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Abstract: Introduction: White matter hyperintensities (WMH) indicate white matter brain lesions in
magnetic resonance imaging (MRI), which can be used as a marker for brain aging and cerebrovas-
cular and neurodegenerative disorders. Twin studies revealed substantial but not uniform WMH
heritability in elderly twins. The objective of our study was to investigate the genetic and environ-
mental components of WMH, as well as their importance in a healthy twin population, utilizing 3T
MRI scanners in a middle-aged twin population. Methods: Brain MRI was performed on 120 healthy
adult twins from the Hungarian Twin Registry on a 3T scanner (86 monozygotic, MZ and 34 dizygotic,
DZ twins; median age 50 ± 26.5 years, 72.5% female and 27.5% male). The count of WMH on FLAIR
images was calculated using an automated volumetry pipeline (volBrain) and human processing. The
age- and sex-adjusted MZ and DZ intra-pair correlations were determined and the total variance was
decomposed into genetic, shared and unique environmental components using structural equation
modeling. Results: Age and sex-adjusted MZ intrapair correlations were higher than DZ correlations,
indicating moderate genetic influence in each lesion (rMZ = 0.466, rDZ = −0.025 for total count;
rMZ = 0.482, rDZ = 0.093 for deep white matter count; rMZ = 0.739, rDZ = 0.39 for infratentorial
count; rMZ = 0.573, rDZ = 0.372 for cerebellar count and rMZ = 0.473, rDZ = 0.19 for periventricular
count), indicating a moderate heritability (A = 40.3%, A = 45%, A = 72.7% and A = 55.5%and 47.2%,
respectively). The rest of the variance was influenced by unique environmental effects (E between
27.3% and 59.7%, respectively). Conclusions: The number of WMH lesions is moderately influenced
by genetic effects, particularly in the infratentorial region in middle-aged twins. These results suggest
that the distribution of WMH in various brain regions is heterogeneous.

Keywords: white matter hyperintensities; twins; MRI; heritability; volBrain

1. Introduction

Since Magnetic Resonance Imaging (MRI) became broadly available and clinicians
used it for neurological imaging, the presence of the brain white matter lesions in the form
of white matter hyperintensities (WMH) on fluid-attenuated inversion recovery (FLAIR)
sequences or leukoaraiosis on MRI has become more common. Different studies have
reported different WMH prevalence and incidence due to various imaging techniques
and the target population. Most studies targeted the older population and patients with
neurological disorders such as dementia or a history of stroke. The prevalence of WMH
in the young population (below 45 years old) is 25.9% and mild WMH is present in
most patients (85.5%). The prevalence of WMH was higher in older patients, patients
with a history of CVD and patients with neurological symptoms such as headache and
dizziness [1]. The prevalence of WMH in healthy adults 44–48 years old was 50.9%, with
34.1% WMH in the subcortical regions [2]. Of healthy subjects aged between 60 to 64 years
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old, the prevalence of WMH was 100% in the periventricular region and 96.6% in the
deep white matter regions [3]. Neurodegenerative disorders such as Alzheimer’s disease
frequently occur with cerebrovascular disease in elderly patients. Cerebral small vessel
disease (SVD) is the most prevalent vascular cause of dementia and a major factor in mixed
dementia. Alzheimer’s disease and SVD share similar risk factors, both associated with
cognitive decline and dementia. MRI WMH hyperintensities are one of the important
indicators of SVD, among its other neuroimaging signs [4].

The WMH are quantifiable neurological and radiological markers indicating parenchy-
mal changes in the brain. WMHs can be categorized into focal and multifocal lesions
based on their number and volume. They are divided into four major categories based on
their anatomical location: subcortical, periventricular, deep white matter and infratentorial.
The WMH can demonstrate a broad spectrum of causes, from vascular, inflammatory and
traumatic damage to physiological aging. Although there is a long list of diagnoses of
WMH, according to clinical and pathological data, ischemia is the primary cause of these
lesions. According to histopathological reports, the WMH indicates myelin refraction
with preserving subcortical U fibers, astrogliosis, spongiosis, axonal loss and widened
perivascular spaces [5,6].

The origin of these lesions is predominantly vascular and multiple studies have dis-
covered a strong connection between the prevalence of WMH and vascular disorders [7,8].
Previous research has suggested that axonal loss and demyelination play a role in devel-
oping WMHs, which might result from prolonged ischemia induced by cerebral small
artery disease. According to certain theories, hypoperfusion may be caused by altered
cerebrovascular autoregulation, blood-brain barrier failure, or inflammation [9].

After hypertension, cerebral amyloid angiopathy (CAA) is the second most prevalent
cause of cerebral hemorrhage. Recurrent cerebral bleeding, ischemic strokes and cognitive
deficits have all been linked to it [8]. Studies have shown that the occurrence of WMHs can
also be hereditary [10]. Genetic studies indicate a moderate to high hereditary influence
on the presence of vascular risk factors such as hypertension and hypercholesterolemia.
Still, it is not clear whether there is a correlation between the vascular risk factors and
the presence of WMH or a shared genetic factor influencing both [11].Other studies have
mentioned that environmental factors such as diabetes mellitus (DM) and blood glucose
level, smoking, obesity, trauma, stress and aging play an important role in the development
of WMH [7,12–16].

Identical twins are formed when one egg cell divides in two at a very early stage of
development, while non-identical twins are formed when two fertilized eggs implant in
the womb simultaneously. As a result, monozygotic twins (MZ) share almost all of their
genes, while dizygotic twins (DZ) typically share half of their genes. Furthermore, the
MZ and DZ twins have all of their environmental influences in common but none of their
differences. Twins are unique research subjects since they facilitate distinguishing between
how nature (genetics) and nurture (environment) affect human health. Twin studies have
provided important insights regarding the genetic basis of complex traits [17,18]. Twin
studies provide a great medium to investigate the effect of genetics versus environment
and their proportion in their impact on the WMHs in the brain. Due to the high number of
WMHs in the aged population and their effect, most studies have been carried out on a
geriatric population. Only a few studies investigated the presence of WMHs in a relatively
young or middle aged population.

In this study, we aim to evaluate the genetic components of WMH, using a middle aged
healthy twin population, and the effect of environmental components on them. Using a 3T
MRI scanner instead of a classic 1.5 T and processing the data with an automated volumetry
pipeline provide us with more precision in comparison to the majority of previous studies.
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2. Materials and Methods
2.1. Study Participants

Our study investigated 120 healthy adult asymptomatic Caucasian twins (57 pairs
and 2 triplets) from the Hungarian Twin Registry [19] with no history of cerebrovascular
or neurodegenerative disorders. For statistical purposes, triplets were considered as three
distinct twin pairs. This resulted in a total of 63 twin pairs, 43 of which were MZ pairs
and 20 DZ pairs. Two twin pairs were eliminated from the research due to missing visits,
while another pair was removed due to poor imaging quality. The median age of all
participants was 50 ± 26.5 years and the proportion of female to male participants was
72.5% to 27.5%, respectively. The local Ethical Committee approved the study (Semmelweis
University TUKEB 189−1/2014, amended on 10 October 2016 and 7 December 2018). All
twins that took part signed informed consent. The principles of the Helsinki Declaration
were respected. A seven-part self-reported questionnaire was used to assess the zygosity
categorization [20]. A questionnaire collected information on the participant’s history and
risk factors, such as height, body weight, body mass index (BMI), smoking, hypertension,
hyperlipidemia and diabetes. Former smokers were also included in the smoking group.

Exclusion criteria included immunosuppressive or immunomodulatory medication
in the previous month, chemotherapy in the previous year, major surgery in the last two
months, transfusion of blood or blood products in the previous two months, current
pregnancy, or breastfeeding. Participants with pacemakers, implantable cardioverter-
defibrillators or other implanted devices, magnetic metal foreign bodies, or claustrophobia
were also eliminated. Brain MRI studies were carried out between 2016 and 2021 at the
Semmelweis University Medical Imaging Centre, the Magnetic Resonance Research Centre
(MRKK) in Budapest, Hungary.

2.2. MRI Acquisition

T1W coronal, T2W sagittal, axial trace-weighted diffusion, axial apparent diffusion
coefficient, axial proton density and axial T2W dark fluid (FLAIR) images of the brain
were taken as part of the study. There was no contrast agent used. To detect WMHs in
the current investigation, we employed T1W and T2W dark fluid (FLAIR) images. All
measurements were performed using a Philips Ingenia 3T scanner (Philips Healthcare, Best,
The Netherlands) at the Semmelweis University Medical Imaging Centre, the Magnetic
Resonance Research Centre (MRKK) in Budapest, Hungary and on a Siemens Magnetom
Verio 3 Tesla workstation (Siemens Healthcare GmbH, Erlangen, Germany) at the Borsod
County University Teaching Hospital, Miskolc. The following imaging parameters were
used in the Philips scanner: TE/TR 140/9000 ms, flip angle 88◦, 290 × 336 × 336 matrix,
0.8333 × 0.8333 in-plane resolution, 0.6 mm slice thickness. Twin pairs were always scanned
on the same scanner either on the same day or, in the case of a few twin pairs, within a
few weeks of each other. A single observer carried out all measurements in the study. This
observer was not aware of zygosity or additional clinical information.

2.3. Image Processing

To convert the 3D T1-weighted pictures from DICOM (Digital Imaging and Commu-
nications in Medicine) format to NIfTI (Neuroimaging Informatics Technology Initiative;
http://nifti.nimh.nih.gov/ (accessed on 30 August 2022)) format, we utilized a DCM2NII
converter (http://www.mricro.com, mricron; Chris Rorden, Columbia, SC, USA, accessed
on 19 September 2021). This picture format was used for all future image processing [21].

2.4. WMH Segmentation

We categorized the brain into four regions: periventricular, deep white matter, infraten-
torial and cerebellar; for the periventricular and deep white matter regions, we used the
volBrain pipeline (https://www.volbrain.upv.es, accessed on 20 November 2020). VolBrain
is MRI brain volumetry software that operates automatically and can offer brain structure
volumes without human involvement; it has been developed by José V. Manjón (IBIME,

http://nifti.nimh.nih.gov/
http://www.mricro.com
https://www.volbrain.upv.es
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UPV, Valencia, Spain) and Pierrick Coupé (LaBRI UMR 5800, Université de Bordeaux,
CNRS, Paris, France). VolBrain employs a completely automated pipeline for volumetric
brain analysis based on multi-atlas label fusion technology, which is capable of providing
accurate volumetric information at various levels of detail in a short period of time [22].
WMH segmentation begins with image denoising, followed by inhomogeneity correction,
spatial registration, intensity normalization and intracranial cavity extraction using the
Montreal Neurologic Institute algorithm (MNI). The tissue is then segmented using a
multi-template fusion atlas strategy based on a library created by manually segmenting
50 patients. All voxels that surpass a certain threshold are candidates for a lesion, The
thresholding and voxel processing was carried out automatically by the volBrain program.
Lastly, an automated report is generated, which contains the lesion load, the number
of lesions in each class and screenshots of the processed images [23]. Figures 1 and 2
demonstrate an example of MRI FLAIR sequence segmentation using volBrain.
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Figure 1. FLAIR MRI imaging of 65 years old female monozygotic twins (left column); the right side
column pictures are the segmented version of the FLAIR images. The similarity of the anatomy and
WMH of the cut is visible. According to our analysis, one twin has a total number of 17 WMHs (first
row) and the other pair has a total number of 19 WMHs (second row). The red color represents the
periventricular WMH and the blue and green colors represent the juxtacortical and deep white matter
WMH—image from the Semmelweis University Medical Imaging Centre.

2.5. Statistical Analysis
2.5.1. Descriptive Statistics

The Shapiro-Wilk test was used to determine if continuous variables had a normal
distribution. The means of the variables were compared between MZ and DZ twins using
the independent samples t-test if they were determined to be regularly distributed. The BMI
was one of these factors and was represented as a mean standard deviation (SD). The non-
parametric Mann-Whitney U-test was used to compare variables that were not regularly
distributed. This was applied to participant age, which was reported as the median,
interquartile range (IQR). The Chi-square test was used to compare categorical variables
such as sex, diabetes, smoking, hypertension, hyperlipidemia, chronic obstructive lung
disease (COPD) and thyroid disorders reported as frequencies and percentages. A p-value
of less than 0.05 was regarded as significant. The Statistical Package for the Social Sciences
(SPSS) software was used for all descriptive statistical analyses (International Business
Machines Corporation, IBM Corp. Released 2021. IBM SPSS Statistics for Macintosh,
Version 28.0. Armonk, NY, USA: IBM Corp.).
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Figure 2. FLAIR MRI imaging of 69 years old female dizygotic twins (left column); the right side
column pictures show the segmented version of the FLAIR images. The difference in the anatomy
and number of WMH of the cut is visible in this image. According to our analysis, one twin has a
total number of 24 WMHs (first row) and the other pair has a total number of 33 WMHs (second row).
The red color represents the periventricular WMH and the blue color represents the juxtacortical
WMH—image from the Semmelweis University Medical Imaging Centre.

2.5.2. Heritability Analysis

ACE is a statistical model to assess and analyze a specific phenotype’s genetic and en-
vironmental contribution; using unobserved random variables, the influence of the genome
and exposome may be explained. These variables include additive genetic (A), common
(or shared) environmental (C) and unshared (or unique) environmental (E) components.
The random variables are expected to be mutually independent within a single twin and to
follow a conventional normal distribution within the same twin [24]. For the ACE analysis,
version 2.19.5 of the OpenMx package for structural equations and other statistical model-
ing has been used under version 3.6.3 of the R programming language [25,26]. Common
environmental characteristics allude to twins’ shared family environment, which includes
similar childhood nutrition, parental smoking exposure, air pollution and even sharing a
womb. Non-shared environmental variables, such as smoking behaviors, physical activity,
occupational exposures and distinct diseases, are unique exposures and experiences for
individual twins but not for their siblings [27].

The intra-pair correlations in MZ and DZ twins were compared to derive heritability
estimates. If MZ twins had more significant intra-pair correlations than DZ twins, this sug-
gested a genetic effect. If intra-pair correlations in both MZ and DZ twins were comparable,
the variation was assigned to common environmental variables [28].

The variation was decomposed into additive genetic (A), common environmental
(C) and unique environmental impacts, plus standard error, using univariate quantitative
genetic modeling (E). All models were adjusted for age and gender. Because of confounding
effects, dominant genetic variables (D) and common environmental factors (C) cannot be
computed simultaneously using this approach. As a result, the best-fitting model (ACE)
was used. For variables with minor genetic or common environmental impacts, a reduced
AE or CE model was explored. To compare the models, a Chi-square test was used and
p-values greater than 0.05 showed that there was no difference, supporting the usage of the
more frugal AE or CE model.
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3. Results
3.1. Descriptive Analysis

The median age was 46 and 64 years in the MZ and DZ groups, respectively. There was
no significant difference between the two groups for BMI, smoking, diabetes, hypertension
and hyperlipidemia. However, a significant difference was observed in age (p = 0.03)
between the two groups. Table 1 shows the characteristics of the MZ and DZ twin study
population. Due to the mean age difference in the MZ and DZ twins, we compared models
where age was separately regressed out on MZ and DZ twins. This showed no significant
difference compared to the base models, where regression on age and sex is carried out
simultaneously in the MZ and DZ groups.

Table 1. Characteristics of the MZ and DZ twin study populations, Body mass index (BMI) and other
continuous variables with a normal distribution are represented by the mean and standard deviation
and those with a non-normal distribution are represented by the median, interquartile range (age).
† The results of the non-parametric Mann-Whitney U-test are displayed. For all other continuous
variables, the independent-sample t-test was used to determine the p-value. p-values are obtained for
dichotomous variables using the Chi-square test. Asterisks (*) are used to indicate significant results.

Characteristics Total
(n = 120)

MZ
(n = 86)

DZ
(n = 34) p-Value

Zygosity (nMZ:nDZ) 86:34 - - -

Sex (male:female) 33:87 22:64 11:23 0.45

Age (years) 50 ± 26.5 46 ± 23 64 ± 29 0.03 †*

BMI, kg/m2 24.4 ± 4.3 24.3 ± 4.6 24.7 ± 3.4 0.68

Smoking n(%) 12(14.0) 9(15.3) 3(11.1) 0.75

Diabetes n(%) 7(8.1) 4(6.8) 3(11.1) 0.67

Hypertension n(%) 24(27.9) 15(25.4) 9(33.3) 0.45

Hyperlipidemia n(%) 22(25.6) 16(27.1) 6(22.2) 0.79

COPD n(%) 9(7.5) 7(8.14) 2(5.9) 0.67

Thyroid disorders n(%) 24(20) 16(18.6) 8(23.5) 0.54

3.2. Results for WMH Count Measurement

For most variables, MZ twins had higher age- and sex-adjusted intra-pair correlation
coefficients than DZ twins. Table 2 shows the results of the intra-pair correlation analysis of
WMH count in different brain regions in MZ and DZ twins.

Table 2. Intra-pair correlation coefficients of WMH count in the different brain regions in MZ and
DZ twins. Results and 95% confidence intervals were reported (95% CI). rMZ: intra-pair correlation
coefficient in monozygotic twins, rDZ: intra-pair correlation coefficient in dizygotic twins.

Variable rMZ rDZ

Total WMH count 0.466 (0.195 0.671) −0.025 (−0.451 0.421)

Deep white matter WMH count 0.482 (0.038 1) 0.093 (−0.631 1)

Infratentorial WMH count 0.739 (0.371 1) 0.390 (−0.32 0.686)

Cerebellar WMH count 0.537 (0.041 0.84) 0.372 (−0.348 0.522)

Periventricular WMH count 0.473 (−1 1) 0.190 (−1 1)

3.3. Univariate Model Analysis for the WMH Count in Different Brain Regions

Age- and sex-adjusted univariate analysis demonstrated heritability (A) for most vari-
ables. The analysis was run as a normal ACE model using normally distributed continuous
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variables for the total intracranial volume and total lesion count. Total intracranial volume
was continuous and normally distributed; total lesion count was transformed as the log
(total lesion count + 1), yielding a transformed variable, which the model analyzed. The
rest of the variables, deep white matter, infratentorial, cerebellar and periventricular WMH
count, were processed as count data.

We converted the numbers of deep white, infratentorial and cerebellar lesions to binary
data. Patients with no WMH in that location remained at zero, whereas patients with counts
greater than zero in that region were changed to one since there was insufficient data to
discriminate the number of lesions in the model effectively.

Due to the higher number of WMH in the periventricular area compared to other
locations, we analyzed the data as follows. In patients with zero, one, or two WMH in that
location, the count was kept as is; in patients with more than three WMH, the data were
binned as four. This whole procedure does not imply that the model believes there are four
lesions but instead that it interprets the data as more than three. Generally, the AE model
prevailed in the variables, indicating that the qualities are heritable to some extent.

The unique environmental variance was an essential contributor to all variables in-
dicating the effect of environmental factors on the number of WMH. The findings of the
univariate model heritability study for the count of the WMH in various brain areas using
volBrain in twins are shown in Table 3.

Table 3. Age- and sex-adjusted univariate analysis of the count of WMH in the different brain regions
using volBrain in twins. The results were presented together with 95% confidence intervals (95% CI).
A stand for heredity, C for shared environmental variation and E for unique environmental variance.

Variable A C E p-Value

Total lesion count 0.403 (0.156, 0.6) 0 0.597 (0.4, 0.844) 1

Deep white matter lesion count 0.450 (0, 0.766) 0 0.550 (0.234, 1) 1

Infratentorial lesion count 0.727 (0.371, 0.919) 0 0.273 (0.081, 0.629) 1

Cerebellar lesion count 0.555 (0.201, 1) 0 0.445 (0, 0.799) 0.776

Periventricular lesion count 0.472 (0.145, 0.712) 0 0.528 (0.288, 0.855) 1

4. Discussion

This study aimed to investigate the genetic contribution to WMH count in the four
regions of periventricular, deep white matter, infratentorial and cerebellar of the brain,
using 3T MRI in middle age and healthy groups of twins. According to our sample, WMH
counts are heritable to some degree and the heritability of total lesion count reinforces
the heritability of the separate regions. The A value is high in the areas being supplied
by the posterior brain circulation (infratentorial region) and the E value is low compared
to the areas provided by the anterior brain circulation (supratentorial region), meaning
the effect of genetics on the posterior brain circulation and its territory is higher than the
anterior brain circulation and its territory. The impact of the environmental factors is
more significant in the anterior brain circulation than in posterior brain circulation and
its territory.

Previous studies proved that WMH is a highly heritable [29–32] in a sample of female
and male older adult twins, suggesting a substantial genetic component. Females have
greater heredity than males in all cerebral lobes, notably the periventricular area, which
has a low heritability in men. In both sexes, the heritability of deep WMH reduced with
age, particularly beyond the age of 75 [29]. The San Antonio Family Study discovered
that the shared genetic variability across subcortical (DWMH) and ependymal (PWMH)
volume volumes were 21%, suggesting strong pleiotropy [33]. The Cohorts for Heart and
Aging Research in Genomic Epidemiology (CHARGE) collaboration revealed six new risk-
associated genes, including a novel locus on chromosome 17, that collectively accounted for
4% to 8% of the WMH burden [34]. Carmelli et al. reported a heritability of 73% for WMH



Medicina 2022, 58, 1425 8 of 11

volumes, which was lowered to 71% when age and head size were considered. The volumes
of WMH were substantially associated with MZ pairings and the correlations were more
significant in MZ couples than in DZ pairs [35]. In addition to previously hypothesized
ischemia processes, a multi-ethnic investigation involving European, Asian, African and
Hispanic patients discovered four additional genetic loci implicating inflammatory and
glial proliferative pathways in the development of WMH [36].

Given that our cohort included middle-aged twins, the effect of environmental factors
on the prevalence of WMH would be more visible, potentially outweighing the impact of
genetics on the prevalence of WMH. Furthermore, using a 3T MRI scanner instead of a
classic 1.5 T detected the WMH with greater precision, which may reveal the full effect of
environmental factors. Due to the aforementioned factors, our findings revealed a moderate
genetic influence on the occurrence of WMH, as contrasted to other studies in this field,
which revealed a more substantial genetic influence on the occurrence of WMH [29–36].

The general heritability of WMHs shown in our research and other investigations
suggests that the individual manifestation of WMH has a substantial genetic component.
This study raises intriguing issues about the possible origins of WMHs. As previously
stated, both age and the presence of cerebrovascular illness affect WMH. Therefore, high
heritability estimates for WMHs may imply pleiotropy with complicated aging character-
istics, complex cerebrovascular risk factors, or both. Notably, linkage studies may reveal
chromosomal areas or candidate genes implicated in the genetic control of WMHs [8].
The genetic investigation of white matter lesions yielded few results, with few candidate
genes examined and only one genome-wide association study conducted. A few linkage
investigations have been performed, providing suggestive evidence of genetic linkage
for white matter lesions, but the actual genes involved have yet to be discovered. The
angiotensinogen gene, situated on chromosome 1q42 and with a significant number of
polymorphisms, had the most consistent findings [37].

According to our study, environmental factors moderate the number of WMHs, es-
pecially in the supratentorial regions. In general, aging and major cardiovascular risk
factors such as diabetes mellitus and smoking increase the WMH in patients [9,38–40].
This can influence the development of carotid plaques, which might influence the devel-
opment of WMH in the supratentorial region in comparison with the vertebral arteries,
which are less frequently affected by atherosclerosis. Blood glucose level and prediabetic
state are risk factors for WMH development. According to one study, a high 2-h blood
glucose concentration in the OGTT, but not fasting blood glucose (FBG) levels, may be
an independent risk factor for developing WMHs, providing insight into the need for
enhanced preventative interventions in patients at risk of WMH-associated morbidity [13].
According to another study, impaired FBG levels are also linked to increased WMH burden
in older community-dwelling individuals with or without T2D [41]. Some studies revealed
a strong correlation between DM and cortical atrophy but not WMH [42]. On the contrary,
other studies showed significant associations between type 2 DM and the prevalence of
WMHs [12,43]. Obesity and BMI were also found to be influential on WMH development,
with a selective increase in the WMH load in the deep white matter of obese patients
with significant visceral fat deposition, irrespective of typical obesity-related comorbidities
such as hypertension. According to mediation studies, visceral obesity may contribute
to deep white matter lesions by increasing proinflammatory cytokines, implying a patho-
mechanistic relationship [15,44,45]. Among one of the most common habits of society,
smoking is one of the factors related to the progression of WMH; according to one study
in 23% of smokers, WMH progression was detected; increasing pack-years of smoking
increases the risk of WMH progression; no association was seen between time since quitting
and age at smoking initiation. However, according to one study, the effect of cigarette
smoking on the brain varies with age [14,46].

Our findings indicate that, in addition to the moderate hereditary effect on the inci-
dence of WMH, environmental factors play an important role in the occurrence of WMH,
particularly in the territory of anterior cerebral circulation. Aside from the research on epi-
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genetic modification that should be carried out to reduce the genetic effect, environmental
improvements such as diabetes management and prevention, weight loss and physical
activity, smoking cessation, hypertension management and prevention and stress manage-
ment will have a significant impact on the number and impact of WMH in the population.

Our study’s limitations must be addressed. There is a possibility of procedure and
measurement bias since the MRI pictures were acquired using two separate MRI machines
in two distinct locations. Additionally, since volBrain is entirely automated, our segmen-
tation could not be manually adjusted, which has the benefit of comparable data without
observer bias but also has the downside of being unable to separate WMHs from possible
artifacts. We discovered a statistically significant difference in the average age of the MZ
and DZ groups which might bias the results. Our findings may potentially be skewed
by our group’s very young average age, since age corresponds with the frequency and
volume of WMH lesions, resulting in fewer lesions in our sample. Comorbidities may also
have a role in the low total number of lesions. The lack of a proper automated program for
segmentation and counting infratentorial WMH was an additional limitation.

5. Conclusions

We discovered that WMH counts are heritable to a moderate extent in our middle
age healthy sample and that the heritability of the overall lesion count strengthens the
heritability of the distinct areas. The degree of this heritability is different in different brain
regions; overall, the genetic component influencing the count of WMH in the infratentorial
region is stronger than the effect of genetics on the count of WMH in the supratentorial
areas. On the other hand, environmental factors are more prominent in the areas supplied
by the anterior brain circulation than those supplied by the posterior brain circulation.
Our findings suggest that these features also have a hereditary component in middle aged
individuals; nevertheless, we were unable to assess the heritability of many WMH traits
due to the low prevalence of lesions in this relatively young and healthy group. Additional
research with more significant populations is required to corroborate our findings.
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