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Abstract: A [3 + 2] 1,3-Dipolar cycloaddition of C,N-cyclic azomethine imines with allyl alkyl ketones
has been achieved. The reaction proceeds under mild conditions and tolerates a wide range of
functional groups. An array of tetrahydroisoquinoline derivatives is generally constructed with
good diastereoselectivities and enantioselectivities (up to >25:1 dr, >95% ee). Moreover, the absolute
configuration of the product was previously determined by using the quantum electronic circular
dichroism calculation and ECD spectrum method.

Keywords: 1,3-dipolar cycloaddition; asymmetric; azomethine imines

1. Introduction

A variety of isoquinoline alkaloids [1–3] exist in many natural products and drugs,
and have a broad range of clinical applications, exhibiting a broad range of biological
activities such as antitumor, anti-HIV, antibiotic, antifungal, antivirus, anti-inflammatory,
anticoagulation, and bronchodilation, and can also act on the central nervous system [4–8].
In particular, it is tremendously noteworthy that all the above-illustrated bioactive tetrahy-
droisoquinolines have a chiral stereocenter at the C1-position [9–12]. Such representative
examples include (S)-salsolidine [13], (S)-carnegine [14], (S)-xylopinine [15] (in Figure 1),
and so on. Novel C,N-cyclic azomethine imines as efficient 1,3-dipoles [16,17], are readily
accessible, stable compounds that have been employed recently in various metal-catalyzed
and organocatalytic 1,3-dipolar cycloadditions (1,3-DCs) [18–21]. These dipoles can be
easily prepared and give access to pharmaceutically attractive chiral substituted tetrahy-
droisoquinoline skeletons.
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Figure 1. Examples of bioactive natural products containing chiral C1-substituted tetrahydroiso-
quinolines. 

In 2010, the Maruoka group uncovered a promising example of using C,N-cyclic az-
omethine imines as prochiral electrophiles to react with α,β-unsaturated aldehydes to 
construct a tetrahydroisoquinoline scaffold catalyzed by a titanium–BINOLate complex 
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Figure 1. Examples of bioactive natural products containing chiral C1-substituted tetrahydroiso-
quinolines.

In 2010, the Maruoka group uncovered a promising example of using C,N-cyclic
azomethine imines as prochiral electrophiles to react with α,β-unsaturated aldehydes to
construct a tetrahydroisoquinoline scaffold catalyzed by a titanium–BINOLate complex [22].
Shortly after, the Maruoka group disclosed the first example of using of vinyl ethers and
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C,N-cyclic azomethine imines catalyzed by chiral Brønsted acids to synthesize tetrahy-
droisoquinolines through the enantioselective organocatalytic inverse-electron-demand
1,3-DCs [23]. In 2014, the Wang group developed C,N-cyclic azomethine imines with α,β-
unsaturated aldehydes through dienamine-mediated enantioselective [3 + 2] 1,3-dipolar
cycloaddition catalyzed by a chiral prolinol silyl ether catalyst [24,25]. In addition, the C,N-
cyclic azomethine imine substrates were recently used in 1,3-DCs with N-arylmaleimides,
allenoates, azlactones, bromo-substituted Morita−Baylis−Hillman adducts of isatins, α,β-
unsaturated nitriles, 3-nitroindoles, ortho-quinone methides through [3 + 2] or [4 + 3]
annulation reactions [26–30] and catalyst free [5 + 1] cycloaddition with isocyanides [31],
and with Morita−Baylis−Hillman carbonates by phosphine catalysts or with N-benzyl
azomethine ylide or with azaoxyallyl cations through [3 + 3] cycloaddition [32–34], and
[3 + 1] cycloaddition with isocyanides (in Scheme 1a) [35]. However, to the best of our
knowledge, no example of a catalytic asymmetric 1,3-dipolar cycloaddition reaction using
allyl alkyl ketones with C,N-cyclic azomethine imines has been reported. Previous suc-
cess by the Chen group, using chiral primary amine catalytic asymmetric γ-regioselective
vinylogous Michael addition of allyl alkyl ketones with maleimides through dienamine
catalysis, has been developed (in Scheme 1b) [36]. Herein, we report the first chiral primary
amine-catalyzed enantioselective [3 + 2] 1,3-dipolar cycloaddition of allyl alkyl ketones
with C,N-cyclic azomethine imines to give a novel class of dinitrogen-fused heterocycles
combining the biologically important tetrahydroisoquinoline core and pyrazolidine core
(in Scheme 1c).
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2. Results

In our initial attempt, we first examined the reaction of N,N-cyclic azomethine imine
1 with deconjugated 3-enone 5a in the presence of DPEN catalyst C1 (Table 1) in CHCl3,
but no desired product was observed even at a higher temperature. We then turned our
attention to C,N-cyclic azomethine imines 2, 3 and 4a. Unfortunately, no matter what the
temperature of the reaction raised from rt to reflux, no desired cycloaddition adduct was
observed when we employed the 2 and 3 dipoles. To our delight, the reaction between
C,N-cyclic azomethine imine 4a and deconjugated 3-enone 5a proceeded smoothly to give
the desired product in high yield (85% yield, 62% ee and dr 3:2, entry 1, Table 1) and the
reaction could not afford the desired product if no acid or no catalyst were added to the
reaction [18] (entries 2 and 3). The results indicated that catalysts with acids are critical
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for the cycloaddition reaction. In addition, the β,γ-C=C bond could act as an inducing
group for the formation of more stable extended dienamine species from deconjugated
3-enone substrates 5a and activating the γ-site and furnishing the following vinylogous
1,3-DCs process.

Table 1. Optimization of reaction conditions a.
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Entry Solvent Catalyst Acid Yield (%) b ee (%) c dr d

1 CHCl3 C1 benzoic acid 85 62 3:2
2 CHCl3 C1 none n.r. - -
3 CHCl3 none benzoic acid n.r. - -
4 CHCl3 C2 benzoic acid 89 80 12.5:1
5 CHCl3 C3 benzoic acid 91 76 >25:1
6 CHCl3 C4 benzoic acid 90 72 >25:1
7 CHCl3 C5 benzoic acid 86 38 >25:1
8 CHCl3 C6 benzoic acid 85 59 >25:1
9 CHCl3 C7 benzoic acid 87 44 >25:1
10 CHCl3 C8 benzoic acid 88 11 5:1
11 CHCl3 C9 benzoic acid 56 20 >25:1
12 CHCl3 C10 benzoic acid n.r. - -
13 Toluene C2 benzoic acid 90 85 1:1
14 DCE C2 benzoic acid 91 80 25:1
15 CH3CN C2 benzoic acid 72 28 2:1
16 THF C2 benzoic acid 65 50 6:1
17 Dioxane C2 benzoic acid 87 77 1:1
18 Et2O C2 benzoic acid trace - -
19 EA C2 benzoic acid 74 70 1:1
20 DCE C2 o-fluorobenzoic acid 92 (85) e 84 (64) e 10:1
21 DCE C2 salicylic acid 90 65 4:1
22 DCE C2 p-nitrobenzoic acid 82 68 15.7:1
23 DCE C2 p-methoxybenzoic acid 75 82 6:1

a Unless noted otherwise, reactions were performed with 4a (0.1 mmol), 5a (0.2 mmol), amine C (10 mol%), and acid (20 mol%) in solvent
(1 mL) at rt. b Isolated yield. c Determined by chiral HPLC analysis. d Determined by crude NMR analysis. e The reaction was conducted at
0 ◦C for 24 h.
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We then turned our attention towards the use of chiral primary amine catalyst to
improve the reaction enantioselectivity and diastereoselectivity. The reaction was tested
in the presence of a number of primary amine catalysts (entries 4–10). The corresponding
product 6aa was then isolated in high yield (89%), good enantioselectivity (80% ee), and
with good diastereoselectivity (dr 12.5:1) through C2 catalyst in CHCl3 at room temperature
(entry 4). In contrast, the reaction afforded poor to moderate enantioselectivity (11–76%)
when used with other catalysts (entries 5–11). The chiral prolinol silyl ethers as the
catalyst could not produce the product (entry 12). A screening of the solvents showed that
performing the reaction to improve the ee and the dr (entry 13–19) with C2 as the catalyst.
The reaction proceeded with higher yield (91%) and good enantioselectivity (80%) and
excellent diastereoselectivity (dr 25:1) in DCE at room temperature (entry 14). However,
only poor or moderate diastereoselectivities were observed in other solvents (entry 13,
15–19). Furthermore, the effect of acid additives was also studied. The presence of 20 mol%
o-fluorobenzoic acid (OFBA) enhanced the ee value to 84% and the yield also increased
to 92% (entry 20). A screening of the temperature showed that performing the reaction at
0 ◦C reduced the ee value and the yield (entry 20). The yield and stereoselectivity could
not be further improved when the reaction used the other acid additives (entries 21–23).
On the basis of the above-mentioned results, the reaction conditions were established to
1.0 equivalent of 4, 2.0 equivalents of 5, 10 mol% of C2 and 20 mol% of OFBA in DCE at
room temperature for 12 h.

3. Discussion

With the optimized conditions in hand, the generality of the reaction was evaluated. A
range of substrates was shown to be compatible with the developed protocol for the [3 + 2]
cycloaddition of C,N-cyclic azomethine imines to allyl alkyl ketone by using C2 as catalyst.
As summarized in Figure 2 (Figures S2 and S3 Supplementary Material, respectively), not
only aromatic alkyl allyl ketones but also long aliphatic chain allyl ketones could all be
employed successfully to afford the products 6aa–ah in high yields (88–96%), moderate to
high enantioselectivities (50–96%), and high diastereoselectivities (dr 10:1 to >25:1) From
these results, we found that the conditions were applicable to a wide variety of allyl alkyl
ketones. With this promising result in hand, we then investigated the generality of the
C,N-cyclic azomethine imines. The influence of the substituent of the benzoyl group on the
nitrogen was examined. The benzoyl group bearing electron-withdrawing or -donating
groups at the para position and meta position afforded the corresponding products in high
yields and steroselectivities (6ba to 6ga). We found that some electron-withdrawing groups
(−NO2, −Cl, −Br) on the aromatic moiety were more effective than some donating groups
(−CH3, −OCH3, 3,5-Me2) to afford the products in yields and steroselectivities, respectively
(6aa to 6ga). From these results, it was determined that the electron density of the N’-acyl
moiety played an important role in trapping the β-position of the carbon−carbon double
bond intermediate for the 1,3-DCs. This study prompted us to examine the influence of
structurally different N’-acyl moiety azomethine imines. The furoyl and naphthoyl groups
on the nitrogen were also tolerated, giving the desired products in high yields, moderate
enantioselectivities, and high diastereoselectivities, respectively (6ha 95% yield, 60% ee, dr
> 25:1 and 6ia 93% yield, 71% ee, dr > 25:1). An increase in the steric bulk of the N’-acyl
moiety was also tolerated to afford the product 6ja in high yields (90%) with 72% ee value
and dr 10:1.
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with 4 (0.1 mmol), 5 (0.2 mmol), amine C2 (10 mol%), and OFBA (20 mol%) in DCE (1 mL) at rt.

As we failed to obtain single crystals suitable for X-ray crystallographic analysis to
determine the absolute configuration of the products, the electronic circular dichroism
(ECD) spectrum of chiral product 6ba was recorded in methanol and compared with the
theoretically calculated results [37–39]. As depicted in Figure 3, the experimental ECD
spectrum matched quite well to the calculated one of (R,S)-6ba. Therefore, the stereogenic
center of product 6ba is probably in the (R,S) configuration.
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As shown in Scheme 2, we proposed a plausible catalytic cycle to explain the reaction
mechanism. The condensation of a chiral primary amine catalyst with allyl phenylethyl
ketone 5a would lead to the formation of the iminium-ion, which could form the dien-
amine intermediate A [40–42]. The dienamine intermediate A reacts with the C,N-cyclic
azomethine 4a by a 1,3-dipolar cycloaddition to generate the polycyclic intermediate B.
Subsequently, an acid-catalyzed elimination step converts intermediate B to the final
product 6aa.

Molecules 2021, 26, x FOR PEER REVIEW 6 of 10 
 

 

 
Figure 3. Comparison of the experimental ECD spectrum of chiral 6ba (the red line) with the cal-
culated one of (R,S)-6ba (the blue line). The green line is the position of the peak in horizontal axis. 

As shown in Scheme 2, we proposed a plausible catalytic cycle to explain the reaction 
mechanism. The condensation of a chiral primary amine catalyst with allyl phenylethyl 
ketone 5a would lead to the formation of the iminium-ion, which could form the diena-
mine intermediate A [40–42]. The dienamine intermediate A reacts with the C,N-cyclic 
azomethine 4a by a 1,3-dipolar cycloaddition to generate the polycyclic intermediate B. 
Subsequently, an acid-catalyzed elimination step converts intermediate B to the final 
product 6aa. 

 
Scheme 2. Plausible mechanism. 

4. Materials and Methods 
NMR data were obtained for 1H at 400 MHz or 600 MHz, and for 13C at 100 MHz or 

150 MHz. The data are presented as follows: chemical shift was reported in ppm from 
tetramethylsilane with the solvent resonance as the internal standard in CDCl3 solution, 
integration, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = 
multiplet) and coupling constant in Hertz (Hz). ESI HRMS was recorded on a Waters 
SYNAPT G2. In each case, enantiomeric excesses (ee) were determined by chiral high-

Scheme 2. Plausible mechanism.

4. Materials and Methods

NMR data were obtained for 1H at 400 MHz or 600 MHz, and for 13C at 100 MHz
or 150 MHz. The data are presented as follows: chemical shift was reported in ppm from
tetramethylsilane with the solvent resonance as the internal standard in CDCl3 solution,
integration, multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m
= multiplet) and coupling constant in Hertz (Hz). ESI HRMS was recorded on a Waters
SYNAPT G2. In each case, enantiomeric excesses (ee) were determined by chiral high-
performance liquid chromatography (chiral HPLC) that were Daicel Chiralpak AD-H
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Column (250 × 4.6 mm), Chiralpak IA Column (250 × 4.6 mm), or Chiralpak IC Column
(250 × 4.6 mm). UV detection was monitored at 220 nm or 254 nm. Optical rotation was
measured in CHCl3 solution at 20 ◦C. Column chromatography was performed on silica
gel (200–300 mesh) eluting with ethyl acetate and petroleum ether. TLC was performed
on glass-backed silica plates. UV light, I2, and solution of potassium permanganate were
used to visualize products. All chemicals were used without purification as commercially
available unless otherwise noted. Petroleum ether (PE) and ethyl acetate (EtOAc) were
distilled. THF was freshly distilled from sodium/benzophenone before use. Experiments
involving moisture and/or air sensitive components were performed under a positive
pressure of argon in oven-dried glassware equipped with a rubber septum inlet. Dried
solvents and liquid reagents were transferred by oven-dried syringes.

The 1,3-dipoles of 1 [43], 2 [44], 3 [45] and 4 [46–51] were synthesized according to
the literature methods. The substrates 5a−h were prepared according to the literature
procedures [36,52–57]. Catalyst C1 was commercially available. Catalysts C2–C8 were syn-
thesized according to the literature procedures [58,59]. The C,N-cyclic azomethine imines 4
(0.1 mmol), catalyst C2 (2.8 mg, 0.01 mmol), o-fluorobenzoic acid (2.8 mg, 0.02 mmol) were
dissolved in DCE (1.0 mL) and allyl ketone 5 (0.2 mmol) was added. Then, the mixture
was stirred at rt for 12 h. After completion, the mixture was evaporated and the resulting
crude residue was purified by column chromatography on silica gel eluting with petroleum
ether/ethyl acetate (10:1 to 5:1) to afford the chiral product 6.

5. Conclusions

In conclusion, we have developed the first chiral primary amine-catalyzed enantiose-
lective [3 + 2] 1,3-dipolar cycloaddition of allyl alkyl ketones with C,N-cyclic azomethine
imines via induced dienamine catalysts to give a novel class of dinitrogen-fused heterocy-
cles combining the biologically important tetrahydroisoquinoline core and pyrazolidine
core. The reaction affords a tetrahydroisoquinoline derivative in high yield with moderate
to high enantioselectivities (up to 96%) and high diastereoselectivities. In addition, this
reaction provides an efficient method for constructing diverse and complex chiral tetrahy-
droisoquinolines compounds. Research into further applications of this enantioselective
1,3-dipolar cycloaddition with C,N-cyclic azomethine imines is in progress.

Supplementary Materials: The following are available online. Figure S1: General procedure for the
preparation of the C,N-cyclic azomethines imines and its analogs, Figure S2: General procedure for
catalytic asymmetric 1,3-DCs, Figure S3: Copies of NMR spectra and HPLC spectra.
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