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Tendinopathy is a debilitating musculoskeletal condition which can cause significant pain 
and lead to complete rupture of the tendon, which often requires surgical repair. Due in 
part to the large spectrum of tendon pathologies, these disorders continue to be a clinical 
challenge. Animal models are often used in this field of research as they offer an attractive 
framework to examine the cascade of processes that occur throughout both tendon 
pathology and repair. This review discusses the structural, mechanical, and biological 
changes that occur throughout tendon pathology in animal models, as well as strategies for 
the improvement of tendon healing.
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Introduction
Musculoskeletal pathologies account for
more than half of chronic conditions for pop-
ulations over the age of 50 in developed
countries1 and for 30% to 50% of all sports-
related injuries.2 In 2006, 15.6% of individu-
als surveyed in the United Kingdom reported
the prevalence of a longstanding musculo-
skeletal disorders.3 In the same year in the
United States, musculoskeletal diseases and
injuries resulted in direct healthcare costs and
lost wages adding up to $950 billion.1 Pathol-
ogies of the tendon, or tendinopathies,
account for a substantial portion of musculo-
skeletal disorders. Their severity ranges from
transient pain and inflammation, to chronic
conditions involving partial or total ruptures
of the tendon. 

Tendons are soft tissues that transfer forces
created by muscle to bones. Understanding
the basics of mechanical function and struc-
ture of a healthy tendon is essential to re-
establishing these attributes in the injured
tendon. Damage to tendons often results in
pain that impairs a person’s ability to move in
a smooth and coordinated manner. These
changes have a cascading effect, leading to
altered joint-loading patterns, which can ulti-
mately result in mechanical degradation of
joint integrity.4

A healthy mature tendon consists of a hier-
archy of structured collagen intermingled with
tenocytes and embedded in an extracellular

matrix (Fig. 1).5 At the macroscopic scale
(1 mm to 10 mm), a tendon consists of bun-
dles of fascicles that are covered by connective
tissues known as the epitenon and endo-
tenon, respectively. These connective tissues
contain the neurovascular structures supply-
ing the tendon. Tendon fascicles (50 μm to
300 μm) consist of bundles of collagen fibres
with tenocytes between fascicles. The next
level of tendon structure consists of parallel
collagen fibrils (50 nm to 500 nm) that have a
‘crimped’ appearance in the absence of tensile
load directed along the length of the tissue. At
the smallest levels are microfibrils and tropo-
collagen molecules, which are around 1.5 nm
in diameter.

Tendinopathy can be identified with a vari-
ety of assays. Through histology, tendinopathy
can be identified by some or all of these char-
acteristics: small tears and disorganisation of
the collagen fibres, changes in cell number
and shape, variations in vascularity, and vary-
ing glycosaminoglycan levels.6 Biochemical
tests can also identify tendinopathy by identi-
fying the regulation of matrix metalloprotein-
ases and their inhibitors.7 Tendinopathy also
leads to altered mechanical properties prior to
tissue failure.8 Due in part to the large spec-
trum of tendon pathologies, tendinopathic
disorders continue to be a challenge to
address clinically. The efficacious and long-
lasting repair of tendons continues to chal-
lenge surgeons. For example, poor surgical
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outcomes and re-tear rates of large rotator cuff tears have
been reported to be between 76% and 94%.9,10 

Animal models offer an attractive framework to investi-
gate the etiology of tendinopathy. Unlike human tissue,
which only can be examined during end-stage chronic
pathology, animal models provide the opportunity to
obtain tissue during all stages of tendinopathy. Addition-
ally, animal models provide the ability to reproduce con-
sistent and repeatable injuries that can be treated in a
controlled and quantifiable manner and also allow the
evaluation of invasive treatments and assessments that
would be unethical with human subjects. Another
unique advantage of animal models is the capability of
modifying the genome, particularly in the murine model.
This technology allows for comparison of tendon proper-
ties in mice with and without the ability to express a par-
ticular gene globally, in a particular tissue, or at a
particular time. For example, Scleraxis-knockout mice
demonstrate an inferior ability to generate healthy ten-
dons at birth compared with controls, suggesting the
important role of this molecule in tendon develop-
ment.11-13 Similar studies have been conducted to investi-
gate the role of decorin (DCN), byglycan (BGN), mohawk
(MKX), collagen V (COL V), collagen XI (COL XI), interleu-
kin-4 (IL-4) and interleukin-6 (IL-6) to name a few.14-21 

However, animal models of tendinopathy cannot truly
replicate the human condition. Many lab animals are
quadrupeds and subject their tendons to different magni-
tudes of load than their human counterparts, making it
difficult to replicate the pathology seen clinically. Addi-
tionally, molecular differences between animals and
humans further confound the ability to make direct com-
parisons between species. For example, the rat rotator
cuff model does not fully represent the anatomy, move-
ment kinematics, or kinetics that exist in the human
shoulder22 and rodents do not possess a homologue of
the human MMP1 gene.23 Despite these limitations, the
rat model is still widely used, as it is considered a good

choice given the practical considerations.22 Overall, it is
important to understand that while translational research
is the goal, animal models allow researchers to under-
stand cellular and tissue-level principles in the context of
a living organism.24,25 

This manuscript will review and evaluate animal mod-
els that have been developed to understand the aetiology
and pathology of tendinopathy as well as some of their
translational implications. To compile the list of the most
relevant literature, the search term ‘tendon animal
model’ was used in PubMed (1525 articles), in order to
prevent inadvertent exclusion of articles of interest. These
were then restricted to those from the last three years
(423 articles). The three-year window of time was
selected as our primary goal in order to provide a sum-
mary of the most recent literature. We excluded articles
that did not use animal models and those that focused on
ligaments. A small number of often referenced and highly
regarded previous publications were included. Several
review articles or book chapters were also included
because they provide comprehensive overviews prior to
the most recent literature, which is the focus of this arti-
cle. This review is organised according to the four major
tendon groups that are commonly studied with animal
models: rotator cuff; flexor; achilles and patellar tendons. 

Rotator cuff
Rotator cuff tendon tears are common shoulder injuries
that often require surgical repair. Despite the advanced
approaches to rotator cuff repairs and post-surgical reha-
bilitation, the rate of both failures and re-tears have been
estimated to be as high as between 76% and 94%.9,10 Ani-
mal models have been used extensively to investigate rota-
tor cuff tendon repair, and a careful examination of over
30 species of animal concluded that the rat shoulder pos-
sesses an anatomic architecture that most resembles the
human shoulder.22 (Fig. 2) For this reason, the rat has been
the most commonly used animal model in rotator cuff
research, with more than 100 full-length, peer-reviewed
publications to date. Nevertheless, a variety of other valu-
able animal models also continue to be used to replicate
aspects of rotator cuff injury and repair, including
murine,26-28 rabbit,29,30 ovine,31-37 canine,38,39 bovine,40-43

and primate.44,45

Because of the high failure rates of rotator cuff repairs,
the methods and materials employed in the surgical
repair of rotator cuff tears continues to be an active field
of research. Studies in this area often use in vitro ovine or
bovine models, and focus on surgical variables during
repair such as type of suture material41; number of
sutures or rows of suture29,32-39,42; type of knot36,37,42 and
type and/or number of anchors37,42,43 used in the repair.
Several of these studies indicate that knot slipping may be
the cause of repair failures, as this phenomenon occurs at
substantially lower loads than anchor pull-out.36,43

Additionally, it has been suggested that increases in the

Fig. 1

Schematic representation of the hierarchical structure of a tendon. Reprinted
from Killian ML, Cavinatto L, Galatz LM, Thomopoulos S. The role of mecha-
nobiology in tendon healing. J Shoulder Elbow Surg 2012;21:228-2375 with
permission from Elsevier.
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number of stitches used during the repair is the determin-
ing factor in the failure load.32 On the other hand, it has
been suggested that the contact area and failure strength
is dependent upon the number of rows used in the
repair.33,35,37 In general, although each study makes a
compelling argument for the preferred protocol, there is
still no clear consensus on the best materials and meth-
ods to employ. 

The rat model is used to investigate rotator cuff
pathology in animals and to better understand the cas-
cade of biological processes that occur in the shoulder
joint after a rotator cuff tear. To create a model, the most
common practice is a surgical transection of one or sev-
eral tendons in the shoulder.46-49 To replicate the chronic
effects of tendinopathy and rotator cuff tears more
closely, a tendinopathic condition can be created by
overuse, in which rats are run on downward-sloping
treadmills to impose eccentric forces on the tendon.50

Alternatively, a combination of overuse followed by
acute injury has also been used to model rotator cuff
tendinopathy.51,52 Use of these paradigms has led to the
conclusion that damage to rotator cuff tendons leads to
an increase in atrophy and/or fatty infiltration of the
muscle.46-48 It has also been discovered that acute rup-
ture of the tendon leads to decreased regulation of the
signaling pathway that maintains muscle mass in
response to mechanical loading (Akt/mTOR), but dener-
vation without transection of the tendon leads to upreg-
ulation in this pathway.47 Interestingly, rotator cuff tears
can have a direct effect on neighbouring intact tendons,
such as the biceps, and can include decreased collagen
organisation, more rounded cell shape, increased
Aggrecan expression and decreased modulus.53 Finally,
it has also been shown that the glenoid cartilage is also
altered by a rotator cuff tear, as significant decreases in
mechanical properties and thickness have been mea-
sured regionally in the glenoid.54

To date, the synergistic effects of repair techniques and
various rehabilitative protocols on rotator cuff healing is
still a debated topic. Current research has not clearly eluci-
dated the role of mechanical loading in the pathological
shoulder joint, but also the benefits/drawbacks of post-
operative immobilisation continue to be confounding.5

Methods such as casting immobilisation,49,55 botulinum
toxin injections,56,57 and overuse activity51,52 have been
used to alter the mechanical loads imparted upon the
shoulder joint before and after surgical intervention.
Results suggest that pre-operative immobilisation may
have beneficial effects on long-term healing because this
approach has resulted in improved cellularity and collagen
organisation, while simultaneously increasing the Colla-
gen I:Collagen III ratio, which is indicative of the end stages
of tendon healing.57 Decreased post-operative loading has
been shown to result in increased organisation of collagen,
decreased cellularity and a more elongated cell shape.49

While the benefit of post-operative immobilisation of the
shoulder seems to be beneficial, the effectiveness of such a
strategy is limited to discrete time frames.55 It has also been
suggested that myogenic and adipogenic genes are influ-
enced by mechanical loads, as they are upregulated in
muscle when unloaded, but tendon-specific genes are
more influenced by the presence of the injury.57 Overuse
of the shoulder following a rotator cuff repair also causes
significant changes in transcriptional regulation of chon-
drogenic genes, while also resulting in deleterious changes
to the mechanical integrity of the tendons and cartilage
within the shoulder. Surprisingly, joint function is not
affected by these changes.51,52

Animal systems have been used routinely to investigate
the use of potential regenerative agents (i.e., growth fac-
tors,40,58 platelet-rich plasma (PRP),30,59,60 hormones,61,62

bone morphogenetic protein,63 autologous cell seeding,64

and stem cells65-68)while the design, implementation, and
translational viability of engineered tissue constructs have

Fig. 2

Photographs and schematic representations showing the similiarities of human and rat
shoulders from a lateral view. In both anatomies, the supraspinatus tendon passes through
the enclosed arch of the acromion. Reprinted from Soslowsky LJ, Carpenter JE, DeBano CM,
Banerji I, Moalli MR. Development and use of an animal model for investigations on rotator
cuff disease. J Shoulder Elbow Surg 1996;5:383-9222 with permission from Elsevier.
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been concurrently developed. These studies simulated an
acute rupture of the rotator cuff tendon(s) of rats,69 rab-
bits,30 canines,39 or primates45 and regenerative agent(s)
were subsequently applied directly to the injury site,30

injected into the joint space,59 delivered via subcutane-
ous injection,61 osmotic pump,58 or scaffolds/
grafts.40,45,60,63,64,70 Scaffold designs are not limited to the
purpose of delivering agents in a controlled manner, as
some have also been proven to improve mechanical
strength at the repair site39 and remodel to tendon-like
architecture while integrating bone and tendon.45 The
scope of this review does not permit a full exploration of
the effects of all of the regenerative agents used in tendon
research, so we will only briefly review a few studies exam-
ining the use of PRP and stem cells, which have recently
garnered considerable interest as potential therapy modal-
ities. Research investigating the effects of PRP has yielded
mixed results. In some cases, it has been shown that the
addition of PRP has decreased inflammation, improved
tendon thickness and continuity, and increased biome-
chanical strength,30,59 but other studies have shown that
the presence of PRP did not have any substantial phsyio-
logical effects and the failure load of rotator cuff repairs
was not altered by PRP augmentation.60 The healing
potential of mesenchymal and adipose-derived stem cells
has recently been tested with rabbit and rat models65-68,70

and results of such experiments have provided more con-
sistent results than PRP-based studies. Results suggest that
stem cell-based therapeutic modalities have the potential
to decrease fatty infiltration after cuff repair,66 offer
improvement in tendon-to-bone healing,65,70 increase
generation of collagen I67,68 and improve the tendon’s
mechanical properties.68 For a more thorough review of
the use of engineered regenerative agents in the rotator
cuff, the reader is referred to Isaac et al.71

Achilles
The Achilles tendon is the largest and strongest tendon in
the human body, routinely experiencing loads up to
12.5 times the weight of the individual.72 This, along with
other factors, likely contributes to substantial Achilles ten-
don pathology and highlights the need for both surgical
and conservative Achilles tendon research.

Rats have been used frequently to model Achilles tendon
rupture and tendinopathy, using primarily one of two
methods of inducing injury; mechanical or chemical.
Mechanical induction of tendinopathy has proven to be
dependent on activity level. For example, rats that ran on a
10° incline at 17 m/min to 20 m/min for 60 min/day
showed only slight adaptive changes in their Achilles ten-
dons,73 however, a slight increase in speed and duration
resulted in signs of tendinosis such as fibrillar mirotearing,
hypercellularity and increased GAG deposition.74 Alterna-
tively, tendinopathy has been generated by having rats run
in a bipedal position,75 or with repetitive electrically-
induced eccentric contraction of the calf.76 Alternatively,

chemically-induced models of tendinopathy are attractive
because they require less time and resources. Although the
collagenase-induced Achilles tendinopathy model has been
the most widely used approach, several new methods have
recently been proposed. For example, after an intratendi-
nous injection of TGF-β1, Achilles tendons show both atten-
uated material properties and a gene expression profile
consistent with chronic tendinopathy, with a reverse seen
to both changes after exercise.77 Another novel approach to
chemical induction of tendinopathy consists of using injec-
tions of Substance P, a well-known neuropeptide and mod-
ulator of pain that encourages tenocyte proliferation and
neovascularisation. Although the presence of Substance P
seems like it would be beneficial to tendon healing, it has
been shown that repeated injections of Substance P fol-
lowed by exercise elicits an exacerbated inflammation-
repair response, which leads to a tendinopathic condi-
tion.78 The role of Subtance P in tendinopathy is therefore
particularly intriguing as it can be effectively added or
blocked,78 potentially leading to clinical applications. 

Similar to the rotator cuff, animal models have been
used extensively to improve Achilles tendon repair meth-
ods through improvements in material and techniques.
For example, impregnating a suture with Butyric acid has
shown improved biomechanical and histological proper-
ties in a rabbit model,79 while coating a suture with mes-
enchymal stem cells appears to improve repair strength in
the period when a repair is typically the weakest (7 to
10 days).80 Demonstrating the importance of suture tech-
nique, a bovine model showed that the triple-strand tech-
nique provided greater mean peak load to failure, and
greater resistance to gapping when compared with Dres-
den, Krackow, and modified oblique Dresden techniques
(Fig. 3).81 This result likely reiterates the well-known tenet

Fig. 3

Diagram showing the suture configurations of the a) Dres-
den, b) Krackow, c) triple and d) oblique technique (figure
modified from original with permission).81
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of tendon repair – repair strength correlates to the num-
ber of sutures crossing the repair site. 

There is a variety of rehabilitation protocols for Achilles
tendon repair, and animal models have been valuable in
defining areas for human study. Examination of the bio-
logical processes that occur in the rabbit under various
rehabilitation protocols has led to the understanding that
protein expression profiles in the Achilles tendon are sig-
nificantly affected by early movement when compared
with immobilisation.82 Moreover, the effect of a single
loading episode on healing Achilles tendon results in sig-
nificant, yet short-lived changes in the expression of
inflammatory, healing and coagulation markers in a rat
model.83 In addition, it appears that the magnitude of the
loading episode after repair may play a role in determin-
ing tissue quality and callus formation, which define the
mechanical integrity of the healing Achilles tendon.84

These studies suggest that frequent, short, early loading
after an Achilles tendon injury is important in improving
and expediting tendon healing.85 

The use of imaging modalities varies depending on the
pathology, but the superficial location of the Achilles ten-
don makes it a particularly attractive tendon for examina-
tion with ultrasound. Ultrasound has the potential to be a
cost-effective, non-invasive method of determining
degree and location of Achilles tendon disease. Sonoelas-
tography is an ultrasound based imagine technique
which has demonstrated an ability to track tendon elastic-
ity - a possible surrogate for healing.86 As another exam-
ple, chronic local hypervascularity has been linked to the
pain associated with tendinopathy, and contrast-
enhanced sonography is proving efficacious in grading
vascularity after induced tendinopathy.87

Tissue engineering approaches using the rabbit model
have been commonly used to address sequelae of Achilles
pathology such as adhesions88 and tendon defects.89 For
example, a recently developed electrospun silk wrap has
been shown to be effective in providing significant reduc-
tion in adhesion formation in rabbit Achilles tendons,
while also improving the biomechanical properties of the
repaired tendon.88 Conversely, a new equine collagen
membrane has shown histological signs of integrating
into a rabbit Achilles tendon defect; however, the graft’s
effects on resultant material properties or healing
remains unknown.89 As Achilles tendon ruptures appear
to be on the rise,90,91 this work could prove instrumental
in improving both the strength and quality of operative
tendon repair.

A more thorough understanding of the biological inter-
play between tendinopathy and other disease states
remains elusive. For example, the effects of hypercholes-
terolemia on the rotator cuff and patellar tendons have
been studied in several animals44,92,93 In regards to the
Achilles tendon, a rat model has been used to elucidate
the deleterious effect of diabetes on tendons and tendi-
nopathy. In a diabetic state, activity improves material

properties of the Achilles tendon,94 while that same state
attenuates expression of several healing markers after an
acute injury.95 This work points to the importance of
moderate exercise in diabetic patients, while also sug-
gesting that the healing response of tendons in such
patients is indeed impaired. 

Flexor
The full recovery of digit function following a flexor ten-
don injury remains a clinical challenge, with suboptimal
repair rates ranging up to 31%.96,97 The most common
complication is caused by deformation or gapping
between tendon stumps, which leads to decreased
mechanical properties and increased potential for rup-
ture of the repaired tendon.98 Even if gapping does not
occur, curbing the formation of peritendinous adhesions
following repair remains difficult. These adhesions inhibit
the smooth gliding of the tendon past surrounding tis-
sues, which leads to reduced mobility, pain, and the
inability to perform activities of daily living.99 In the past,
the canine model was relied upon to perform research on
flexor tendons.98-100 More recently, a wider variety of ani-
mals have been used to characterise flexor tendon injury
and repair, including chicken,101 canine,102-104 ovine,105

porcine,106,107 and rabbit105-110 models. The best choice of
model system will depend on the essential characteristics
that must be mimicked for a particular research question.

Many flexor tendon studies have focused on improving
the fixation methods and rehabilitation protocols used to
prevent gapping and subsequent formation of an adhe-
sion. Recently, an ex vivo uniaxial test demonstrated that
the Yotsumoto-Dona technique, a side-locking loop
structure paired with a horizontal mattress peripheral
suture, performed significantly better in 2 mm gap force,
yield force, ultimate force, stiffness, energy to yield, and
energy to failure tests when compared with the often-
used modified Kessler technique, which consists of a
grasping type structure, paired with a running peripheral
suture.106 In a separate ex vivo study, pulley-wrapped ten-
sion was applied to the tendon to better simulate gliding
over bony surfaces.107 In this case, the interrupted hori-
zontal mattress technique proved to be significantly more
effective in regards to ultimate tensile strength and resis-
tance to gapping. An in vivo approach to this problem
provides a more comprehensive perspective on this issue,
as biological healing factors and cyclic loading are taken
into account. It was recently demonstrated that extend-
ing the core suture purchase and deepening the epitendi-
nous suture repair was critical in improving repairs, as this
strategy significantly reduced the incidence of gap forma-
tion and tendon rupture in a canine model. As far as reha-
bilitation protocols are concerned, several studies have
suggested that early active mobilisation leads to more
effective tendon gliding, less adhesion formation and
more joint mobility108,109; however, this type of approach
may lead to unacceptably high rupture rates.99 It has
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been suggested more recently that a well-controlled
rehabilitation protocol may result in a somewhat limited
range of movement, but this measured approach to
remobilisation lowered the risk of rupture, perhaps mak-
ing this option preferable.101

Similar to other tendons, the role of regenerative
agents such as BMP-2, MSCs, and PRP have been exam-
ined to determine if they have the ability to augment scar
formation in flexor tendon, but these approaches have
been met with very limited success.103,105,110 On the other
hand, although it is not typically used in the treatment of
other tendons, the paired use of sodium hyaluronate
(NaH) and human recombinant basic fibroblast growth
factor has recently provided intriguing results regarding
repair of a flexor tendon. Continued subcutaneous injec-
tions of these agents on a rabbit flexor repair site
significantly reduced tendon diameter, increased ultimate
tensile strength and yield strain, enhanced the matura-
tion rate of the tenoblasts, and increased the diameter
and density of the collagen fibrils.111-113 Additionally, a
one-time direct application of NaH with Lactoferrin Pep-
tide (PXL01) dissolved into solution curbed the need for
repeated subcutaneous injections, and significantly
increased the mobility of the rabbit paw, while having no
adverse effects on the mechanical strength of the ten-
don.114 

The use of tissue engineering applications has been
investigated in flexor tendons, as the release of growth
agents over extended periods of time may be beneficial in
preventing gapping and rupture. Soft or absorbable con-
structs, such as calcium phosphate matrices, collagen
sponges, and bioabsorbable membranes, have been
developed to introduce growth factors to repaired flexor
tendon sites.103,115 Such approaches have provided lim-
ited positive results, but can be easily adapted to accom-
modate different choices of regenerative agents. Rigid
scaffolds offer a similar ability to reliably deliver growth
factors and cells in a controlled manner, but they are also
able to maintain a rigid form suitable for tendon repair

surgery and long-term mechanical strength to prevent
gapping (Fig. 4).104 Overall, these approaches are still in
developmental phases, but the use of such technologies
is promising.

Patella
The human patellar tendon is also susceptible to tendi-
nopathy. However, the patellar tendon is of particular
interest not only because it regularly experiences high-
force cyclical loading, but also because portions of the
tendon are commonly harvested during anterior cruciate
ligament repairs. The patellar tendon is amenable to
study with animal models because the tendon readily
undergoes experimental cyclical loading, is easily dis-
sected, and portions of the tendon are easily harvested to
replicate a clinically relevant injury. 

Because of the emerging evidence pointing to the
importance of tendon fatigue as a precursor to tendino-
pathy and possibly tendon rupture, the patellar tendon of
rats and mice has been used in the development of an
in vivo fatigue model116,117 (Fig. 5). Results from this model
have suggested that the initial accumulation of sub-
rupture damage caused by in vivo cyclic loading leads to
subsequent changes in mechanical function.116 Further-
more, like in the Achilles tendon, the upregulation of genes
such as collagen I (Col I), collagen XII (Col XII), matrix
metalloproteinase 2 (MMP2), and tissue inhibitor of

Fig. 4

Schematic and photographic representations of the surgical pro-
tocol used to secure a mechanically rigid scaffold into the core of
a flexor tendon. Reprinted from Manning CN, Schwartz AG, Liu W,
et al. Controlled delivery of mesenchymal stem cells and growth
factors using a nanofiber scaffold for tendon repair. Acta Biomater
2013;9:6905-14104 with permission from Elsevier.

Fig. 5

Image demonstrating the experimental set-up for in vivo fatigue testing of the
patellar tendon. This allowed in vivo tendon loading without interfering with
the movement of the tendon. Reprinted from Fung DT, Wang VM, Andarawis-
Puri N, et al. Early response to tendon fatigue damage accumulation in a novel
in vivo model. J Biomech 2010;43:274-9117 with permission from Elsevier.
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metalloproteinase (TIMP3) shows an initially adaptive
response to cyclic loading that is attenuated after a certain
amount of damage.118 However, while a fatigue model
evokes a different molecular response than an acute rup-
ture, structural restoration of an overly fatigued tendon
may never be complete.117,119 This points to the impor-
tance of developing better tools for recognising tendon
fatigue in the clinical setting, as irreversible tendon dam-
age may occur earlier than the consensus suggests.

Adult tendons do not heal through a regenerative pro-
cess, but rather a scarring process120; therefore, under-
standing the biological underpinnings of tendon healing
has become a significant vein of research, commonly
employing the patellar tendon as a model. In comparison
with tendinopathy of the patellar tendon, acute defects of
the patellar tendon are commonly iatrogenic when the
tendon is harvested for the purposes of anterior cruciate
ligament reconstruction surgery. Therefore, those study-
ing the reasons for inefficient tendon healing have
employed a similar approach, where the central third of
the patellar tendon is removed, known as the ‘window
defect’ model. As sometimes observed in patients,121 rat
tendons exhibit ectopic chondrogenesis and ossification
following this injury as well, while expression of biglycan
increases and levels of aggrecan and decorin decrease.122

Although the function of these proteoglycans is not fully
understood, these changes may, in part, explain the poor
tissue quality that is often observed after this injury.
Indeed, despite some histological and molecular indica-
tions of healing, ultimate load and stiffness only reach
48% and 63% of baseline respectively.123 Thus, efforts
have been made to recoup the mechanical deficiencies
that occur as a result of harvest of the patellar tendon. For
example, after the introduction of tendon-derived stem
cells to a window defect in a rat model, tendons exhibited
increases in collagen production and improvement in
resultant alignment and material properties.124 

Physical therapy is currently a mainstay of non-operative
treatment for patellar tendinopathy. Specifically, eccentric
training has shown significant increases in failure load, fail-
ure stress, and vascularisation, while concentric training
only significantly improved failure stress.125 Nevertheless,
alternatives to physical therapy have recently been studied
as viable options for tendon rehabilitation. Laser, light
emitting diode, radiofrequency ablation, hyperbaric oxy-
gen and autologous tenocyte therapies have all shown
some promise with respect to improving the mechanical or
histological properties of healing tendon,126-128 while the
beneficial effects of high-energy extracorporeal shockwave
therapy have not shown as much benefit in tendon repair as
in the treatment of other musculoskeletal disorders.129-131 In
general, the goal is to improve the quality of tendon tissue
after injury and allow earlier and more aggressive rehabili-
tation protocols to speed recovery.

The effects of age on tendon mechanics and metabo-
lism continue to be elucidated through animal models.

The Achilles tendon has been used to understand better
prenatal tendon properties, which have the ability to
undergo scarless repair, forming a structurally uninjured
tendon. Not surprisingly, as a neonatal mouse Achilles
tendon matures, collagen content increases, fibril diame-
ter increases, and the tendon becomes stronger.132 On
the other end of the age spectrum, a study of both the
murine patellar tendon and in vivo rat Achilles tendon has
suggested that an aged tendon has inferior mechanical
and histological properties.14 Specifically, it is the mal-
adaptive changes in passive biomechanical properties of
an aged tendon, such as increased stiffness, increased
peak tension and increased estimated modulus that are
most interesting, as they are postulated to be part of the
reason why the incidence of Achilles tendon ruptures is
more common in middle-age. Thus, the ability to predict
the viscoelastic behavior of a tendon could have clinical
applications. This highlights the importance of a recently
developed empirical model which uses in vivo measure-
ments to accurately predict the viscoelastic properties of
damaged or aged murine patellar tendons based on a sin-
gle stress measurement.133

Conclusion
Tendinopathy can result in significant pain and disability,
which has driven the need for research dedicated to ten-
don repair and healing. In comparison to other fields, ten-
don research is still in its infancy, and the complex nature
of the tissue continues to provide intriguing answers to
pointed research questions. This review discusses the role
of animal models in regards to the current understanding
of the mechanical, structural and biological changes that
occur during tendon repair and healing. The unique ben-
efits of animal modeling techniques will continue to be
used in the future to promote experimental endeavours
in this field of study. Through the use of such models, it is
expected that translation to the human tendon will be
successful and that therapeutics, diagnostics and clinical
outcomes will continue to improve.
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