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Abstract: Haspin, an atypical serine/threonine protein kinase, is a potential target for cancer therapy.
5-iodotubercidin (5-iTU), an adenosine derivative, has been identified as a potent Haspin inhibitor
in vitro. In this paper, quantum chemical calculations and molecular dynamics (MD) simulations were
employed to identify and quantitatively confirm the presence of halogen bonding (XB), specifically
halogen···π (aromatic) interaction between halogenated tubercidin ligands with Haspin. Consistent
with previous theoretical finding, the site specificity of the XB binding over the ortho-carbon is
identified in all cases. A systematic increase of the interaction energy down Group 17, based on both
quantum chemical and MD results, supports the important role of halogen bonding in this series of
inhibitors. The observed trend is consistent with the experimental observation of the trend of activity
within the halogenated tubercidin ligands (F < Cl < Br < I). Furthermore, non-covalent interaction
(NCI) plots show that cooperative non-covalent interactions, namely, hydrogen and halogen bonds,
contribute to the binding of tubercidin ligands toward Haspin. The understanding of the role of
halogen bonding interaction in the ligand–protein complexes may shed light on rational design of
potent ligands in the future.

Keywords: halogen bond; noncovalent interaction; molecular dynamics simulation; density
functional theory (DFT); drug–ligand interaction

1. Introduction

Haspin, an atypical serine/threonine protein kinase, phosphorylates histone H3 at
‘Thr-3′ during mitosis [1–3]. The mRNA of Haspin was first detected and named cell-specific
gene 2 (GSG2) in 1994, which was subsequently renamed as haploid germ cell-specific
nuclear protein kinase (Haspin) [4]. Significantly different from other protein kinases,
phosphorylation is not required for Haspin to be activated. During mitosis, a docking site
is created for chromosome passenger complex (CPC), which plays a crucial role to prevent
chromosome misalignment [5–11]. In addition to that, it is also involved in centromeric
cohesion and mitotic spindle stability, making it a potential target for cancer therapy [12–15].
Human Haspin consists of 798 amino acids. The N-terminal part is a less conserved
regulatory domain, while the C-terminal is a well-conserved catalytic kinase domain [16,17].
Recently, Chaikuad, Knapp and co-workers [18] identified 5-iodotubercidin (5-iTU), an
adenosine derivative, as a potent Haspin inhibitor in vitro, showing the self-renewal and
differentiation effect of mouse embryonic stem cells (ESCs) [19–21]. Figure 1a [18] shows the
noncovalent interactions between tubercidin and Haspin key residues, including Gly491,
Val498, Phe605, Glu606, Phe607, Gly608 and Asp611. 5-iTU inhibits Haspin with an IC50
ranged between 5 and9 nM [18,22–24]. The authors identified that potency and slow
dissociation were increased with the increasing halogen size of 5-iTU derivatives (F < Cl <
Br < I) (Figure 1b), which suggests the presence of the halogen bonding, specifically the
halogen–aromatic π interactions.
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shown to be useful to optimize ADMET properties and prolong the lifetime of the drug 
[28,29]. For protein–ligand interactions, halogen bonds can be formed between a halogen-
ated ligand and accessible side chain groups, such as hydroxyls, carboxylates, sulfurs, nitro-
gen and π systems [30–32]. 

Based on an updated search on the Cambridge Crystallographic Database (CSD), we 
showed that π-type XB represents the majority (66%) of XB contacts identified [33]. For 
the aromatic type of XB acceptors, we observed a strong preference (95%) of XB binding 
towards the rim (i.e., over-bond or over-atom) of an aromatic ring, not towards the cen-
troid. Quantum chemical studies of Cl2 and Br2 XB complexes of 14 polycyclic aromatic 
compounds, including aromatic amino acids, confirmed the observed rim specificity [33]. 
Intriguingly, the site specificity of the XB binding sites is identified in all cases. The au-
thors demonstrated that the simple frontier orbital interaction readily rationalizes the rim 
and site specificities of XB involving aromatic XB-acceptors. In particular, the molecular 
orbital theory provides a proper description of the important charge transfer contribution 
in XB formation, supported by various energy decomposition analyses [33,34]. These the-
oretical studies demonstrate the prevalent role of π-type (particularly aromatic-π) XB ac-
ceptors in halogen bonded systems. 

Non-covalent interactions play an important role in drug design. As one of the key 
noncovalent interactions, halogen bonding could contribute significantly to the ligand 
binding affinity and biological properties. In the present paper, we employed computa-
tional chemistry methods, both molecular dynamics (MD) simulations and quantum 
chemical calculations, to study the ligand–protein interaction between halogenated tu-
bercidin derivatives and Haspin. Specifically, we investigated the role of the halogen aro-
matic π bond in the drug–protein binding. 

2. Computational Methods 
In this paper, Molecular Operating Environment (MOE) software and Amber14:EHT 
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Figure 1. (a) Interaction site of tubercidin inhibitors with Haspin key residues (PDB 6G35).
(b) Molecular structures of halogenated tubercidin derivatives.

Halogen bonding (XB) [25], driven by anisotropic charge distributions along the
extension of the C–X bonds, is quantum-chemical in origin, with an equatorial ring of
negative charge and a hind region of positive charge, termed as the σ-hole [26,27]. Halogens
are shown to be useful to optimize ADMET properties and prolong the lifetime of the
drug [28,29]. For protein–ligand interactions, halogen bonds can be formed between a
halogenated ligand and accessible side chain groups, such as hydroxyls, carboxylates,
sulfurs, nitrogen and π systems [30–32].

Based on an updated search on the Cambridge Crystallographic Database (CSD),
we showed that π-type XB represents the majority (66%) of XB contacts identified [33].
For the aromatic type of XB acceptors, we observed a strong preference (95%) of XB
binding towards the rim (i.e., over-bond or over-atom) of an aromatic ring, not towards the
centroid. Quantum chemical studies of Cl2 and Br2 XB complexes of 14 polycyclic aromatic
compounds, including aromatic amino acids, confirmed the observed rim specificity [33].
Intriguingly, the site specificity of the XB binding sites is identified in all cases. The authors
demonstrated that the simple frontier orbital interaction readily rationalizes the rim and
site specificities of XB involving aromatic XB-acceptors. In particular, the molecular orbital
theory provides a proper description of the important charge transfer contribution in XB
formation, supported by various energy decomposition analyses [33,34]. These theoretical
studies demonstrate the prevalent role of π-type (particularly aromatic-π) XB acceptors in
halogen bonded systems.

Non-covalent interactions play an important role in drug design. As one of the key
noncovalent interactions, halogen bonding could contribute significantly to the ligand
binding affinity and biological properties. In the present paper, we employed compu-
tational chemistry methods, both molecular dynamics (MD) simulations and quantum
chemical calculations, to study the ligand–protein interaction between halogenated tuber-
cidin derivatives and Haspin. Specifically, we investigated the role of the halogen aromatic
π bond in the drug–protein binding.

2. Computational Methods

In this paper, Molecular Operating Environment (MOE) software and Amber14:EHT
force field were used for molecular dynamics simulations [35,36]. The Amber14:EHT force
field, which is an all-atomic combination of Extended Hückel Theory, is parameterized for
non-bonded interactions. To benchmark the performance of the Amber14:EHT force field in
prediction of halogen bonding in protein–ligand complexes, thyroid hormone receptor with
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ligands were simulated. The Berendsen thermostat was applied to control the simulation
temperature [37]. The protocol of this MD simulation was started with 100 ps heat from
10 K to 300 K, followed by 1000 ps of NVT and 1000 ps NPT, at 300 K and 100 kPa, followed
by a 100 ps of equilibration under constant temperature (300 K). The production was 8 ns
at 300 K and 100 kPa, with a time step of 0.002 fs.

For the MD simulations of halogenated tubercidin ligands with a Haspin receptor,
the native all-atomic crystal structures, namely, PDB 6G34 (5-iTU), 6G35 (5-brTU), 6G36
(5-clTU) and 6G37 (5-fTU), were taken as starting geometries. The geometries were op-
timized before proceeding to MD simulation. Hydrogen atoms were added, and partial
charges were calculated based on the AMBER14:EHT forcefield. The partial charge for each
atom is stored in the MOE internal atom data structure. Energy minimization was carried
out using a succession of three algorithms, namely, steepest descent, conjugate gradient and
truncated Newton. The protocol of simulation is the same as those of the benchmarking
cases. However, the production run was longer at 25 ns at 300 K and 100 kPa, with a time
step of 0.004 fs. Binding of the free energy of ligand–receptor complex was calculated using
GBVI/WSA method [38] in MOE.

The counterpoise-corrected interaction energies of modeled halogenated ligands-
receptor complexes were calculated using density functional theory (DFT) calculations
based on the ωB97X-D functional [39]. The Haspin receptor was truncated to the key
residue Phe605 only and the halogenated tubercidin ligands were modeled by halogenated
pyrrolo[2,3-d]pyrimidine. The aug-cc-pVTZ basis set is used for non-iodine atoms and
Def2-TZVPD basis set for iodine atom. It is important to note the ωB97X-D functional
benchmarks well against high-level CCSD(T) method in binding energies of XB complexes
involving aromatic acceptors [33,40]. Solvent effect was incorporated using the polarizable
continuum model [41] to account for the non-specific (macroscopic) effect of the protein
dielectric medium. A dielectric constant (ε) of 6 was used as the average dielectric constant
inside protein is relatively low (about 6−7) [42,43]. Visualization of noncovalent interac-
tions in ligand–receptor complexes was carried out using the NCI plot [44,45]. The NCI
isosurfaces were visualized with VMD program [46] using data produced by Multiwfn
program [47]. The strength of the noncovalent interaction is indicated by the color of the
isosurface: green represents attractive while blue denotes strongly attractive. The NCI
analysis has been successfully used to shed light on the presence of halogen bonding in
various chemical systems [48–51].

3. Results and Discussion
3.1. Benchmark of AMBER14EHT Force Field on XB Ligand–Protein Complexes

The performance of Molecular Operating Environment (MOE) was initially bench-
marked with the thyroid hormone receptor complexed with brominated and iodinated
ligands, PDB 2J4A and 1XZX, respectively [52,53]. The halogen bonds were identified
between halogen atoms (Br and I) and Phe272 carbonyl oxygen atoms in the ligand–protein
complexes. The distances for Br···O and I···O XBs in the crystal structures are 3.28 Å and
3.23 Å and the corresponding XB angles for Br···OC and I···OC are 163.6◦ and 165.9◦,
respectively. The MD simulations reproduced the halogen bond interaction presented in
the crystal structures, with XB distances of 3.54 Å and 3.37 Å, and angles of 158.9◦ and
162.5◦, respectively, for the Br···O and I···O halogen bonds (Figure 2). However, the XB
distances were underestimated slightly by 8% and 4%, for the Br and I systems, respectively.
These differences will be used to correct the XB distances in the following MD simulations
of the halogenated tubercidin ligands.



Molecules 2022, 27, 706 4 of 10Molecules 2022, 27, x FOR PEER REVIEW 4 of 10 
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3.2. MD Simulations of Halogenated Tubercidin Ligands with Haspin

Molecular dynamics simulation provides a dynamic model which can provide insight
on ligand-receptor binding by providing information of internal motions and conforma-
tional change. In addition, the relative binding free energy predicted by MD simulation may
provide a quantitative estimate of drug–protein interaction. The key halogen bond interac-
tion is reproduced in the MD simulations based on the AMBER14:EHT force field (Figure 3),
RMSD plot for 5-iTU-haspin MD simulation was provided in supporting information
(Figure S1). Consistent with previous theoretical findings on rim and site specificity [33],
the halogen···π (aromatic) interaction between the halogen atom and the phenyl ring of
gate keeper Phe605 is site specifically at the rim of the phenyl ring and is ortho-directed.
The ortho-directed effect can be rationalized in terms of the charge polarization effect of a
substituted alkyl group, such as toluene [33]. The X···π distances were measure between
the halogen atom and the closest carbon of the phenyl ring of Phe605 are 3.78, 3.68, 3.57
and 3.52 Å, for 5-fTU, 5-clTU, 5-brTU and 5-iTU, respectively (Figure 3). It was observed
that the closest carbon atoms are always the ortho carbons on the aromatic ring of Phe605.

On the basis of the benchmark MD simulations (Section 3.1), the XB distances are
corrected for the significant underestimation. For the I, Br and Cl derivatives, the corrected
X···π interaction distance is less than the sum of van der Waal radii (Table 1). This indicates
the presence of a halogen bond between the halogen atom and the aromatic ring (Phe605).
In addition, trajectory plots of XB distance and angle (Figure 4) show that 5-iTU ligand
stays tightly to the Haspin binding pocket throughout the simulation. This provides further
evidence of a strong halogen bonding interaction between 5-iTU and the receptor. The
estimated binding free energies, based on the GBVI/WSA_dG method are −46.1, −47.9,
−48.6 and −48.9 kcal/mol, for F, Cl, Br and I derivatives, respectively. The GBVI/WSA_dG
method is a forcefield based scoring function, which has been trained on 99 protein–ligand
complexes dataset [54]. The values may be overestimated for ligand–protein complex,
which do not fall in the dataset. However, the trend of binding energies of the halogenated
tubercidin derivatives follows the trend of halogen bonding suggests the role of a halogen
bond, specifically the halogen–aromatic π interaction. It is important to note that in addition
to halogen bonds, various hydrogen bonds, e.g., between ligand NH and Glu606 carbonyl
O atoms (see Figure 3), contribute to the overall binding energy listed in Table 1. Hence,
it is instructive to perform DFT calculations (Section 3.3) to further assess the strength of
halogen bonding quantitatively.
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Figure 3. Key interaction sites of tubercidin inhibitors with Haspin from MD simulations. Interaction
distance (Å) between halogen atom and Cα carbon of Phe605 phenyl ring: (a) 5-fTU, (b) 5-clTU,
(c) 5-brTU and (d) 5-iTU. The geometries were chosen by the shortest distance from the last
50 snapshots for each MD trajectory.

Table 1. Halogen bond distances and binding energies of halogenated tubercidin ligands with Haspin
receptor obtained from MD simulations.

Ligands X···π Closest Carbon
Distance (Å) a

Sum of VDW Radii
(Å) b

Binding Energy
(kcal/moL) c

5-iTu 3.52 (3.38) 3.68 −48.9

5-brTu 3.57 (3.28) 3.55 −48.6

5-clTu 3.68 (3.39) 3.45 −47.9

5-fTu 3.78 (3.48) 3.17 −46.1

(a) Corrected XB distances, in parenthesis, based on benchmark comparison. (b) Van der Waals radii of C, F, Cl, Br
and I are 1.70, 1.47, 1.75, 1.85 and 1.98 Å, respectively. (c) Binding free energy derived from molecular dynamic
simulations.
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3.3. Quantum Chemical Calculations of Halogen Bond Interaction Energies

Careful examination of the X-ray structures of the ligand–receptor complexes reveals
that the XB binding site is over the carbon atom of phenyl ring, not the centroid. Figure 5
depicts the space-filling model of the complex between XB donor 5-iTU and the aromatic
side chain Phe605 and the adjacent Glu606 residue, which clearly indicates that over-
atom binding mode at Cα (Phe605). The shortest halogen(X)–π distances over Cα of the
phenyl ring in the crystal structures are 3.68, 3.59 and 3.52 Å for 5-clTU, 5-brTU and 5-iTU,
respectively (Figure 6). The X···π interaction distance is less than the sum of van der Waal
radii for Br and I derivatives. The rim and site specificity of the X···π (aromatic) interaction
of the ligand–receptor complexes are readily confirmed by the MD simulations (Section 3.2).
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Figure 6. Structures and interaction energies (∆E, kcal/mol) of modeled halogen bonded complexes.
Calculated interaction energies in a dielectric medium of ε = 6 are given in parenthesis.

To further shed light on the role of halogen bonding in this series of halogenated
tubercidin ligands, DFT calculations were performed on truncated modeled systems of
the four halogenated tubercidin derivatives (Figure 6) to quantify the interaction energy
(DE) between the halogen containing moiety (XB donor) and the aromatic XB acceptor.
In these modeled systems, only Phe605 key residue was included in the receptor and the
halogenated tubercidin ligands were modeled by halogenated pyrrolo[2,3-d]pyrimidine.
The moiety containing the NH2 group of tubercidin ligand was not included so that the
hydrogen bond interaction is excluded in the interaction energy calculation. The modeled
structures (see Figure 6) were derived from the crystal structures (6G34, 6G35, 6G36 and
6G37) without further optimization. We observed a systematic increase in the interaction
energy (in vacuo) down Group 17, F (−0.72) < Cl (−1.32) < Br (−1.85) < I (−2.66 kJ/mol)
(Figure 6). To stimulate the protein environment, implicit PCM solvation model was
employed to examine the dielectric effect (ε = 6). The predicted medium effect on the
interaction energies is small (~0.1 kcal/mol) and the trend of interaction energy remains
the same (Figure 6). These trends of interaction energies readily support the importance
role of halogen bonding in this series of inhibitors. The observed trend is consistent with
the experimental observation of the trend of activity within the halogenated tubercidin
ligands [18].
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3.4. Analysis of Noncovalent Interactions

Finally, we employed the noncovalent interaction (NCI) plots to visualize the key
noncovalent interactions between 5-iTU and the Haspin key residues. The noncovalent
interactions index enables the visualization of noncovalent interactions through the trans-
formation of the reduced electron density gradient into the surface, in which the color is
representative of the nature (repulsive or attractive) and strength of the NCI [44,45]. The
NCl plot of 5-iTU (Figure 7) reveals two types of attractive intermolecular NCIs, namely,
the hydrogen and halogen bonds. The dark blue surface between the N–H proton of 5-iTU
and the carbonyl oxygen of Glu606 moiety demonstrates the stronger N–H···O hydrogen
bond. The presence of halogen bond is readily reflected in the green disc between the
iodine atom of 5-iTU and the phenyl ring of Phe605. The existence of XB in the Br and Cl
analogues and the non-existence of XB in the F analogue were also confirmed in the NCI
analysis (see Supporting Information, Figure S2). In summary, cooperative noncovalent
interactions, namely, hydrogen and halogen bonds, occur in the interaction between 5-iTU
and Phe605-Glu606.
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4. Conclusions

Discovered two decades ago, the atypical kinase Haspin plays an essential role in
Histone H3 phosphorylation and as well as in CPC activity regulation, making itself an
attractive target for cancer therapy. On the basis of QC calculations and MD simulations,
we have confirmed the presence of halogen bonding between halogenated tubercidin
ligands (Cl, Br and I) with the Haspin receptor. Site specificity of the halogen···π (aromatic)
interaction over the ortho-carbon (Phe605) is observed in the MD simulations. The trend of
DFT calculated interaction energy (F < Cl < Br < I) supports the important role of halogen
bonding in this series of halogenated inhibitors. With the understanding of the role of
halogen bonding interaction, we hope this type of non-covalent interaction can be further
exploited in the rational design of therapeutic drugs in the future.

Supplementary Materials: The following supporting information can be downloaded, Figure S1.
Root mean square deviation (RMSD) plot of complex between 5-iTU and Haspin; Figure S2. NCI
isosurface between the tubercidin ligand 5-XTU and Haspin key residues (Phe605-Glu606): (a) 5-brTU,
(b) 5-clTU, and (c) 5-fTU.
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