, ;. currents elicited by the
third step following a brief repolarizing step to —120 mV were
used to determine the time course of inactivation. The inacti-
vation 7 (obtained from Equation 6) in control was 1.4 = 0.2 ms,
whereas in Cavalli-2 it was 1.6 = 0.5 ms (n = 6; p > 0.05;
Wilcoxon matched-pairs signed-rank test). Thus, Cavalli-2 did
not statistically significantly alter the time course of develop-
ment of inactivation.

Inactivation dependence of the compound’s effect on WT
I, rrc Was investigated using the three-step protocol shown in
Fig. 4D. Membrane potential was stepped from —80 to 0 mV for
3 s after which a further 4-s step to +40 mV to promote I, prg
inactivation was applied before repolarization back to 0 mV for
3 s prior to returning membrane potential to —80 mV. The
protocol was applied first in control solution and then following
a 5-min exposure to Cavalli-2 at —80 mV in the absence of
pulsing. In both conditions, outward current developed during
the initial 0-mV command that was reduced during the
+40-mV step, reflecting enhanced inactivation during that
phase of the protocol. A supramaximal concentration (5 um) of
E-4031 was used to enable subtraction of background current at

SASBMB

each phase of the protocol, and then fractional inhibition of
I, zrc was compared during the different phases of voltage com-
mand. Fig. 4E shows that fractional inhibition of I} .y by Cav-
alli-2 was significantly reduced during the +40-mV phase (n =
5 p < 0.005, one-way ANOVA). This is consistent with a
slightly stronger affinity of the compound for activated than
inactivated channels.

The role of inactivation gating was probed further using
N588K and S620T attenuated inactivation mutants located in
spatially distinct modules of the channel (see Fig. 1). Asn-588 is
located in the S5-pore linker region, and the N588K mutation
produces a +60- to +90-mV shift in voltage dependence of
inactivation gating (41). Ser-620 is located on the pore helix,
and S620T largely abolishes I, ;g inactivation (22). A concen-
tration of Cavalli-2 that produced profound inhibition of WT
L rre (300 nMm), shown in Fig. 54, inhibited N588K I, rg by
<50% (Fig. 5B) with an IC,, of 544 nm (CI, 445-664) and Hill
coefficient (n,;) of 0.97 (CI, 0.76-1.17) and produced only a
small effect on S620T I, rg (Fig. 5C) with an IC,, of 1916 nm
(CI, 1434 -2561) and ny, of 0.63 (CL, 0.47—-0.79). Thus, attenu-
ation or removal of channel inactivation had very significant
effects on Cavalli-2 action, consistent with an important role

J. Biol. Chem. (2018) 293(18) 7040-7057 7045
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Figure 6. Effect of pore helix mutations on I,z blockade by Cavalli-2. Representative current traces from two pore helix mutants (A, panel i, S624A; B,
panel ii, T623A) before and after application of 100 nm Cavalli-2 (Cav-2) with their respective WT control current traces (A, panel i, and B, panel i) under
appropriate recording conditions (see “Materials and methods”) are shown. C, concentration-response relationships for inhibition of S624A and WT /, gx tails
at —40 mV by Cavalli-2 (n = 5 for each concentration of each curve). D, concentration-response relationships for inhibition of T623A and WT /g tails by
Cavalli-2 at —120 mV in high K*. n = 5 for each concentration of each curve. Error bars represent means * S.E.

for inactivation in optimally exposing the binding site(s) on the
channel for the compound.

Interactions of Cavalli-2 with canonical binding determinants
in the inner cavity

High-affinity methanesulfonanilide I,y inhibitors have
binding determinants within the hERG channel inner cavity
that include residues at the base of the pore helix/selectivity
filter and aromatic residues on the S6 helix (9, 15, 16). We inves-
tigated the effects of alanine mutagenesis of four of these: Thr-
623, Ser-624, Tyr-652, and Phe-656. T623A and F656A typi-
cally exhibit low expression levels and are evaluated through
the measurement of inward /, . tails at a negative voltage in
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high [K™], (18 -20, 33). This requires companion experiments
on WT I prg under similar conditions. We determined an IC,,
for inhibition of inward /, ;. r g in 94 mm [K "], 0f 17.5 (CI, 13.8 —
22.1) nM and ny; of 0.99 (CI, 0.55-1.42). Fig. 6A compares the
effects of 100 nm Cavalli-2 on S624A with its WT control, show-
ing an attenuated effect for the mutant channel. Fig. 6B com-
pares the effects of 100 nm Cavalli-2 on WT and T623A hERG at
—120 mV, showing attenuated inhibition for the latter. Fig. 6C
shows superimposed concentration-response relationships for
WT and S624A I, zrc; the IC,, for the mutant was 262 nm (CI,
209 -328) with 1, 0f 0.72 (CI, 0.58 — 0.87), 7-fold that of its W'T
control. Fig. 6D shows superimposed concentration-response
relationships for WT and T623A I, p.r; the derived IC,, for the
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mV. Data are from six cells. D, concentration-response relationships for inhibition of Y652A and WT /e tails at —40 mV by Cavalli-2 (n = 5 for each
concentration of each curve). E, representative current traces from F656A at —120 mVin high K* before and after application of 1 um Cavalli-2. F, concentration-
response relationships for inhibition of F656A and WT /, gx¢ tails at —120 mV in high K*. n = 5 for each concentration of each curve. Error bars represent

means £ S.E.

latter was 281 nm (CI, 196 -403) with n,; of 0.54 (CI, 0.39 -
0.69), 16-fold that of its WT control.

Fig. 7A compares effects of 300 nm Cavalli-2 on Y652A I, ;r g
(panel ii) with WT I, zrc (panel i) under similar recording con-
ditions. Although this concentration produced a profound
inhibition of the WT channel, it had only a modest inhibitory
effect on Y652A I, . Fig. 7B shows corresponding concentra-
tion-response relationships with an IC,, for Y652A I, .y of 594
nM (CI, 466 -756) and 7, of 0.74 (CI, 0.58 —0.90), 17-fold that

SASBMB

of its WT control. The Tyr-652 residue has previously been
reported to influence voltage dependence of inhibition for
some compounds (13, 14, 42). We therefore compared Y652A
I prg inhibition by 300 nm Cavalli-2 at 20-mV intervals from
—20to +40 mV. In contrast to the situation with the WT chan-
nel (Fig. 2D), there was no significant voltage dependence to the
inhibitory effect of the compound on Y652A I, . tails (Fig. 7D;
p > 0.05; one-way ANOVA, Bonferroni post hoc; n = 6). Fig. 7E
shows the effect of 1 um Cavalli-2 on F656A I, ;.r; this concen-
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tration reduced the current by ~40%. Fig. 7F shows a concen-
tration-response relationship for inhibition of F656A I rg
with a derived IC,, of 1315 nm (CI, 1004 -1725) and n,; of 0.93
(CIL, 0.65-1.21) superimposed with that for WT I, .rg under
similar conditions. This mutation had a profound effect on the
inhibitory action of Cavalli-2: the derived IC,, was 75-fold that
of its WT control.

A recent report has suggested a novel binding determinant
for hERG-blocking drugs, residue Phe-557 located on the
channel’s S5 helix (28). The F557L mutation was reported to
decrease the inhibitory potency of a number of drugs, including
the methanesulfonanilide dofetilide (28). We therefore investi-
gated the effects of the F557L mutation on the action of Cav-
alli-2. Fig. 84 compares the effect of 300 nm Cavalli-2 on WT
(panel i) and F557L (panel ii) I, gr g, showing a reduced effect of
the compound on the mutant channel. Fig. 8B shows superim-
posed concentration-response relationships for WT and F557L
L rrg- The derived IC,, for inhibition of F557L I, ;rg was 339
nM (CL, 293-392) with n,; of 1.2 (CI, 0.94-1.47), 10-fold that of
its WT control. The mechanisms by which Phe-557 influences
drug binding to hERG are not yet well elucidated but in princi-
ple could involve direct or indirect effects; in some homology
models, this residue lies close to Tyr-652 (28), although in the
cryo-EM structure of a hERG open pore construct (8) Phe-557
and Tyr-652 are not in direct contact. We further investigated
the effects of the F557L mutation by comparing F557L I, zrg
inhibition by 300 nm Cavalli-2 at 20-mV intervals from —20 to
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+40 mV. In contrast to the situation with the WT channel (Fig.
2D), there was no significant voltage dependence to the inhib-
itory effect of the compound on F557L I, . tails (Fig. 8C; p >
0.05; one-way ANOVA, Bonferroni post hoc; n = 6). Thus,
similar to Tyr-652, Phe-557 influences the voltage dependence
of I,rrg inhibition by Cavalli-2. Effects of all the mutations on
I, zrg-blocking potency of Cavalli-2 are summarized in Table 1.

Computational docking

We searched for low-energy-score outputs for Cavalli-2
docked into the open pore structure of the recent cryo-EM
structure (Fig. 1 and Ref. 8) using GOLD and Flexidock (29). We
previously showed that IC, values of positively charged hERG
blockers correlate with the number of noncovalent interactions
between drug and pore residues in optimized hERG pore mod-
els (29). The simple structure of Cavalli-2 combined with its
strong hERG binding affinity suggests that each of the phenyl
rings and the protonated nitrogen should contribute to bind-
ing. We also showed previously that GOLD docking scores
broadly correlate with IC,, values (29). In analyzing docking
data, we assessed the compatibility of docking outputs (poses)
with the mutagenesis data, which provide information on resi-
dues that may interact with Cavalli-2. For example, the large
attenuation of block in hERG F656A indicates that more than
one Phe-656 side chain should interact with Cavalli-2. We also
assessed GOLD docking outputs quantitatively using ChemPLP
and ChemScore scoring (Table S1).
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Table 1

hERG channel block by Cavalli-2

Effect of pore helix, S5, and S6 mutations and mutations attenuating inactivation on I g inhibition by Cavalli-2

Potency reduction compared with

Channel Voltage step K* IC,, (CI) ny (CI) its WT-control (fold WT IC,,)
mV mm nm

WT-1 —40 4 35.6 (30.9-41.1) 0.69 (0.62-0.77)

WT-2 —120 94 17.5 (13.8-22.1) 0.99 (0.55-1.42)

N588K —40 4 544 (445-664) 0.97 (0.76-1.17) 15.3

S620T —40 4 1916 (1434-2561) 0.63 (0.47-0.79) 53.8

T623A —120 94 281 (196-403) 0.54(0.39-0.69) 16.1

S624A —40 4 262 (209-328) 0.72 (0.58-0.87) 7.4

Y652A —40 4 594 (466—756) 0.74 (0.58-0.90) 16.7

F656A —120 94 1315 (1004-1725) 0.93 (0.65-1.21) 75.1

F557L —40 4 339 (293-392) 1.20 (0.94-1.47) 9.5

Wang and Mackinnon (8) highlighted potential drug-bind-
ing “pockets” that lie beneath the selectivity filter and project
outward from the K™ permeation pathway toward the S5 helix
(Figs. 1 and 9). We docked Cavalli-2 into this part of the channel
by biasing docking runs to include one of the pockets as the
drug-binding site as indicated in Fig. 9 (stereo version in Fig.
S4). The side chains of residues lining the pocket as well as the
three Tyr-652 and Phe-656 residues nearest the selected pocket
could rotate freely during docking to allow the drug to access
the pocket and to optimize interactions with aromatic side
chains, especially Phe-656. However, low-energy-score poses
involving interactions with more than one Phe-656 side chain
were not found.

In the cryo-EM open pore structure, the Phe-656 side chains
adopt an unexpected orientation, projecting away from the
central pore (Figs. 9 and 11A4 and Ref. 8). The distance between
Phe-656 side chain phenyl groups in this configuration is large
compared with distances expected from hERG pharmacophore
models (e.g. Ref. 30), and Cavalli-2 could not simultaneously
interact with “pocket” residues and with more than one Phe-
656 side chain. By selecting an appropriate Phe side chain rota-
mer, Phe-656 side chains can be reoriented toward the hERG
pore. However, this rotamer is poorly compatible with Phe side
chains in a helical context due to unfavorable interactions with
the i — 4 backbone carbonyl group (of Tyr-652) and, in the
hERG structure, disruption of side chain packing at the inter-
face of the S5 and S6 helices. Both GOLD and Flexidock reori-
ented the side chain back to the cryo-EM structure configura-
tion during docking, allowing only a single Phe-656 interaction
with Cavalli-2. Low-energy-score poses could be obtained with
multiple (two) Phe-656 interactions by fixing the Ca—CB bond
rotamer of Phe-656 residues adjacent to the pocket (and allow-
ing rotation around the CB—C+ybond of the Phe-656 side chain)
to maintain the projection of these side chains toward the pore.
A low-energy-score pose is shown in Figs. 9B and 11B. In this
and similar low-energy-score poses, Cavalli-2 made aromatic
-1 stacking interactions with two adjacent Phe-656 side
chains and with Phe-557 and Phe-619 aromatic rings, but inter-
actions with Tyr-652 were not favored.

Interestingly, rotation of a single Phe-656 side chain toward
the pore cavity could be obtained in unconstrained docking
runs in configurations where one of the Cavalli-2 phenyl rings
replaced the Phe-656 side chain in its location packed between
the S6 and S5 helices (Figs. 9C and 11C). In this pose, Cavalli-2
interacted with side chains of Phe-557, Phe-619, Thr-623, and
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Tyr-652 but only a single Phe-656 side chain (the side chain
displaced into a pore-facing configuration).

We also docked Cavalli-2 into a hERG model based on the
bacterial K™ channel MthK because this model produces
low-energy-score poses that are consistent with experimental
mutagenesis data for hRERG blockers (19, 29) (see Fig. S2 for the
sequence alignment). A representative low-energy-score pose
is shown in Fig. 10. In this model, the phenyl rings of Cavalli-2
made multiple interactions with the S6 helix aromatic side
chains, especially Phe-656. The protonated amino group lay
near the internal K" -binding site where the negative electro-
static potential from the C-terminal pore helix dipole charges is
focused (Fig. 10, blue star) so that all four functional groups of
the drug made interactions with hERG. In these poses, Cavalli-2
could interact with Ser-624 (e.g. by direct or water-mediated
hydrogen bonding with the protonated amino group) but not
with the Phe-557 side chain. This type of pose for Cavalli-2 is
consistent with a recent demonstration for several positively
charged hERG inhibitors, using unnatural amino acid substitu-
tion, that neither Tyr-652 nor Phe-656 participate in cation-m
interactions (43); i.e. the most likely binding contribution of the
protonated amino group of high-affinity hERG blockers is via
interaction at the internal K™ -binding site, possibly involving
H-bond interactions with Ser-624 (Fig. 10).

Comparison with the MthK model is also useful in estimating
a minimal rotation of the S6 helix in the hERG cryo-EM struc-
ture that would accommodate projection of the Phe-656 side
chains toward the pore in a configuration compatible with mul-
tiple interactions with high-affinity hERG blockers. A small
clockwise rotation of the S6 helix by 20-30° in the hERG struc-
ture would position the Ca carbon of Phe-656 in a position on
S6 relative to the pore axis that is equivalent to that for the
Phe-656 Ca atoms on S6 in the MthK model. Similarly, in a
hERG model built onto the closed pore structure of the highly
homologous rat EAG cryo-EM structure (58), a relatively small
clockwise rotation of the lower part of the S6 helix allows ori-
entation of the Phe-656 side chain toward the K* permeation
pathway (Fig. S3).

In summary, interaction of Cavalli-2 with potential binding
pockets of the hERG cryo-EM structure resulted in limited
interactions with Phe-656 side chains that are expected from
mutagenesis data (Fig. 7 and Table 1) to dominate binding.
Only if side chain rotamers were chosen to force Phe-656 ori-
entations toward the channel pore could simultaneous interac-
tion of Cavalli-2 with pocket residues and more than one Phe-
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Figure 9. A, location of one of four equivalent hydrophobic pockets in the pore domain of the hERG cryo-EM structure with Cavalli-2 docked in the configu-
ration shown in B. Amino acid side chains that comprise the pocket (brown) were allowed to rotate freely during docking runs to accommodate the drug.
Potassium ions (purple spheres) in the 1 and 3 positions of the selectivity filter and waters (in positions 2 and 4) were added for docking runs. Cavalli-2
is represented as a space-filling yellow surface. B, low-energy-score pose for Cavalli-2 docked into the hERG pore with docking biased to promote
occupation of a hydrophobic pocket. In this run, rotamers of two Phe-656 side chains adjacent to the pocket containing Cavalli-2 were selected to orient
the side chain Ca-CB bond toward the pore and fixed during docking to allow Cavalli-2 to interact with more than one Phe-656 side chain. Annotations
define noncovalent interactions between drug and amino acid side chains according to the criteria in Table 2 of Dempsey et al. (29); only interactions
that satisfy these criteria are annotated. C, as in Bbut no side chain rotamers were fixed during docking. In all structure figures, the hERG pore amino acid
side chains are colored as follows: Phe-557, gray; Met-554, Phe-619, Leu-622, and Met-651, brown; Thr-623 and Ser-624, green; Tyr-652, pink; and

Phe-656, blue. Cavalli-2 is yellow.

656 side chain be obtained (Figs. 9B and 11B). The best docking
scores using both ChemPLP and Goldscore scoring (Table S1)
were obtained with a hRERG pore model built on the MthK tem-
plate in which Cavalli-2 made multiple interactions with Phe-
656 side chains (Figs. 10 and 11D).

Discussion

Cavalli-2 interaction with WT hERG and inactivation-deficient
mutants

Our IC,, value for Cavalli-2 in human embryonic kidney
(HEK) cells at 37 °C (36 nm) is similar to the value (17 nm)
determined in HEK cells at room temperature by Cavalli et al.
(30), consistent with the compound acting as a high-affinity
inhibitor of [, zrg. The electrophysiology data in this study
allow features of Cavalli-2 block to be defined in detail. The
envelope-of-tails data of Fig. 3 indicate that Cavalli-2 is a gated-
state inhibitor with little or no affinity for the closed channel
state, and the steep increase in block over the rising phase of the
I rrc activation curve (Fig. 2D) suggests that channel activation
is required for the drug to access its binding site. The & value
from the Woodhull analysis (0.2) is similar to that for other
drugs that interact with residues within the hERG K" perme-
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ation pathway (10, 36, 44) and indicates that Cavalli-2 binds ata
site toward the interior of the membrane electric field. The
three-step protocol of Fig. 4D indicates that Cavalli-2 binds to
both the activated and inactivated states of hRERG with a slight
preference for the activated state as indicated by the slightly
reduced block at voltages that promote inactivation (Fig. 4E).
These features of Cavalli-2 block are compatible with those
exhibited by drugs with more complex structures.

Cavalli-2 block of I .z g nevertheless showed a clear reliance
on the process of inactivation for maximal drug block as inhibi-
tion was significantly reduced for hERG mutants with attenu-
ated inactivation. The reduction of drug block in these mutants
is associated with attenuation of inactivation per se (rather than
direct drug interactions with the mutated residues) because the
attenuated inactivation N588K mutation resides in a helical
structure in the hERG turret in the extracellular region of the
hERG pore far from the drug-binding site (Fig. 1). As observed
with other hERG blockers that depend strongly on inactivation
competence for block (19, 22, 45), Cavalli-2 block was more
strongly reduced for the pore helix S620T mutant, which has
more profoundly attenuated inactivation. Considered along-
side our WT hERG data, the reduction in block in the inactiva-
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tion-attenuated mutants suggests that a conformational state of
the drug-binding site that is associated with the ability of hRERG
to inactivate is required for high-affinity block. This is in
accordance with the results of Chen et al. (24) who showed that
inactivation competence is associated with conformational
changes that bring aromatic side chains of Tyr-652 and Phe-656
into an optimal configuration for drug binding and that this is
likely to involve rotation of the S6 helices that contain these
residues (24).

Figure 10. Low-energy-score pose for Cavalli-2 docked into the MthK-
based hERG pore model. Annotations are as described in Fig. 9 legend. The
blue star indicates the location of the protonated aliphatic amino group of
Cavalli-2 near the internal binding site for a K* ion where the C-terminal
negative helix dipole charges from the four pore helices are focused. Amino
acid side chain colors are as described in Fig. 9 legend.

hERG channel block by Cavalli-2

Alanine mutagenesis

Cavalli-2 drug block was attenuated by alanine substitution
mutation of Thr-623 and Ser-624 at the C-terminal end of the
pore helix and Tyr-652 and Phe-656 on the S6 helix (see Fig. 1);
these are all residues whose alanine substitution attenuates
block by a variety of high-affinity hERG blockers (4, 9, 12, 15,
17), indicating that these molecules share a similar binding site
in the hERG pore. Cavalli-2 block is particularly susceptible to
the F656A mutation (75-fold attenuation of block), suggesting
that the drug interacts with more than one Phe-656 side chain.
L rrg block was attenuated for Y652A hERG by 17-fold, and
this is compatible with interaction of a Cavalli-2 phenyl ring
with one or more Tyr-652 side chains. The loss of the voltage
dependence of Cavalli-2 block in Y652A (Fig. 7C) is not simply
attributable to altered voltage-dependent activation of mutant
compared with WT channels as the voltage dependence of acti-
vation of Y652A hERG has been shown to be similar to that of
the WT channel (9). Rather, it implicates Tyr-652 as critical for
voltage-dependent block through voltage-dependent changes
in the configuration of the Tyr-652 side chain that optimizes its
interactions with drugs. This effect (loss of voltage dependence
of block in Tyr-652 mutants) has been observed previously for
other drugs, including vesnarinone, quinidine, moxifloxacin,
cisapride, and chloroquine (13, 42, 46).

The F557L mutation has recently been reported to attenuate
drug block by a number of “classical” hERG blockers with the
suggestion that this residue may provide an additional binding
determinant for hERG pore blockers (28). Cavalli-2 block was
moderately reduced in hERG F557L (by 10-fold), and as
observed for a number of drugs by Saxena et al. (28), the extent

Figure 11. Lowest-energy-score docked poses viewed from the cytoplasmic side of the channel pore. A, the hERG construct cryo-EM structure (8) with
distances between Phe-656 phenyl group centers marked. B, Cavalli-2 docked into hERG EM structure with selected Phe-656 side chains constrained to project
toward the pore during docking; this is the same docking output as in Fig. 9B. C, as in B but with Phe-656 side chains unconstrained during docking as in Fig.
9C. D, unconstrained docking of Cavalli-2 into the hERG MthK-based model as in Fig. 10.
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of block attenuation in F557L (10-fold) was similar to that
found for Y652A (17-fold). Interestingly, as with the Y652A
mutant, the voltage dependence of Cavalli-2 block was nearly
abolished in F557L (Fig. 8). The voltage dependence of activa-
tion of F557L hERG is only slightly (—5.5 mV) leftward shifted
compared with that of the WT channel (47), and this is insuffi-
cient to account for the large effect of the mutation on voltage
dependence of ], g inhibition by Cavalli-2. The broadly simi-
lar effects on drug block of Y652A and F557L in this study and
previously (28), together with the loss of voltage dependence of
block in each mutant, suggest that these residues may interact
together in promoting block by drugs that require optimal con-
figurations of the Tyr-652 side chain. These side chains do not
interact directly in the hERG cryo-EM structure but are part of
a small cluster of aromatic side chains involving Phe-557, Tyr-
652, and Phe-656 (Fig. 1 and Ref. 8). Direct voltage responsive-
ness of Tyr side chains is mediated by the dipole moment of the
Tyr phenolic hydroxyl group (48), which is absent in the Phe
side chain; loss of voltage sensitivity in F577A is therefore likely
to be mediated via effects on voltage sensitivity of other voltage-
responsive side chains such as Tyr-652.

Structural interpretations

To what extent can our mutagenesis data be interpreted
within a structural model for high-affinity drug block, particu-
larly in the context of the new hERG structure in which pockets
below the selectivity filter were proposed to form part of the
drug-binding site? The low nanomolar IC, value of the struc-
turally simple Cavalli-2 molecule indicates that binding inter-
actions should involve contributions from each of its three phe-
nyl groups and single protonated amino group in accordance
with the pharmacophore model on which the structure of Cav-
alli-2 was based (30). Thus, Cavalli-2 should be a useful probe of
the spatial configuration of drug-binding groups, especially the
aromatic side chains of Tyr-652 and Phe-656; substantial inter-
actions with multiple (at least two) Phe-656 side chains seem to
be required to understand the large attenuations of block seen
with several high-affinity blockers, including flecainide (33),
Cavalli-2 (this study), E-4031, and cisapride (27) in hERG
F656A-overexpressing mammalian cells and MK-499, cisap-
ride (9), chloroquine (14), and clofilium (17) in hERG F656A-
overexpressing oocytes.

Contrary to these expectations, docking of Cavalli-2 into the
hERG cryo-EM structure with the binding site selected to pro-
mote interaction with one of the hydrophobic pockets fails to
find low-energy-score poses in which Cavalli-2 can interact
with more than one Phe-656 side chain. This results from the
orientation of the side chains of Phe-656 that project away from
the pore axis toward the S5 helix in the cryo-EM structure (Figs.
1 and 11A). Phe-656 aromatic side chains are too far apart in
this configuration to allow interaction of two phenyl rings on
Cavalli-2 with two separate Phe-656 side chains while making
interactions within a hydrophobic pocket. Only when Phe-656
side chain rotamers were constrained to reorient side chains
toward the pore could multiple interactions between Cavalli-2
phenyl groups and multiple Phe-656 side chains be obtained
(Fig. 9B). However, these rotamers are not favored due to Phe-
656 side chain clashes with the Tyr-652 backbone carbonyl
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group and the loss of side chain packing between the S5 and S6
helices. If unconstrained during docking, the side chains reori-
ent back to the configuration found in the EM structure. It is
unlikely therefore that the apparent discrepancy between high
dependence on Phe-656 and the limited interactions of Cav-
alli-2 with Phe-656 side chains in the cryo-EM structure can be
resolved by postulating reorientation of Phe-656 side chain(s)
during drug binding; more substantial conformational changes
from the cryo-EM structure are required for Cavalli-2 to inter-
act with more than one Phe-656 side chain as described below.

One explanation for an apparent mismatch between the
mutagenesis data and the hERG EM structure is that some of
the large effect of Phe-656 mutations on attenuation of drug
block in Cavalli-2 and other high-affinity hERG blockers is
allosteric; i.e. loss of side chain packing between the S5 and S6
helices resulting from replacement of a bulky phenyl group with
amethyl group in F656A results in a collapse of optimal config-
urations of drug-binding groups. It has been observed, for
example, that retention of high binding affinity for MK-499 and
cisapride can be retained if Phe-656 is replaced by bulky aro-
matic or aliphatic side chains, which should be more suitable
than Ala for filling the space occupied by the Phe-656 side chain
phenyl rings in the hERG EM structure (49). However, this
interpretation is poorly compatible with the retention of unper-
turbed block by cisapride, E-4031, and terfenadine in hERG
tandem dimers in which two diagonally opposite Phe-656 side
chains are replaced with Ala (27); this shows that replacement
of at least two Phe-656 side chains with Ala does not perturb the
high-affinity binding site for these blockers. The inability to
find docking outputs involving Phe-656 for a number of classi-
cal hERG blockers in the new cryo-EM open pore structure has
led to the suggestion that the role of Phe-656 is entirely to pro-
vide optimal orientations of Tyr-652 for drug binding (50).
However, this interpretation is incompatible with the finding
for a number of hERG blockers, including Cavalli-2, that the
effect of F656A on attenuating hERG block is greater or, in the
case of some drugs (e.g. propafenone (10)), much greater than
the effect of Y652A.

Some of the disparity between mutagenesis and docking data
may be reconciled by considering conformational changes
involving reorientation of S6 aromatic side chains associated
with the voltage dependence of hERG block and with hERG
inactivation. The association of high-affinity hERG block with
inactivation has previously been suggested to involve recon-
figuration of Tyr-652 and Phe-656 aromatic side chains such
that interactions with hERG-blocking drugs in the channel pore
are optimized. Chen et al. (24) showed that this likely involves
rotation of the S6 helix to reorient the aromatic side chains
toward the pore; drug block susceptibility in the noninactivat-
ing hERG homolog EAG was conferred by moving S6 aromatic
side chains by one residue to change their projection from the
S6 helix with respect to the channel K™ permeation path. For
both Tyr-481 (equivalent to Tyr-652 in hERG) and Phe-485
(equivalent to Phe-656 in hERG), cisapride sensitivity was con-
ferred by shifting the aromatic amino acid one residue toward
the C terminus, a movement equivalent to a clockwise rotation
of the S6 helix by 100° (24). A smaller clockwise rotation of the
S6 helix (e.g. by 30 —40°) would move the side chain of Phe-656
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in the hERG EM structure to a pore-facing configuration that
would allow interaction of Cavalli-2 with more than one Phe-
656 side chain in a configuration similar to that for the MthK-
based hERG pore model (Figs. 10 and S3). Because Cavalli-2
block shows approximately equivalent preference for an open
and open-inactivated state (the open state has slightly higher
affinity; Fig. 4, D and E), such a configuration resulting from
reorientation of S6 is not the inactivated state per se but is only
optimized in channels that are able to inactivate as described
also by Chen et al. (24).

Further clues to an explanation for the disparities between
our experimental data for Cavalli-2 and docking to the open
state cryo-EM structure come from cryo-EM data on an inacti-
vation-attenuated S631A mutant that were published alongside
that of the WT template (8). Aside from a subtle repositioning
within the selectivity filter of S631A, the two structures are very
similar with no differences in the orientation of S6 helices or
configuration of S6 aromatic side chains. It seems unlikely
therefore that the cryo-EM structure of the WT hERG con-
struct is the inactivated state as suggested previously (8); an
alternative explanation is that the open channel structure cap-
tured for the WT hERG construct in the cryo-EM structure is
that of a low-affinity open state (e.g. as proposed by Imai et al.
(27) from analysis of the kinetics of cisapride binding to WT
hERG and hERG mutants). In this state, the configurations of
binding residues are not optimal for interaction with com-
pounds such as Cavalli-2. A small clockwise rotation of the S6
helix in the hERG WT cryo-EM structure would bring the S6
aromatic side chains, in particular Phe-656, into a configuration
more compatible with experimental data on inactivation-de-
pendent blockers (e.g. see Fig. 10).

Conclusions

Despite its simple structure, Cavalli-2 shares features of
high-affinity hERG block with many structurally complex high-
affinity blockers (e.g MK-499, E-4031, terfenadine, dofetilide,
and haloperidol), including a requirement for inactivation
competence in hERG channels and a strong dependence on
Phe-656 for block. Docking using the new open pore hERG
structure finds low-energy-score poses in which Cavalli-2
extends into hydrophobic pockets that were proposed to
account for the unique promiscuity of hERG toward a variety of
structurally diverse high-affinity blockers. However, in these
states, Cavalli-2 does not make interactions with the multiple
Phe-656 side chains that seem to be required for the strong
dependence of Phe-656 on high-affinity block. The close struc-
tural similarity between the WT cryo-EM structure and a
copublished inactivation-attenuated S631A hERG open pore
structure, together with the evidence that high-affinity binding
to inactivation-competent hERG channels may be associated
with rotation of S6 helices to reorient Tyr-652 and especially
Phe-656 aromatic side chains into optimal positions or high-
affinity drug block (24), suggests that both WT and inactiva-
tion-attenuated S631A cryo-EM structures may correspond to
a low-affinity pore configuration that is not optimal for high-
affinity block.
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Materials and methods
WT and mutant hERG channels

A HEK293 cell line stably expressing WT hERG channels was
kindly donated by Prof. Craig January (51). The pore helix
(T623A and S624A) and S6 helix (F656A) alanine mutants,
attenuated-inactivation mutants (N588K and S620T), and S5
mutant F557L were all generated and used as described previ-
ously (3, 18, 41, 52). The HEK293 cell line stably expressing
the hERG S6 helix mutant Y652A was used in this study as
described previously (52).

Maintenance of mammalian cell lines and cell transfection

HEK293 cells stably or transiently expressing hERG con-
structs were maintained as described previously (18, 19, 52).
Cells were plated in 40-mm Petri dishes at least 48 h before
transfection and incubated at 37 °C with 5% CO.,. Cells were
transfected either with Lipofectamine™ 2000 (Invitrogen) or
Lipofectamine LTX (Invitrogen) following the manufacturer’s
instructions. The amount of hERG construct DNA that was
transfected varied between 0.1 and 1.0 ug depending on the
level of functional expression. 0.15 ug of CD8 was cotransfected
as a transfection marker, and successfully transfected cells were
identified using Dynabeads® (Invitrogen). Cells were plated on
sterilized glass shards in 40-mm Petri dishes and incubated at
37 °C (5% CO,) at least 24 h before electrophysiological record-
ing; this was to allow time for cell recovery and hERG construct
expression.

Mutagenesis

The F557L hERG mutation was generated using the Quik
Change® site-directed mutagenesis kit (Stratagene, La Jolla,
CA). In brief, a pair of complementary oligonucleotide primers
containing the mutation (forward primer sequence, 5'CTCAT-
GTGCACCTTAGCGCTCATCG-3'; reverse primer sequence,
5'CGATGAGCGCTAAGGTGCACATGAG-3'; synthesized
by Sigma-Genosys, Haverhill, UK) was used in a PCR (95 °C for
1 min, 60 °C for 1 min, and 68 °C for 16 min for 18 cycles) by
using hERG in a modified pcDNA3.0 vector as a DNA template.
A Dpnl digest of the PCR mixture was then performed for 1 h at
37 °C. Competent DH5a Escherichia coli (Invitrogen) were
transformed using standard procedures. The mutation was
confirmed by sequencing of the entire ORF (Eurofins MWG
Operon, Ebersberg, Germany).

Solutions, electrophysiology, and experimental protocol

For I, prg recordings, glass shards containing plated cells
were placed in a recording chamber mounted on an inverted
microscope (Nikon Diaphot). The cells were superfused con-
tinuously with Tyrode’s solution containing 140 mm NaCl, 4
mwm KCI, 2.5 mm CaCl,, 1 mm MgCl,, 10 mm glucose, 5 mm
HEPES (titrated to pH 7.4 with NaOH). As described previously
(18, 19), a modified “high-K™*” version of this solution (contain-
ing 94 mm KCl and 50 mm NaCl) was used to obtain recordable
currents from comparatively poorly expressed hERG mutants
(T623A and F656A). Patch pipettes (Schott number 8250 glass,
A-M Systems Inc.) were pulled (Narishige, PP 830) and pol-
ished (Narishige, MF 83) to final resistance values between 2
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and 4 megaohms. The patch pipettes were filled with intracel-
lular solutio, containing 130 mm KCI, 1 mm MgCl,, 5 mm
EGTA, 5 mm MgATP, and 10 mm HEPES (titrated to pH 7.2
with KOH). Pipette resistance compensation was between 70
and 80%. Cavalli-2 (30), which was synthesized by Ascent Sci-
entific (Abcam Ltd.), was dissolved in DMSO to produce 100
uM, 1 mMm, and 10 mm stock solutions. Stock solutions were
diluted either in standard or high-K* Tyrode’s solution
as appropriate to obtain final concentrations stated under
“Results.” Solutions were preheated to 37 = 1 °C and applied to
single cells using a homemade, multibarreled superfusion sys-
tem, enabling rapid superfusate exchange (<1 s) (53). Thus,
measurements of I, . were made at 37 = 1°C as described
previously (18, 19, 52, 54, 55).

All [, prg recordings were made using an Axopatch 200B
amplifier (Axon Instruments, now Molecular Devices) and a
CV203BU head stage. Data were acquired using a Digidata 1320
interface (Axon Instruments, now Molecular Devices). Data
digitization rates were between 10 and 25 kHz during all voltage
protocols, and an appropriate bandwidth between 2 and 10 kHz
was set on the amplifier. For WT hERG and most of the mutant
channels studied, activating voltage commands to +20 mV
were used with tail currents observed at either +40 (for most
mutants) or —120 mV (for T623A and F656A) (18 —20, 33). The
level of block of WT and mutant /. by Cavalli-2 was attained
by repetitive protocol application for 5 min, and fractional inhi-
bition of I, ;.r tails was measured. Data for each mutant were
compared with WT I .y under comparable conditions (18, 19,
33, 52).

Data analysis and statistics

Data analysis was performed using Clampfit 10.3 (Axon
Instruments, now Molecular Devices), Prism versions 4.03 and
5.03, and Excel 2013. Data are presented as the mean * S.E. or
as mean with £95% CI. Equations used to fit particular data sets
are given in the supporting information. Statistical compari-
sons were made using paired or unpaired two-tailed ¢ tests,
Wilcoxon matched-pairs signed-rank test, or one-way ANOVA
followed by a Bonferroni post-test as appropriate. Details of the
statistical test used to evaluate significance for results of partic-
ular experiments are given alongside p values under “Results” or
in the relevant table or figure legend. p values of < 0.05 were
taken as statistically significant.

The fractional block (FB) of hERG tail currents by the range
of drug concentrations studied was determined using the fol-
lowing equation,

IhERG-drug

FB=1 (Eq. 1)

lh ERG-control

where /, £z drug a0 IhgrG-contror 27€ the amplitude of tail cur-
rents, respectively, in the presence and absence of a defined
concentration of Cavalli-2; the ratio of these two values repre-
sented the fraction of unblocked I, . (see Fig. 1B). Cavalli-2
block reached a steady state within 5 min; therefore, rundown
correction was not required.

Concentration-response relationships were constructed by
plotting mean fractional block of hERG tail currents against
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concentration of Cavalli-2 and then fitting the experimental
data with a standard Hill equation, yielding the IC,, and the ny,
values,

y=1/(1 +10"((log 1Cso—x) X ny)) (Eq.2)

where x is the concentration expressed as a logarithm, y is the
fractional block of /, . at a given concentration, and IC,, and
ny, are as defined above.

The voltage dependence of I, ;. activation was established
by using the step protocol reported in Fig. 1D. The normalized tail
current amplitude was plotted against the command potential of
the previous depolarizing step, and the experimental data points
were fitted with a Boltzmann function of the following form,

| = Ia/(1 + exp(Vys — x/Slope)) (Eq.3)

where [ is the tail current elicited after the test voltage x, [, is
the maximal current recorded, V, 5 is the voltage that elicits
half-maximal activation, and Slope is the slope factor of the
curve. The same equation was used to simulate the I-V curves
shown in Fig. 1D.

The fraction of the electrical transmembrane field sensed by
a single positive charge at the binding site of hRERG was calcu-
lated to further probe the voltage dependence of hERG block-
ade by Cavalli-2. K, values for Cavalli-2 inhibition at +60 mV
and a reference voltage of 0 mV were estimated and substituted
into the following equation,

z6F
Kb + 60 mv = Kpomy X exP( - RTV) (Eq.4)
where K, c0 mv and Kpq v represent half-maximal blocking
concentrations at +60 and 0 mV, respectively; V is membrane
test potential (+60 mV in this instance); and z, R, F, and T have
their usual meanings (see Refs. 35 and 56).

The voltage dependence of inactivation was studied using the
three-step protocol shown in Fig. 3, inset. The I, r transients at
the beginning of the third step were analyzed as described previ-
ously (41, 57). The normalized current was plotted against the test
voltage during the 2-ms second repolarization step; experimental
data were then fitted with the following Boltzmann equation,

W =1 = (1 + EXP[(Vos - Vm)/k]) (Eq.5)

where [ is the current amplitude at the beginning of the third
step, I, is the maximal recorded current after the 2-ms repo-
larization step to varying voltages V, , V,, - is the potential that
elicits half-maximal inactivation, and k is the slope factor for the
relationship.

To obtain the time course of inactivation at +40 mV, the
decay of the resurgent current at the beginning of the third step
after a 2-ms repolarization step to —120 mV was fitted with a
single exponential equation of the following form,

y=A X exp(—x/7) + C (Eq.6)

where y is I .y recorded at time , 7 is the time constant of the
decay of the transient current, A represents the total fitted cur-
rent, and Cis the residual current after the decline of the resur-
gent current.
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Molecular modeling and docking

The following structures and models were used for compu-
tational docking and homology model construction. Docking
was largely done using the recent cryo-EM open pore struc-
ture of hERG (Protein Data Bank code 5VA1) (8). A homo-
logy model of a hERG closed pore state was built onto the rat
EAG closed pore cryo-EM structure (Protein Data Bank code
5K7L) (58) using MODELLER 9.17 (59) with PROCHECK
(60) to assess model quality. We also used a homology model
of an open pore hERG state that was built onto the X-ray
crystal structure of MthK (Protein Data Bank code 1LNQ)
(61) because this model provides a consistent match between
experimental Ala-scanning data and computational docking
for several hRERG blockers (19, 20, 29). Following publication
of the rat EAG (58) and hERG atomic resolution structures
(8), we realigned the S5 helix of this model; the alignment of
the pore helix, selectivity filter, and S6 helix is the same as
described previously (the full alignment is shown in Fig. S2).

Computational docking was done using two independent
docking methods, GOLD and Flexidock as described previously
(20, 29). Free side chain flexibility was normally allowed during
docking for selected residues incorporating the chain A hydro-
phobic pocket (Phe-557, Phe-619, Leu-622, Met-651, and Tyr-
652), Tyr-652 of chains B and D, and three Phe-656 side chains
(chains A, B, and D) to maximize the binding of Cavalli-2 within
or near the pocket. The binding pocket was centered above the
B-carbon of the chain A Tyr-652 residue, and a radius of 12 or
15 A was selected to allow Cavalli-2 to sample configurational
space within the pocket and surrounding parts of the pore. Due
to the large number of rotamers sampled during docking,
300,000 generations of the genetic algorithm were used; all
GOLD runs were performed twice to obtain outputs scored
with both ChemPLP and ChemScore functions (GOLD version
5.6; Cambridge Crystallographic Data Centre, Cambridge, UK).
Low-energy-score poses were inspected from sets of 100
docking repeats. In some cases, the center of the pore cavity
below the selectivity filter at a level between the Tyr-652 and
Phe-656 side chains was chosen as the binding site, and in
these runs all Tyr-652 and Phe-656 side chains were allowed
free side chain rotamer sampling. Other variations, includ-
ing fixing Phe-656 side chain rotamers to promote interac-
tion with Cavalli-2 in the pore, were used as described under
“Results.” Flexidock docking was done as described previ-
ously (20, 29) using full rotamer flexibility of side chains in
the Cavalli-2—binding region selected. Structural figures
were made using PyMOL version 1.4 (Schroedinger, LLC,
New York, NY).

Author contributions—M. V. H. and C. E. D. data curation; M. V. H,,
J. C. H., and C. E. D. formal analysis; M. V.H.,, Y. Z., A.E.H, C.D,,
J.C.H., and C.E.D. investigation; M. V.H,, J. C.H,, and C.E.D.
writing-original draft; M. V.H., Y. Z., A.E. H., C.D,, J.C. H,, and
C.E. D. writing-review and editing; Y. Z., A. E. H,,C. D.,]. C. H.,and
C.E.D. resources; J. C. H. and C. E.D. conceptualization; J. C. H.
and C. E. D. supervision; J. C. H. and C. E. D. funding acquisition;
J.C.H. and C.E.D. methodology; J.C.H. and C.E.D. project
administration.
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