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Abstract

The outcome of an interaction between plant growth promoting rhizobacteria and plants may depend on the chemical
composition of root exudates (REs). We report the colonization of tobacco, and not groundnut, roots by a non-
rhizospheric Bacillus cereus (MTCC 430). There was a differential alteration in the cell wall components of B. cereus
in response to the REs from tobacco and groundnut. Attenuated total reflectance infrared spectroscopy revealed a
split in amide I region of B. cereus cells exposed to tobacco-root exudates (TRE), compared to those exposed to
groundnut-root exudates (GRE). In addition, changes in exopolysaccharides and lipid-packing were observed in B.
cereus grown in TRE-amended minimal media that were not detectable in GRE-amended media. Cell-wall proteome
analyses revealed upregulation of oxidative stress-related alkyl hydroperoxide reductase, and DNA-protecting protein
chain (Dlp-2), in response to GRE and TRE, respectively. Metabolism-related enzymes like 2-amino-3-ketobutyrate
coenzyme A ligase and 2-methylcitrate dehydratase and a 60 kDa chaperonin were up-regulated in response to TRE
and GRE. In response to B. cereus, the plant roots altered their exudate-chemodiversity with respect to
carbohydrates, organic acids, alkanes, and polyols. TRE-induced changes in surface components of B. cereus may
contribute to successful root colonization and subsequent plant growth promotion.
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Introduction

Plant roots influence rhizospheric microenvironment through
root exudates (REs). For instance, carbon-rich photosynthates
in REs facilitate sustenance of higher microbial populations and
activity in rhizosphere, compared to bulk soil. Selection of
bacteria in the root zone depends on niche utilization as well as
rhizospheric-processes that reciprocate between the host plant
and bacteria. Specifically, RE-mediated early interactions
between the plant and bacteria determine the fate of plant-
microbe association. Presence of various ions, free oxygen,
water, enzymes, mucilage and a diverse array of primary and
secondary metabolites in the REs might deter one organism
and attract the other. Alternatively, two very different organisms
may get attracted with differing consequences to the plant.
Differences in chemotactic responses of microbes towards
amino acids, sugars and organic acids in the REs influence
their ability to colonize roots [1]. Root nodulating-rhizobia sense

flavonoids and betaines secreted by the host root, and respond
by expressing nod genes [2,3]. Components of REs, like
acetosyringone, induce the expression of virulence genes in
Agrobacterium [4]. The REs, therefore, play an important role
in plant-microbe interactions.

Flagella, fimbriae and pili enable the bacteria to attach to
plant surface [5]. Bacterial flagellins play a crucial role for the
beneficial bacteria in recognizing host and non-host plants
[6,7]. Cell surface polysaccharides are involved in the
establishment of a symbiotic relationship between legumes and
rhizobia [8]. Bacterial major outer membrane protein (MOMP)
also plays an important role in early host recognition. The
MOMP was involved in root adsorption and bacterial-cell
aggregation [9]. The MOMP of Azospirillum brasilense
exhibited stronger adhesion in response to the extracts of
cereals than extracts of legumes or tomato [9]. Similar to
flagella and MOMP, the bacterial cell wall (CW) components
also play a crucial role in mediating plant-rhizobacterial
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interaction. Protein profiling of Paenibacillus polymyxa, isolated
from barley-rhizosphere, showed quantitative changes in both
cytosolic and extracellular proteins in presence and absence of
barley [10]. Soybean growth promoting Bacillus
amyloliquefaciens and its UV-mutant with reduced ability to
promote growth displayed differential expression of
extracellular proteins [11]. Identification of changes in bacterial
CW proteins (CWPs) in response to REs may, therefore,
provide information on the bacterial proteins that facilitate root
colonization.

Characterization of the bacterial response to REs at the cell
surface requires extraction, fractionation, and analysis of cell
surface components. Non-invasive vibrational spectroscopy,
including fourier transform infrared (FT-IR) and attenuated total
reflectance infrared (ATR-IR), was used as alternative to study
the intact bacterial cells [12-14] to obtain information regarding
the functional group chemistry of bacterial cell surfaces.

Soil bacteria from rhizosphere, non-rhizospheric zones,
phylloplane etc., promote plant growth suggesting that the
interaction of the bacterial strains with plants was not
dependant on their habitat. Further, a few strains of plant
growth promoting rhizobacteria (PGPR) promoted growth of
several crop plants, while others enhanced the growth of one
or a few crop plants. To understand the host and bacterial
factors that contribute to plant-PGPR association, we have
adopted a new approach. We have selected five bacterial
strains (Bacillus cereus, B. subtilis, Paenibacillus elgii, Serratia
marcescens, and Stenotrophomonas maltophilia) that were not
isolated from the rhizosphere and studied their effect on four
crop plants (tobacco, groundnut, tomato, and pigeon pea).
Some of these bacterial isolates were reported as PGPR,
suggesting that the plant growth promoting ability was not
limited to the bacteria isolated from rhizosphere [12,15].
Subsequently, B. cereus that promoted growth of tobacco, and
not of groundnut, was selected to study the changes in cell-wall
components through ATR-IR (intact cells) and 2-DE analysis of
CWPs in response to the REs of tobacco and groundnut.
Further, chemical composition of tobacco as well as groundnut
REs from plants treated with or without B. cereus, was
evaluated. We report that RE-induced changes in B. cereus
cell surface have implications in root colonization and
consequent growth promotion.

Materials and Methods

Selection of bacterial strain
Five bacterial isolates were screened for their growth

promoting ability on tobacco under in vitro conditions. B.
subtilis (MTCC9447) and B. cereus (MTCC 430) were from
Microbial Type Culture Collection, Institute of Microbial
Technology, Chandigarh, India. P. elgii [12] was isolated from
chitin/chitosan-rich soils of a mushroom production firm, S. M.
Agritech Pvt. Ltd., Hyderabad, India. S. marcescens [16] and S.
maltophilia (K279A) are from our culture collection in
Department of Plant Sciences, University of Hyderabad. B.
cereus (MTCC 430) that promoted the growth of tobacco, was
used to bacterize the seeds of four different plants including
groundnut, tobacco, tomato and pigeonpea.

Growth promotion studies in vitro
Tobacco and tomato seeds were surface sterilized by placing

them in 1% sodium hypochlorite solution (v/v) for 30 seconds
followed by rinsing three times with sterile distilled water.
Groundnut and pigeonpea seeds were surface sterilized with
0.02% (w/v) mercuric chloride and washed four or five times
with sterile distilled water. Selected bacterial strains were
grown overnight in 50 ml of Luria-Bertani (LB) broth. Cells were
collected by centrifugation at 3,200 x g for 5 min. Sterile
distilled water was added to the cell pellet to suspend bacterial
cells. Surface sterilized seeds were steeped in the bacterial
suspension for 30 min and dried for 1 h to achieve 1 x 107 cfu/
seed. Seeds treated with sterile distilled water served as
control. Treated seeds were placed in the Murashige and
Skoog’s (MS) medium. The shoot height, root length, fresh and
dry weight of the plants was recorded after 30 days of growth.
Root colonization by bacteria on tobacco and groundnut was
assessed through serial dilution after 10, 20, 30 and 40 days
for tobacco and 5, 10, 15 and 20 days for groundnut.

The data on growth promotion from triplicates, in three
independent experiments, was analyzed by Duncan’s multiple
range test (DMRT) and CD value was calculated at p0.05.
Significant difference between the treatments was designated
by different letters. The effect of B. cereus on growth of
selected crop plants was analysed by students’ t-test for
individual parameter against control for each crop. Percent
increase over control was calculated and plotted, where
required.

Preparation of REs
The REs were collected according to Slavov et al. [17].

Tobacco and groundnut plants were grown on MS media for 20
and 5 days, respectively. After careful washing of the roots, the
seedlings were transferred to flasks containing 200 ml of sterile
distilled water and kept for 2 days. Sterile distilled water,
without nutrients, was added as required to maintain a constant
volume. The aqueous media containing the compounds
released by the roots were collected and filter sterilized (0.22
µM, Millipore, USA). The volume was adjusted to 100 ml/g
fresh root weight. The REs were kept at 4°C until used.
Tobacco and groundnut root exudates were referred to as TRE
and GRE, respectively.

GC-MS analyses of REs
TRE and GRE were extracted in ethanol as reported by

Nagahashi and Douds [18] for a detailed analysis. The REs
were lyophilized, suspended in 80% ethanol and kept on ice for
2 h. After centrifugation at 8,200 x g for 5 min at 4°C, the
supernatant was separated and concentrated. The dried
supernatant (crude exudate) was dissolved in 70% ethanol and
analyzed for metabolites (sugars, organic acids, alkanes,
polyols, etc.) using GC-MS according to Schliemann et al. [19].

Ethanolic extracts (100µl aliquots) were derivatized after
reducing to dryness in glass injection vials with 10µl N-methyl-
N-(trimethylsilyl)-trifluoroacetamide for 30 min at 70°C and
diluted with 90µl of hexane prior to injection. For derivatization
of MeOH-soluble compounds, 10µl aliquots were first
derivatized with 10µl methoxyamine hydrochloride (MOA, 20
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mg ml-1 pyridine) for 90 min at 30°C, reduced to dryness and
then treated as described for the hexane extracts. GC-MS
measurements were obtained with Agilent 6890 series gas
chromatograph equipped with an autosampler 7683 series. The
following conditions were used: EI-voltage 70 eV; source temp.
240°C; column Rtx-5MS w/IntegraGuard (Restek GmbH, Bad
Homburg, Germany), 30 m x 0.25 mm i.d., 0.25µm film
thickness column (Agilent, Folsom, USA); carrier gas helium at
constant flow of 1 ml min-1; temperature. program: 50°C (2
min), 50–260°C (6° min-1), 260°C (3 min), 260–300°C(10°
min-1), 300°C (6 min); injection temperature: 240°C, splitless
injection, mass range of m/z 40 to m/z 800. Data acquisition
and evaluation run were with Xcalibur 1.4.1. Quantification of a
selected set of metabolites was based on the measurements of
reference compounds (separate and in mixtures) using
characteristic fragment ions.

Cell surface analysis for intact cells of B. cereus using
ATR-IR spectroscopy

Bacterial samples were prepared according to Kamnev et al.
[20]. B. cereus was grown to an OD600 of 0.5-0.6 in LB, minimal
media (MM) and MM-amended with TRE/GRE (1:1, v/v). Cells
were separated by centrifugation at 8,200 x g for 8 min at 4°C,
washed three times with 0.85% NaCl solution, and finally
washed with double distilled water. The cells were dried in air
at 50°C for 8 h. The spectra for the air-dried bacterial cell pellet
were recorded with a total of 64 scans at a resolution of 4 cm-1

in the transmission mode (mid-infrared region, 4000–400 cm-1)
using a Nicolet 5700 FTIR spectrometer. Normalization and
analysis of spectral data were done using Origin 6.1 software
(OriginLab Corporation, Northhampton, MA, USA) and
Speckwin32 software (Version 1.71.4, Jena, Germany).

Isolation of CWPs from B. cereus
The CWPs were isolated from B. cereus according to Cole et

al. [21] with biological triplicates. Cells from 12-16 h old culture
of B. cereus grown in LB, MM, MM+TRE and MM+GRE were
harvested by centrifugation at 7,560 x g for 20 min at 4°C.
Supernatant was discarded and pellet was kept on ice for 5
min. The pellet was washed twice with 5ml of chilled TE buffer
containing 1mM PMSF. The pellet was resuspended in 1.15ml
of ice-cold mutanolysin mix [1 ml TE-Sucrose (TES) buffer, 100
μl lysozyme (100 mg/ml in TES), 50 μl mutanolysin (5,000 U/ml
in 0.1 M K2HPO4, pH 6.2)], prepared freshly before use and
placed on ice. The whole suspension was transferred to a
sterile microcentrifuge tube and incubated for 2 h at 37°C with
shaking (220g). After incubation, the mixture was centrifuged at
14,000 x g for 5 min at 28°C. The supernatant (solubilized cell
wall-associated protein fraction) was collected and dialysed
with 6 changes (every 2 h) against double distilled water in a
dialysis membrane from Himedia, India with 4 kDa cut-off.
Dialysed proteins were acetone precipitated (1:4 v/v). The
protein concentration was determined using amido black
method and resolved on SDS-PAGE. The purity of CWP
fraction was checked for lactate dehydrogenase (LDH) assay,
a cytosolic marker enzyme, according to Bergmeyer and Bernt
[22].

2DE analysis of differentially expressed CWP
Aliquots of 500 µg CWP were rehydrated on immobilized pH

gradient (IPG) strips of 18 cm length and pH of 4-7 linear
gradient (Amersham, GE Healthcare) for 12 h at 50 V with
rehydration solution [8 M urea, 2 M thiourea, 4% CHAPS, 50
mM dithiothreitol (DTT), 0.2% IPG buffer pH range 4-7 and
0.004% bromophenol blue] to a final volume of 320 µL.
Rehydration and isoelectric focusing (IEF) were carried out in
Ettan IPGphor II (GE Healthcare) at 20°C using the program:
500 V for 30 min, gradually increasing to 500-10000 V for 3 h
and then a step voltage up to 60000 Vh. After IEF, strips were
equilibrated twice for 20 min with gentle rocking at 25 ± 2°C in
equilibration buffers. The first equilibration was done in a
solution containing 6 M urea, 50 mM Tris-HCl buffer (pH 8.8),
30% (w/v) glycerol, 2% (w/v) SDS and 2% DTT. In the second
equilibration buffer, 2.5% (w/v) iodoacetamide was used
instead of DTT. The proteins were separated in the second
dimension SDS-PAGE (12.5% vertical polyacrylamide slab
gels) at 4 mA gel-1 for 1 h and kept overnight at 10 mA gel-1,
using an EttanDalt6 chamber (Amersham, GE Healthcare). The
gels were stained with modified colloidal coomassie G-250
staining [23]. Protein patterns in the gels were recorded as
digitized images using a calibrated densitometric scanner
(Amersham, GE Healthcare). The gels were analyzed
(normalization, spot matching, expression analyses and
statistics) using Image Master 2-D Platinum image analysis
software (Amersham, GE Healthcare). Gels with scatter plot
correlation coefficient > 0.8 were further analysed for
differentially expressed CWPs.

Protein spots in the gels of CWP from B. cereus grown in
MM+TRE and MM+GRE were compared with the protein spots
on the master gel (CWP of B. cereus grown in MM).
Differentially expressed proteins, between B. cereus grown in
MM+TRE and MM+GRE, were compared against MM+TRE as
master gel. Interclass report was calculated based on spot
volume percentage and sample verses control ratios and
compared. Protein spots with ratio >1.5 were considered as up-
regulated and < 0.5 were considered as down-regulated.
Student’s t-test was performed to identify statistically significant
(p<0.05) differentially expressed proteins. Selected protein
spots were digested with trypsin and identified through MALDI-
TOF mass spectral data analysis using MASCOT program
(http://www.matrixscience.com) employing Biotools software
(Bruker Daltonics). The protein identity was accepted only if the
MASCOT probability was at significant threshfold level (p<0.05)
with at least two peptides matching.

Results

Selection of bacterial strain: seed bacterization and
root colonization

Seed bacterization with five bacterial strains improved the
growth of tobacco when compared to the non-bacterized
control. B. cereus-treated plants showed maximum increase in
growth followed by P. elgii (Figure 1A). Seed bacterization of
four different plants with B. cereus increased shoot height, root
length, fresh and dry weight of tomato and pigeon pea but the
increase in growth of tobacco was the highest (Figure 1B). B.
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cereus efficiently colonized the tobacco roots with a significant
increase in the population by 20 days that sustained up to 40
days. In groundnut, B. cereus colonized the roots only up to 5
days, and the rhizoplane population decreased to undetectable
level in the next 15 days (Figure 1C). We have, therefore,
selected tobacco as responding (host) and groundnut as non-
responding (non-host) plants for B. cereus, and studied the
influence of TRE vs.GRE on the cell surface components of B.
cereus. In groundnut, the highest population of B. cereus was
detected on roots at 5 days of growth, and at 20 days on
tobacco roots. For further studies, TRE and GRE were
prepared at 20 days and 5 days, respectively.

Changes in REs profile in response to root colonization
by B. cereus

GC-MS analyses of REs collected from groundnut and
tobacco plants showed an alteration in composition of organic
acids, carbohydrates, polyols, alkanes and benzene derivatives
(Table 1 & 2) in response to seed bacterization/root
colonization by B. cereus.

Organic acids.  At 5 days of growth, 19 organic acids were
common in the REs of both bacterized and non-bacterized
groundnut seedlings. Ten organic acids were detected only in
B. cereus-treated GRE and 8 others were detected in REs of
non-bacterized seedlings (Table 1). In the TRE obtained from
20 days-old tobacco seedlings, 6 among the 26 organic acids
detected were common in both bacterized and non-bacterized
REs. Eleven organic acids were present only in TRE of
bacterized seedlings, whereas 9 were exclusive to the TRE
from non-bacterized tobacco (Table 2). There was an increase
in the variety of organic acids exuded by B. cereus colonized
tobacco plants.

Hexadecanoic acid, tetradecanoic acid, decanoic acid and
propanoic acid were the organic acids detected commonly in
TRE and GRE. The presence or absence of bacteria from
groundnut roots did not alter the exudation of acetic acid and
ocatadecanoic acid. But, acetic acid was not detected in TRE
of bacterized seedlings, whereas, octadecanoic acid was
present in the REs of bacterized seedlings.

Carbohydrates.  Of the 32 carbohydrate-like compounds
detected in GRE, 11 were common in the REs of bacterized
and non-bacterized groundnut seedlings. Six carbohydrate-
related compounds were detected exclusively in GRE of
bacterized seedlings and 15 such compounds were detected in
REs of non-bacterized groundnut seedlings (Table 1). There
was a decrease in carbohydrates in GRE, subsequent to root
colonization by B. cereus. Of the 22 carbohydrate-like
compounds detected in TRE, only 3 were common in the REs
from bacterized and non-bacterized tobacco seedlings,
whereas 11 were detected in REs of bacterized tobacco
seedlings and 8 in the REs of non-bacterized seedlings (Table
2). Contrary to the observation in GRE, B. cereus colonized
tobacco plants showed an increase in sugar compounds in
REs as compared to non-bacterized REs.

Polyols, alkanes and benzene derivatives.  The profile of
polyols detected in REs was different for tobacco and
groundnut except for glycerol and inositol (Table 1 & 2). The
alkane n-docosane was exuded in the TRE of non-bacterized

Figure 1.  Effect of non-rhizospheric bacterial strains on
growth of crop plants.  Seeds bacterized with respective
bacterial strains (approximately1x107cfu/seed, unless
otherwise mentioned) were grown in vitro in MS medium. After
30 days of growth, shoot height and root length were measured
in centimeters, while fresh weight and dry weight of entire plant
were measured in milligrams after 30 days of growth. Data
represent the mean of the three independent experiments. The
vertical line indicates standard error.
(A) Effect of five different bacterial strains on growth of
tobacco. Treatments included 1. Bacillus cereus, 2. B. subtilis,
3. Paenibacillus elgii, 4. Stenotrophomonas maltophilia, 5.
Serratia marcescens, and 6. Control, (n=20). Different letters
on each bar represent values that were significantly different
(p0.05). (B) Effect of B. cereus on growth of tobacco, tomato,
pigeon pea and groundnut (n=24). Data represents percent
increase over control.
(C) Colonization of B. cereus on tobacco and groundnut roots.
Number of days (d) for tobacco: 10, 20, 30 and 40 days of
growth and for groundnut: 5, 10, 15 and 20 days of growth
(n=20). Students’ t-test of each growth parameter against
control for each crop was performed. ** indicate statistically
significant at p<0.01, NS =indicate not significant.
doi: 10.1371/journal.pone.0078369.g001
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Table 1. Metabolites in the root exudates of groundnut at 5
days of growth of bacterized (Bacillus cereus) and non-
bacterized seedlings.

Sl. No.Name of the compounda m/z ratioRt(min)
Non-
bacterized Bacterized

Organic acids     

1. 2-Propenoic acid 131 23.0 - +

2. Acrylic acid 55 25.8 - +

3. Butanoic acid 73 21.8 - +

4. Cis, 6-octadecenoic acid 73 30.9 - +
5. D-threo-pentonic acid 73 26.3 - +
6. Isobutanoic acid 71 19.5 - +
7. Nonanoic acid 73 19.1 - +
8. Palmitic acid 73 34.6 - +
9. Pentanoic acid 73 16.4 - +
10. Pentenoic acid 73 10.4 - +
11. Decanoic acid 73 26.1 + -
12. Ethanimidic acid 147 10.3 + -
13. Gluconic acid 73 22.4 + -
14. Glyceryl tridodecanoate 43 43.8 + -
15. Hexanedioic acid 261 35.6 + -
16. Myristic acid 73 33.5 + -
17. Trans-9-octadecenoic acid 73 34.6 + -
18. Xylonic acid 73 24.7 + -

Sugars/Polysaccharides
1. 2-Deoxy-galactopyranose 73 32.7 - +
2. Arabinofuranose 217 27.4 - +
3. β-mannopyranoside 73 28.9 - +
4. Glucuronolactone 73 24.7 - +
5. Ribofuranose 217 25.2 - +
6. Sorbose 73 28.7 - +
7. 2(3H)-furanone 73 20.8 + -

8.
3-methyl-1,4,6,7-tetrahydro-
pyrazolo[3,4-C]pyridin-5-one

42 13.1 + -

9. β-D-galactopyranoside 73 29.3 + -
10. β-fucopyranose 73 28.9 + -
11. D-arabinose 73 25.7 + -
12. D-erythro-pentopyranose 73 27.3 + -
13. D-erythrotetrofuranose 73 21.9 + -
14. Dithiothreitol 73 15.3 + -
15. D-turanose 73 40.9 + -
16. Fructose 73 28.7 + -
17. Pyrimidine 255 20.2 + -
18. Ribose 73 31.3 + -
19. Uridine 73 38.1 + -
20. Xylopyranose 73 23.6 + -
21. Xylose 73 26.5 + -

Polyols
1. 1,3-pentanediol 73 19.9 - +
2. 2-methyl-1,2-butanediol 73 23.9 - +
3. 2-methyl-1,3-propanediol 117 12.1 - +
4. Glycerol 73 17.3 - +
5. 1-decanol 57 22.0 + -
6. 1-heptanol 69 30.4 + -
7. 2-ethyl-1-dodecanol 57 33.3 + -
8. Rhamnitol 117 22.0 + -

seedlings (Table 2) but the same was present in GRE of
bacterized seedlings (Table 1). Benzene derivatives were more
in number in TRE as compared to GRE (Table 1 & 2).

Changes in cell surface components of B. cereus in
presence of TRE and GRE

B. cereus was grown in LB, MM and MM-amended with TRE
or GRE. Surface properties of intact cells were analysed
through ATR-IR spectroscopy, and the CWPs were analysed
by 2DE. The ATR-IR spectrum of B. cereus cells grown in
different media was divided into four parts with wavelength
ranging from 1000-1500 cm-1, 1500-2500 cm-1, 2500-2900 cm-1

and 2900-4000 cm-1 for a detailed analysis (Figure 2). At
wavelengths 1045.2, 1256 and 1274.7 cm-1, B. cereus grown in
LB, MM and MM+TRE showed bands that were not detectable
in MM+GRE (Figure 2A). B. cereus grown in LB and MM+TRE
had two distinct bands at 1650 and 1660.4 cm-1. Whereas, no
such bands were detected when the cells were grown in MM
+GRE (Figure 2B). The ATR-IR profile of B. cereus grown in
MM+GRE in 2500-2900 cm-1 range was different from LB, MM
and MM+ TRE, with two extra bands at 2510 and 2750 cm-1

(Figure 2C). In LB, MM and MM+TRE grown B. cereus, two
split bands at 2985.3 and 3008.4 cm-1 were detected (Figure
2D), but in MM+GRE grown cells such bands were not
detectable (Table 3).

B. cereus varied its CW-proteome upon exposure to TRE or
GRE. The lactate dehydrogenase (LDH) assay showed that the
CWP fraction was free from cytosolic contamination (data not
shown). The CWP detected with a ratio of ≥1.5 in REs-
amended MM vs. MM grown cells were considered as up-

Table 1 (continued).

Sl. No.Name of the compounda
m/z ratioRt(min)

Non-
bacterized Bacterized

Organic acids     

1. 2-Propenoic acid 131 23.0 - +

2. Acrylic acid 55 25.8 - +

3. Butanoic acid 73 21.8 - +

4. Cis, 6-octadecenoic acid 73 30.9 - +
9. Ribitol 73 14.0 + -

Alkanes
1. Butane 73 25.7 - +
2. Tetracosane 57 30.6 - +
3. n-docosane 57 22.9 - +
4. Tridecane 57 17.7 + -
5. n-dodecane 57 15.4 + -
6. Tetracontane 57 44.6 + -
7. 1,2-bis(trimethylsiloxy)ethane 147 11.1 + -
8. 2-ethyl-1,3-propane 73 23.7 + -
9. 4-ethyloctane 57 10.8 + -

Benzene derivatives
1. 1,2,4-trimethylbenzene 105 11.4 + -

a. based on MS of reference compounds
‘+ ’ present; ‘- ’ absent
doi: 10.1371/journal.pone.0078369.t001
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Table 2. Metabolites in the root exudates of tobacco at 20
days of growth of bacterized (Bacillus cereus) and non-
bacterized seedlings.

Sl.
No. Name of the compounda

m/z
ratio

Rt
(min)

Non-
bacterized Bacterized

Organic acids
1. 2,3,4-trihydroxybutyric acid 73 23.3 - +
2. 2-furylglycolic acid 73 15.8 - +
3. 2-hydroxyheptanoic acid 73 20.6 - +
4. 2-keto-D-gluconic acid 73 28.5 - +
5. Dodecanedioic acid 73 44.6 - +
6. Dodecanoic acid 73 22.7 - +
7. Mannonic acid 73 32.7 - +
8. Octadecanoic acid 117 34.9 - +
9. Octanoic acid 73 10.9 - +
10. Oleic acid 73 36.7 - +
11. 2-trimethylsilyloxyheptanoic acid 73 20.6 + -
12. 3-octeneoic acid 73 21.7 + -
13. Acetic acid 73 12.9 + -
14. Arabinonic acid 73 22.2 + -
15. Decanoic acid 73 43.0 + -
16. D-ribonic acid 73 25.1 + -
17. Ethyltrimethylsilyl dipropylmalonate 73 39.7 + -
18. Pentanedioic acid 73 36.2 + -
19. Pentanoic acid 127 27.1 + -
20. Tetronic acid 73 23.4 + -

Sugars

1.
1H-indole, 2,3,5-trimethyl-1-
(trimethylsilyl)

231 36.0 - +

2. 2-(2-furyl)pyridine 73 4.6 - +

3.
5-[e,E-[4-[piperidino]-1,3-
butadienyl]-2,6-dimethyl-1,2,4-
triazine

192 7.7 - +

4. 5-Ketofructose 204 46.9 - +
5. α-D-glucopyranoside 73 35.7 - +
6. β-D-galactofuranoside 73 32.1 - +
7. β-L-galactopyranose 73 26.3 - +
8. β-L-galactopyranose 204 35.1 - +
9. Methyl-keton 73 9.7 - +
10. Sorbopyranose 73 28.6 - +
11. α-D-mannofuranoside 129 27.8 + -
12. α-DL-arabinofuranoside 217 27.5 + -
13. Arabino-1,5-lactone 73 24.8 + -
14. Arabinofuranose 217 41.5 + -
15. D-fructose 73 29.6 + -
16. D-ribofuranose 217 28.5 + -
17. D-xylofuranose 217 28.0 + -
18. Glucofuranoside 145 27.3 + -
19. Pyridine 84 13.6 + -

Polyols
1. 2-methyl-1,3-propanediol 117 11.8 - +
2. Inositol 73 33.1 - +
3. Trimethylsilyl ether of glycerol 73 11.6 - +

4.
{2,2-Dimethyl-5-[2-(2-
trimethylsilylethoxymethoxy)propyl]
[1,3]dioxolan-4-yl}methanol

73 26.6 + -

regulated and ≤0.5 as down-regulated. As compared to
unamended control, a total of 17 and 13 CWPs were
differentially expressed by B. cereus in TRE- and GRE-
amended MM, respectively (Figure 3). In TRE-amended MM,
11 proteins were up-regulated and 6 proteins were down-
regulated. In GRE-amended MM, 11 proteins were up-
regulated and 2 proteins were down-regulated. Among these, 2
proteins were down-regulated and 9 were up-regulated in B.
cereus in response to both TRE and GRE. Three proteins
(Spot no. 271, 381 and 411) were significantly (p<0.05) up-
regulated in CW of B. cereus grown in GRE-amended media
as compared to that of CWP in TRE-amended MM (Figure 3).
Similarly, three proteins (spot no. 341, 281 and 419) were
significantly up-regulated in CW of B. cereus grown in
presence of TRE but not in presence of GRE (Figure 3). A few
of the differentially expressed proteins were mutually exclusive
to TRE or GRE, and a few other proteins (Spot no. 122, 220,
177 and 951) were commonly up-regulated in response to both
REs (Table 4). The up-regulated proteins like chaperonin and
2-amino-3-ketobutyrate coenzyme A ligase were expressed to
a greater extent by B. cereus exposed to TRE than GRE
(Figure 3). Identity for proteins (Spot no. 220, 271, 281, 341
and 411) could not be obtained due to lack of matching
peptides.

Discussion

Root colonization by bacteria
Rhizospheric bacteria that improve growth and increase the

yield of crop plants were termed as plant growth promoting
rhizobacteria (PGPR) [24]. Root colonization was linked with

Table 2 (continued).

Sl.
No. Name of the compounda

m/z
ratio

Rt
(min)

Non-
bacterized Bacterized

5. Glycerol 73 14.0 + -
6. Valerenol 73 30.1 + -

Alkanes
1. Butane 117 11.6 - +
2. Eicosane 57 36.1 - +
3. n-heptadecylcyclohexane 82 36.9 - +
4. Octacosane 57 39.0 - +
5. 2-ethoxy-ethane 73 16.5 + -
6. 2-ethyl-propane 73 23.8 + -
7. Hexadecane 328 36.9 + -
8. n-docosane 57 26.6 + -

Benzene derivatives
1. 1,2-dichloro-4-phenoxy-benzene 238 8.7 - +
2. 2-hydroxybenzoic acid 73 18.8 - +
3. Diethyl phthalate 149 21.0 - +
4. 2H-cyclopropa[g]benzofuran 73 29.9 + -
5. 4-Acetyl-2-methoxy-benzene 193 21.9 + -

a. based on MS of reference compounds
‘+ ’ present; ‘- ’ absent
doi: 10.1371/journal.pone.0078369.t002
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the efficiency of PGPR for growth improvement and disease
control [25,26]. Non-rhizospheric bacteria also promote plant
growth [15,27], suggesting the possibility for selection of PGPR
from different habitats for seed bacterization. The present study
confirmed that root colonization is a major factor for PGPR to
exert the beneficial effects on plants [28]. Successful root
colonization of tobacco plants by B. cereus increased growth
compared to uninoculated plants. Failure to sufficiently colonize
the roots in groundnut resulted in no change in growth. Root
colonization is a competitive process influenced by host
genotypes with different REs profiles [29,30], affected by
characteristics of both the bacteria and the host [31] and timely
response to chemical stimuli [28]. Here, we report an alteration
of REs in bacterized and non-bacterized plants for both
tobacco (at 20 days of growth) and groundnut (at 5 days of
growth). The root colonization was different probably due to
changes in the composition of REs of these two plants.

Structural and conformational changes in CW proteins
The changes in tobacco growth-promoting B. cereus cells

grown in different media were evident from the ATR-IR studies
with respect to cell wall components (Table 3). In ATR-IR
spectra, the band at 1657cm-1 was attributed to the amide I
vibrations of structural proteins [32]. A significant difference
was the split in amide I region when B. cereus was grown in
MM+TRE media. The position of amide I absorption implies
structural and conformational differences in cell proteins [33], a
factor used in classifying bacteria based on IR studies. A
difference in this region shows the specificity of the bacteria for
specific components of REs. Similar studies were done in
synthetic media using bacteria isolated from the rhizosphere of
plants under different environmental conditions [34]. Most of
these studies identified and characterized different bacterial
strains based on the production of metabolites [35].

Figure 2.  ATR-IR spectra of B. cereus grown in different media.  (A) 1000–1500 cm-1 (B) 1500-2500 cm-1 (C) 2500–2900 cm-1 &
(D) 2900-4000 cm-1 region of B. cereus grown up to OD 600 = 0.5–0.6 in different media viz. LB, MM, and MM with TRE or GRE, and
the intact cells were analysed. Spectra of the air-dried B. cereus cell pellet were recorded with a total of 64 scans at a resolution of 4
cm-1 in the transmission mode (mid-infrared region, 4000–400 cm-1) using a Nicolet 5700 FTIR spectrometer. Circles highlight the
spectral areas with alteration in bands for bacteria grown in different media.
doi: 10.1371/journal.pone.0078369.g002
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The splitting of the amide I band was spectroscopically
detected in Azospirillum when grown in the presence of wheat
germ agglutinin, a molecular signal in plant-microbe
interactions. Bacteria showed the amide I band at about 1657
cm-1 under normal growth conditions, reflecting the
predominance of α-helices among secondary-structure
components of bacterial cellular proteins. However, the amide I
band appeared to be split, with an additional band at 1632 cm-1

corresponding to an enhanced proportion of β-structure
components [34] for cells grown under nitrogen deficiency. We
detected the presence of a band at 1635 cm-1 for bacteria
grown in all the media, whereas in the presence of enriched
nutrient media (LB or TRE), the splitting occurred. This study
suggests that in presence of GRE or no additional nutrients
(MM alone), β-sheets were predominant. In the presence of
additional nutrients, both the α-helix and β-structure of proteins
were observed. Similar results were reported in P. elgii grown
in MM showing a band at 1632.5cm-1 (only β-sheets) under
stress, whereas in the presence of enriched nutrients (LB or
TRE), the band at 1659 cm-1 was attributed to the presence of
α-helix also [27]. Bacterial cell surface proteins were involved in
stress resistance and plant root colonization [9]. Alteration in

Table 3. Identification and comparative analysis of ATR-IR
bands in B. cereus in presence.

Wave
number
(cm-1)a Media for growth of bacteriab

Functionc

 LB MM MM+TREMM+GRE 

1018.2 - + - -
Indicate change in
polysaccharide component

1045.2 + + + -

C-OH bending and C-O
stretching of O-cetyl ester
bonds attributing to
exoploymer formation

1256 + + + -  

1274.7 + + + -
Dipicolinic acid (invovled in
sporulation) marker band for
sporulating bacteria like bacilli

1635 + + + + β-sheets

1650 + + + +
α-helix. Shift or split indicates
stress

1660.4 +
- (shifted to
1680nm)

+ -  

2510 - - - + Hydride vibrations
2750 - - - +  

2985.3 + + + -

CH3 & CH2 stretching
vibrations (lipids/fatty acid
components of membrane/cell
wall)

3008.4 + + + -  

a. Wavenumber (cm-1) at which band was detected
b. Bacteria analysed after growing in different media viz., LB, MM, MM+TRE and
MM+GRE
c. Function corresponding to detected band
doi: 10.1371/journal.pone.0078369.t003

the surface proteins was linked to bacterial adaptation to the
varying environmental conditions [34]. The α-helix band in IR
spectra of B. anthracis due to the poly-glutamic acid capsule
contributed to virulence [36] and to biofilm formation by non-
pathogenic strains of Bacillus [37]. Therefore, detection of a
strong α-helix band in B. cereus grown in TRE-amended MM
suggested the adaptation of bacterial cells for tobacco root
colonization. The spectroscopic changes may be related to
alterations in the surface proteins of the bacterial cell and
facilitate adaptation to the varying environmental conditions
with special reference to nutrients exuded by the roots [34].

Changes in exopolysaccharides and lipid-packing of
CW

The bands around 1045 cm-1 and 1256 cm-1 detected in B.
cereus grown in presence of LB, MM and MM-amended with
TRE correspond to C-OH bending [38,39]. C-O stretching of O-
acetyl ester bonds was attributed to exopolymer formation [13].
The band at ~1018 cm-1, attributed to the cellulose (or
galactomannons) [40], was detected only in B. cereus grown in
MM and not in other media, indicating a change in
polysaccharide component of B. cereus.

The intensity of the band at 1256 cm-1 in the present study,
indicative of a difference in the packing of the ester groups [13],
was highest in B. cereus cells grown in MM as compared to
that in enriched media (LB) or MM+TRE suggesting weaker
hydrogen bonds in the cells grown in MM. Higher intensity of
band indicated formation of less number of hydrogen bonds
between C=O group of lipids and polysaccharides or other
chemicals which contain O-H group as predicted by Gorgulu et
al. [41].

Prominent change in banding pattern was observed in the
range of 2800-3010 cm-1 with the absence of two split bands of
2985.3 cm-1 and 3008.4 cm-1 in B. cereus grown in MM+GRE,
that were present in other three media (Figure 2D). The
spectral range between 2800-3010 cm-1 was attributed to the -
CH3 (terminal methyl) and =CH2 (methylene) vibrations in the
fatty acid components of membranes [35,42,43] indicating
different degrees of unsaturation in acyl chains of
phospholipids [44]. Similar alteration in unsaturated fatty acid
content was evident through decrease of the band intensity at
~3006 cm-1 for A. brasilense grown under metal stress [42]. B.
cereus showed variation in membrane lipid composition in
response to low water activity, reduced temperature and
growth in rice starch [45]. The absence of two split bands of
2985.3 cm-1 and 3008.4 cm-1 in B. cereus grown in GRE-
amended media suggested a possible alteration in lipid-
packing of cell surface, as the organism was under stress from
the compounds exuded in GRE.

Implications of other bands
The band at 1274 cm-1 was identified as a marker for

sporulating bacteria [13]. The effect of antimicrobial
compounds on sporulating cells was also assessed by the ratio
of the bands at ~1279 cm-1 and ~1545 cm-1 [36]. The 1274 cm-1

band was not detectable in B. cereus cells grown in presence
of GRE, possibly due to an inhibiting effect of an unidentified
compound in the GRE on sporulation of B. cereus affecting the
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survival. The bands at 2510 and 2750 cm-1 could not be
assigned to any functional group because weak-to-moderate
intensity absorption (between 2700 and 2400 cm-1) was not
normally associated with a bonded compound [46].

Alteration in REs profile of non-bacterized and
bacterized plants

The profile of TRE and GRE differed with respect to organic
acids, carbohydrates, polyols, alkanes and benzene
derivatives. An alteration was detected in the profile of

Figure 3.  Representative 2DE gels of B. cereus cell-wall proteome.  B. cereus grown in MM media amended with (A) tobacco
root exudates or (B) groundnut root exudates. In the first dimension (IEF), 500 μg of protein was loaded on an 18 cm IPG strip with
a linear gradient of pH 4-7 and 12.5% SDS-PAGE gels were used in the second dimension. Proteins were visualized by Coomasie
blue staining. Arrows point towards the differentially expressed proteins.
doi: 10.1371/journal.pone.0078369.g003

Table 4. Identification and comparative analysis of differentially expressed proteins in presence of root exudates.

Spot No.aFold Change (± SE) Protein identification Accession no. & organismd Peptides matching ScoreMass (kDa)/pI
 TRE/MMb GRE/MMc      
Up-regulated in presence of GRE

381 0.69 (±0.03) 2.71 (±0.03)
Alkyl hydroperoxide
reductase

gi|30018585 Bacillus cereus

(ATCC 14579)
MLLIGTEVKPFK IEYIMIGDPTRT
TITTNFNVLMEEEGLAAR

194 20.86/ 4.79

Up-regulated in presence of TRE

419 2.17 (±0.09) 1.01 (±0.08) Chain A, Dlp-2 gi|21730375 B. anthracis
QVANWNVLYVK FEEFYNEAGTYIDELAER
LHNYHWYVTGPHFFTLHEK

337 16.51/ 4.79

Up-regulated in presence of both TRE and GRE

122 2.62 (±0.03) 1.51 (±0.11) 60 kDa chaperonin gi|160222522B. anthracis
SSIAQVAAISAADEEVGQLIAEAMER
GFTTELDVVEGMQFDR

115 19.66/ 4.53

177 5.87 (±0.08) 3.19 (±0.05)
2-amino-3-ketobutyrate
coenzyme A ligase

gi|30018806 B. mycoides

Rock3-17
YGVGAGAVR HFGLSDKVDFQIGTLSK
SIEILMESTELHDR

195 43.30/ 5.41

951 11.85 (±0.22) 10.01 (±0.17)
2-methyl citrate
dehydratase

gi|30020418 B.cereus

(ATCC 4579)
AHEIQGVLALENSLNR LARPLESYVMENVLFK
EEIFNALSHAWIDNSSLR

132 53.76/ 5.41

a. Spot no. as in Figure 3
b. Fold change in TRE amended media as compared to MM
c. Fold change in GRE amended media as compared to MM
Data in parenthesis indicate standard error
d. Accession no. of identified protein and organism in NCBIr database
doi: 10.1371/journal.pone.0078369.t004
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bacterized plant REs as compared to non-bacterized REs. A
wider variety of organic acids was detected in GRE compared
to TRE. The profile of sugars also changed in response to
colonization of groundnut and tobacco by B. cereus. Sugars
are known as major source of nutrients in the rhizosphere for
the colonizing bacteria and carbohydrates exuded by roots also
act as chemoattractants [47]. The REs alter the immediate
environment and decide the survival of rhizosphere residents.
The presence of rhizobacteria plays a key role in altering both
exudation and morphology of roots [28,48–51]. Soybean roots
did not exude quercetin and naringenin in presence of PGPR
strain Chryseobacterium balustinum [52]. A. brasilense altered
pH of the rhizosphere [53] and inoculation with Azospirillum
may change root physiology and patterns of root exudation
[54].

The effect of root exometabolites of tomato plants on the
growth and antifungal activity of plant growth promoting
Pseudomonas strains in the rhizosphere was dependant on the
sugar and organic acid composition of REs [55]. The alteration
in TRE might help in attraction of B. cereus and subsequent
establishment in the roots. However, the compounds detected
in TRE and GRE need to be quantitatively assessed for a
better understanding of their effect on B. cereus growth, root
colonization and plant growth promotion.

Alteration in CWP profile in response to REs
CW proteins related to oxidative stress and metabolism were

differentially regulated in B. cereus grown in REs-amended
media. DNA protecting protein chain A (Dlp-2) belonging to
ferritin superfamily, detected in CW components [56], protect
DNA from oxidative damage [57] and detoxify ROS in the cell
[58]. Upregulation of Dlp-2 in response to REs, suggests a
putative role for Dlp2 in survival of bacteria in REs
environment. Similarly, ferritin-like proteins were implicated in
maintaining iron balance and establishment of infection by
Mycobacterium tuberculosis [56]. In the present study, basal
levels of Dlp 2 (Spot no. 419) in CWP of B. cereus, could be
due to the absence of iron in MM. Similarly, increase in ferritin-
like protein in CWP of B. cereus grown in RE-amended media
could be due to the availability of iron.

The alkyl hydroperoxide reductase (AHP) protein, one of the
antioxidant enzymes expressed by bacteria under oxidative
stress imposed by peroxides and RNI [59], was up-regulated in
response to GRE. Burkholderia cenocepacia was persistent in
the host with an increased level of flagellin proteins and
reduced expression of AHP [60]. The loss of AHP activity did
not affect the viability but correlated with insignificant reduction
in oxidative stress resistance. A mutant lacking ahp gene of
plant root colonizing Azospirillum strain, showed increased
sensitivity to oxidative stress and impaired the ability of cells to
aggregate and flocculate under nutrient-limiting conditions
without affecting wheat root colonization [61]. The increase of
AHP in GRE grown B. cereus CW suggests a possible
involvement of AHP in resistance to oxidative stress. However,
there was no positive effect on root colonization by B. cereus.
Elevated expression of oxidative stress-response proteins in

response to the REs indicate the nature of stress imposed by
REs on bacteria. Bacteria grown in REs as the source of
nutrients may be under oxidative stress due to high amount of
organic acids and phenolics. B. cereus adapted to acidic and
salt-stressed environments by up-regulating enzymes with
antioxidative properties [62].

In the present study, 2-amino-3-ketobutyrate CoA ligase
(Spot no. 177), which catalyzes the second reaction step on
the main metabolic degradation pathway for threonine [63],
was significantly up-regulated in presence of TRE. 2-
Methylcitrate dehydratase (2MCD) (Spot no. 951) which is
important for conversion of propionate to pyruvate via an
intermediate 2-methyl citrate, and a chaperonin (spot no. 122)
were up-regulated in CW of B. cereus grown in presence of
both TRE and GRE, as compared to MM. The up-regulation of
2MCD could be due to the presence of propionic acid in REs of
tobacco and groundnut. Chaperonins were found in the
secretome of B. anthracis under host-simulated conditions [64].
The up-regulation of 60 kDa chaperonin, in presence of REs,
suggests the role of chaperonin-mediated protein folding in the
establishment of B. cereus on plant roots.

Differentially expressed proteins of B. cereus cells grown in
TRE- and GRE-amended MM were possibly involved in
survival of the bacteria during interaction with REs. Alteration in
the expression of proteins involved in biosynthetic metabolism
and protein transport was reported in a PGPR strain of
Paenibacillus polymyxa grown in presence or absence of
barley [10].

Conclusion

Bacteria isolated from non-rhizospheric habitats also
promote growth of plants. The cell surface components of B.
cereus were influenced by the REs of tobacco supporting the
role of REs in establishment of plant-bacteria interaction. The
REs positively contributed to the changes on the B. cereus cell
surface to facilitate root colonization and subsequent plant
growth in tobacco. Detailed investigations on the specific role
of individual or abundant low molecular weight compounds in
REs would allow verification of the host specificity in non-
symbiotic plant-bacterial associations like plant-PGPR
interactions.
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