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Accurate anatomical localization of intracranial electrodes is important for identifying the
seizure foci in patients with epilepsy and for interpreting effects from cognitive studies
employing intracranial electroencephalography. Localization is typically performed by
coregistering postimplant computed tomography (CT) with preoperative magnetic
resonance imaging (MRI). Electrodes are then detected in the CT, and the corresponding
brain region is identified using the MRI. Many existing software packages for electrode
localization chain together separate preexisting programs or rely on command line
instructions to perform the various localization steps, making them difficult to install
and operate for a typical user. Further, many packages provide solutions for some, but
not all, of the steps needed for confident localization. We have developed software,
Locate electrodes Graphical User Interface (LeGUI), that consists of a single interface
to perform all steps needed to localize both surface and depth/penetrating intracranial
electrodes, including coregistration of the CT to MRI, normalization of the MRI to the
Montreal Neurological Institute template, automated electrode detection for multiple
types of electrodes, electrode spacing correction and projection to the brain surface,
electrode labeling, and anatomical targeting. The software is written in MATLAB, core
image processing is performed using the Statistical Parametric Mapping toolbox, and
standalone executable binaries are available for Windows, Mac, and Linux platforms.
LeGUI was tested and validated on 51 datasets from two universities. The total user
and computational time required to process a single dataset was approximately 1 h.
Automatic electrode detection correctly identified 4362 of 4695 surface and depth
electrodes with only 71 false positives. Anatomical targeting was verified by comparing
electrode locations from LeGUI to locations that were assigned by an experienced

Frontiers in Neuroscience | www.frontiersin.org 1 December 2021 | Volume 15 | Article 769872

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2021.769872
http://creativecommons.org/licenses/by/4.0/
mailto:tyler.davis@hsc.utah.edu
https://doi.org/10.3389/fnins.2021.769872
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2021.769872&domain=pdf&date_stamp=2021-12-09
https://www.frontiersin.org/articles/10.3389/fnins.2021.769872/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-769872 February 14, 2022 Time: 11:14 # 2

Davis et al. LeGUI

neuroanatomist. LeGUI showed a 94% match with the 482 neuroanatomist-assigned
locations. LeGUI combines all the features needed for fast and accurate anatomical
localization of intracranial electrodes into a single interface, making it a valuable tool for
intracranial electrophysiology research.

Keywords: MATLAB, anatomical localization, graphical user interface (GUI), electrocorticography (ECoG),
software, stereotactic electroencephalography (SEEG), intracranial electrode localization

INTRODUCTION

Intracranial recordings in neurosurgical patients provide
an opportunity to study population-level neural activity in
the human brain (Parvizi and Kastner, 2018; Pesaran et al.,
2018). Intracranial research is often conducted in patients with
medically refractory epilepsy who elect to undergo invasive
clinical brain monitoring for seizure onset zone localization
(Jobst et al., 2020). Electrodes are surgically implanted into
various brain regions thought to be involved in the seizure
network. Intracranial depth electrodes, subdural grids, or
both may be implanted depending on a patient’s seizure
presentation and preoperative workup, utilizing stereotactic
electroencephalography (SEEG) and electrocorticography
(ECoG), respectively. Once electrodes are implanted, the
recorded neural activity offers clinical insight related to the
seizure source. Thus, accurate postimplantation electrode
localization is vital to study the activity associated with seizure
initiation and propagation. Accurate localization of intracranial
electrodes is also informative for inferring the function of
non-epileptic brain areas when these patients participate in
research studies. Prior intracranial studies have been important
in understanding the neural computations underlying primary
sensory and motor functions (Miller et al., 2007; Mesgarani and
Chang, 2012; Bouchard et al., 2013; Hermes et al., 2015; Jiang
et al., 2017), cognition (Jacobs et al., 2013; Smith et al., 2015;
Bastuji et al., 2016; Minxha et al., 2020), and neurological and
psychiatric disorders (Weiss et al., 2013; Martinet et al., 2017;
Smith et al., 2020).

Numerous software packages have been designed to localize
intracranial electrodes (Ekstrom et al., 2008; Hermes et al., 2010;
Gramfort et al., 2013; Blenkmann et al., 2017; Groppe et al.,
2017; Hamilton et al., 2017; Laplante et al., 2017; Qin et al., 2017;
Branco et al., 2018; Granados et al., 2018; Trotta et al., 2018; Li
et al., 2019). Most packages start by coregistering preimplantation
magnetic resonance imaging (MRI) with postimplantation
computed tomography (CT). Electrode locations are then derived
from the CT images, and anatomical information is often
obtained by registering an anatomically labeled atlas to the
coregistered MRI. Many of these packages are built upon
previously existing software, are written in various programming
languages, and are sometimes only compatible with specific
operating systems. This heterogeneity not only creates an issue
of dependencies and increases the complexity of installation, but
it can also decrease efficiency, resulting in longer computation
and user times. For some packages, image processing can
take up to 24 h (Groppe et al., 2017). Additionally, many of
the existing packages require manual detection of individual

electrodes (Hermes et al., 2010; Gramfort et al., 2013; Groppe
et al., 2017; Trotta et al., 2018), adding to the overall user time
and increasing the potential for errors. Most packages are only
compatible with ECoG electrodes and have not been tested on
SEEG electrodes (Hermes et al., 2010; Groppe et al., 2017; Branco
et al., 2018; Trotta et al., 2018), which are increasingly prevalent
in the United States (Abou-Al-Shaar et al., 2018). However, it
is important to have the option to localize various types of
electrodes, because the use of different electrodes may be required
depending on clinical needs.

Here we present a software package, Locate electrodes
Graphical User Interface (LeGUI), developed in the MATLAB
programming language (Mathworks, Natick, MA), to localize
and visualize intracranial electrodes. We designed LeGUI to be
computationally efficient and easy to use, while retaining the
functionality required for a typical intracranial neurophysiology
study. Using MRI and CT images as an input, LeGUI generates
and visualizes 2D and 3D models of the brain and electrode
locations, including anatomical localizations from several atlases.
LeGUI consists of an integrated user interface for all processing
steps, including linear coregistration of CT to MRI, non-
linear normalization of MRI to the Montreal Neurological
Institute (MNI) ICBM152 template (Mazziotta et al., 2001),
automated electrode detection, electrode spacing correction
and projection to a surface, electrode labeling and channel
assignment, anatomical targeting using several atlases, and saving
of electrode data for downstream analysis. LeGUI has a unique
split-screen design, showing 2D images and electrode locations
on the left and the corresponding 3D representations on the
right. Core image processing (coregistration, segmentation, and
normalization) is performed using the Statistical Parametric
Mapping toolbox (SPM12)1 (Friston et al., 2007). All other
processing and visualizations are performed using standard
MATLAB functions with parallelization for added speed. The
software is provided open source under the GNU General Public
License v3.0 with compiled executables for Windows, Mac, and
Linux operating systems. The software and user documentation
are available for download at https://github.com/Rolston-Lab/
LeGUI.

MATERIALS AND METHODS

Patients and Testing
Locate electrodes Graphical User Interface was tested and
validated using MRI and CT imaging datasets from 48

1https://www.fil.ion.ucl.ac.uk/spm/software
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patients undergoing intracranial monitoring for epilepsy at
the University of Utah between 2015 and 2021 (Supplementary
Table 1). Additional datasets from three patients were included
from the University of Washington (Harborview Medical
Center and Seattle Children’s Hospital). These datasets
were used to test performance on imaging data acquired
from a different institution, with the goal of generalizing
across different scanner systems, protocols, and electrodes.
For each patient, the preimplant MRI and high-resolution
postimplant CT were processed, which included rotation of
the MRI to anterior/posterior commissure (ACPC) space,
linear coregistration of the CT to the MRI, and normalization
of the patient MRI to MNI space. A block diagram of the
image processing steps is provided in Supplementary Figure 1.
All testing was performed on a PC running Windows 10
Professional with two Xeon X5680 processors at 3.33 GHz,
128 GB of random-access memory, and a NVIDIA GTX
1060 graphics card.

This study was approved by the University of Utah
Institutional Review Board.

Electrodes
A total of 5089 (4695 Utah, 394 Washington) ECoG and SEEG
electrode contacts were detected, labeled, and projected to the
brain surface (ECoG) or corrected so that the intercontact
spacing precisely followed the lead geometry (SEEG). The specific
use of depth leads or grid arrays depended on the clinical
need and, regarding electrode vendor, institutional availability.
The majority of the ECoG electrodes were Ad-Tech grids
or strips with 1-cm spacing and 4-mm diameter (2.3 mm
exposed) electrode contacts (Ad-Tech, Racine, WI, United States)
(Supplementary Table 2). However, one patient (P27) had a
mini grid with an intercontact spacing of 3 mm and diameter
of 2 mm. Another patient (P9) had a grid with an intercontact
spacing of 7 mm and diameter of 4 mm (2.3 mm exposed). The
SEEG electrodes were from three different vendors (Ad-Tech;
Dixi Medical, Chaudefontaine, France; and PMT Corporation,
Chanhassen, MN, United States) with different contact sizes and
spacings (Supplementary Table 2). Most of the Ad-Tech SEEG
electrodes had contact diameters of 0.86 mm, lengths of 2.29 mm,
and an intercontact spacing of 5 mm. The Ad-Tech SEEG
electrodes also included Behnke-Fried hybrid leads that contain
both macro- and microwire electrodes. The macroelectrodes had
contact diameters of 1.28 mm, lengths of 1.57 mm, and spacings
of 5 mm. The Behnke-Fried microelectrodes were excluded from
testing because they are typically too small to resolve clearly on
postoperative CTs. Dixi SEEG electrodes all had the same contact
diameter and length of 0.8 mm and 2 mm, respectively. Most of
the intercontact spacings were 3.5 mm. However, some leads had
multiple groups of 5 contacts with standard 3.5-mm intercontact
spacing and intergroup spacings of 7 mm. The PMT SEEG
electrodes from the University of Washington patients (P49-51)
all had the same contact diameter, length, and spacing of 0.8, 2,
and 3.5 mm, respectively. All electrodes were platinum/iridium.
Overall, 830 Ad-Tech ECoG, 64 Ad-Tech mini ECoG, 2098 Ad-
Tech SEEG, 200 Ad-Tech Behnke SEEG, 1503 Dixi SEEG, and
394 PMT SEEG electrode contacts were processed using LeGUI.

User Interface
Locate electrodes Graphical User Interface consists of a main
window split between a 2D display of the MRI or CT image and
electrode slice planes on the left and a 3D display of the brain
surface and electrode locations on the right (Figure 1). Along the
top of the window is a row of buttons (i.e., “Instructions,” “Load
Images,” “Assign Electrodes,” “Save”) that initiate the main steps
involved in processing a dataset. These buttons are arranged from
left to right in sequence from the first to the last step. The leftmost
“Instructions” button pulls up a list of step-by-step instructions.
The “Load Images” button starts the initial processing steps of the
MRI and CT images. The “Assign Electrodes” button opens a user
interface for assigning labels and channel numbers to electrodes.
The “Save” button saves electrode locations and assignments to
a file in a folder named “Registered,” which is used by LeGUI to
reopen previous datasets or can be used for later analysis.

Image Loading and Anterior/Posterior
Commissure Alignment
Initial image-processing steps begin with the “Load Images”
button, which includes selecting and saving both the preimplant
MRI and postimplant CT, coregistration of the CT to MRI,
segmentation and normalization of MRI to MNI space, and
creation of 3D brain and projection surfaces.

To begin, a directory containing both MRI and CT DICOM
files must be specified. Files from multiple MRI and CT scans can
reside in this directory. The software recursively searches for all
images and displays the results in a table organized by modality,
series number, series description, etc. (Figure 1A). The table is
interactive and allows the user to view individual scans and save
the desired scans as NIfTI2 files (“MR.nii” and “CT.nii”) in the
“Registered” folder for later processing. The “Registered” folder
is automatically created in the same root directory as the selected
DICOM images once the first scan is saved. For optimal results,
a standard preimplant T1-weighted MRI and postimplant CT
with a slice thickness of 1 mm or less should be loaded. Images
with any slice orientation (sagittal, coronal, or axial) can be
loaded. LeGUI uses the standard right-anterior-superior (RAS)
orientation convention where the positive x-axis points to the
right, the positive y-axis points in the anterior direction, and the
positive z-axis points in the superior direction. If images do not
match this convention, they are automatically rotated to match,
and the transform matrix is updated accordingly. If the automatic
rotation fails, the option to manually rotate in increments of 90
degrees to match this orientation is also available. As images are
loaded, an option to crop and rotate to ACPC space is provided.
Cropping and ACPC rotation can be skipped for CT images, but
it is recommended for MRI images. After CT and MRI images
have been rotated and cropped, the MRI image is resampled
to a resolution of 0.4 mm/voxel across all three dimensions
to ensure consistent image rendering quality and performance
across datasets. Resampling is performed using “imresize3.m”
with cubic interpolation (MATLAB Image Processing Toolbox).
The CT image is also resampled to the same resolution later as
part of the coregistration step.

2https://nifti.nimh.nih.gov
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FIGURE 1 | Flow chart of processing steps. (A) Image selection and saving (left) with ACPC alignment for MRI images (right). AC, PC and mid-sagittal (MS) points
are shown in green, red, and blue, respectively. (B) Results after coregistration, segmentation, and MNI normalization steps (left). Gray and white segmented tissue
types are used to generate a 3D brain surface. Automatic electrode detection results using coregistered CT (right). The opacity of the MRI image can be decreased
to show the CT image with superimposed electrodes. The brain surface can be made transparent or hidden to visualize electrodes in 3D display. (C) User interface
for electrode labeling and channel assignment (left). Assignments are color coded for visual clarity. Selected table values and corresponding assigned electrodes are
shown in red. Assignments are populated into the main LeGUI interface after closing the assignment interface window (right). Inline projection of selected SEEG
leads allows visualization of the entire lead relative to a single MRI slice plane.

Coregistration of Computed Tomography
to Magnetic Resonance Imaging
Linear coregistration of the CT to MRI uses a 6-parameter
(three translations and three rotations) rigid-body model and
a normalized mutual information cost function to perform
the registration (SPM12 function “spm_coreg.m” with default
parameters). The CT is then transformed and resliced to
match the MRI voxel-by-voxel and saved back to disk as
“CT.nii.” Reslicing is performed using a 4th degree b-spline
interpolation.

Segmentation and Normalization to
Montreal Neurological Institute Space
Segmentation of the MRI tissue planes and MNI normalization
is performed using SPM12. A procedure called “unified
segmentation” is performed that combines segmentation,
bias correction, and spatial normalization into one model.
Segmentation separates the image into six tissue classes: gray,
white, cerebrospinal fluid, bone, soft tissue, and air/background.
Bias correction removes any smoothly varying intensity
differences across the image that are introduced by the MRI
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scanning itself. Spatial normalization generates “deformation
fields” that describe the non-linear transform from patient space
to MNI space. For the spatial normalization procedure, MNI-
registered probability maps (“TPM.nii”) of the different tissue
classes are used as priors to generate a non-linear deformation
field that describes the best overlays of the tissue probabilities
with the patient MRI image. To account for partial volume
effects where a voxel is not a simple representation of one tissue
type, each tissue class is modeled using one or more gaussians.
Some steps are also implemented to clean up the tissue classes
after segmentation. These include a simple Markov Random
Field cleanup procedure and a routine that involves erosions and
conditional dilations of the different tissue planes to clean up the
borders and improve brain extraction. In general, LeGUI uses
the SPM default parameters for most operations. However, for
the unified segmentation step, a few changes have been made to
improve consistency across datasets. In LeGUI, the number of
gaussians for modeling the tissue classes is set to two for gray
matter, white matter, cerebrospinal fluid, and air, three for bone,
and four for soft tissue. The defaults in SPM are one for gray and
white, two for cerebrospinal fluid and air, three for bone, and
four for soft tissue. The sampling distance between points when
estimating model parameters has also been increased slightly
from the default value of 3 to 4. All other parameters are set
to their respective defaults. The deformation fields generated
during normalization to MNI space are automatically saved to
the “Registered” folder and are used to apply atlas labels to the
electrodes. Both the forward “y_MR.nii” and inverse “iy_MR.nii”
deformation fields are saved.

Generating Brain and Projection
Surfaces
Both a 3D brain surface and a highly smoothed brain surface
(projection surface) for correcting electrode positions
after postsurgical brain shift are generated in LeGUI.
Surface generation is performed using the custom function,
“LeG_genSurfaces.m.” The function starts by thresholding
(>0.95) the summed gray/white segmented images generated
during the segmentation step. The resulting mask is cleaned by
removing small, connected components that are separate from
the main brain component. To create the brain surface, the mask
is smoothed using a 3-mm cuboid kernel, and an isosurface
(“isosurface.m”; MATLAB built-in function) is generated using
a threshold value of 0.3. For the projection surface, the mask
is more aggressively smoothed using a 10-mm cuboid kernel,
and the isosurface is generated using the same threshold of 0.3.
Small surface remnants (typically from the ventricles) that may
be enclosed within the main surface are then removed using the
density-based “dbscan” clustering algorithm (MATLAB Statistics
and Machine Learning Toolbox). Remnants are removed by
finding and deleting the corresponding vertices and faces of all
but the largest cluster identified by dbscan.

2D and 3D Visualizations
After the image-processing steps are complete, LeGUI will be
updated to display the resulting images and surfaces (Figure 1B,

left). The 2D display on the left shows the overlaid slice planes
from the coregistered MRI and CT images with electrode contacts
embedded in each image after the detection process (see below).
The 3D display on the right shows brain and projection surfaces
and electrode locations relative to these surfaces. For the 2D
display, slice plane orientation can be changed from the default
“sagittal” view to either a “coronal” or “axial” view and scrolling
of slices can be performed to traverse the entire image. For
the 3D display, the surfaces and electrodes can be rotated for
improved visualization of the electrode geometry. Pan and zoom
functionality exist for both displays. In addition, electrodes can
be selected in either display with a mouse click. Selecting an
electrode in one display automatically selects and highlights the
same electrode in the other display. This “linking” of the 2D
and 3D displays during selection provides an efficient and useful
way to explore the electrode space and visualize nearby brain
structures. Anatomical locations and channel assignments are
also shown for selected electrodes in the upper left corner of the
main window. For more details regarding the visualizations and
user interactions of LeGUI, see Supplementary Methods.

Electrode Localization
Electrode centroids can be localized from intensities in the CT
either automatically with a button press or manually with a
right click over the CT artifact in the 2D display (Figure 1B,
right). Automatic detection is performed using a custom function
“LeG_AutoElecs.m.” This function searches for electrodes by
finding connected components for a series of thresholds that are
applied to the image. Twenty-one thresholds are tested that are
evenly distributed across the 99th to 100th percentile range of
Hounsfield intensity values for all voxels in the image. For each
threshold, connected components are considered electrodes if
they are located inside the projection surface and the volume
is greater than 6 voxels and less than that of a sphere of radius
2 mm (∼33.5 mm3). After all thresholds have been tested, stable
threshold regions are identified as uninterrupted segments where
the number of detected electrodes does not change by more than
five. An optimal threshold is chosen as the center threshold of
the uninterrupted segment that contains the largest number of
electrodes. A clean-up procedure is then performed to remove
any detected electrodes that are less than 1 mm apart. Electrodes
are sorted in descending order based on the mean intensity of the
connected component, and only the top 250 electrodes are kept.
A limit of 250 is placed on the total number of detected electrodes
to avoid overloading the software and degrading performance.
None of the patients included in this study had more than
250 electrode contacts implanted; however, this limit can easily
be changed in the underlying code if more than 250 electrode
contacts are implanted. The weighted centroid, calculated from
the CT voxel intensities, of each connected component is used as
the electrode center for display in LeGUI.

If automatic detection fails, electrodes can be manually
localized with a right click of the mouse over the CT artifact in
the 2D display. Electrodes are localized to the weighted centroid
of the nearest connected component to the click point in the CT
image or at the tip of the mouse cursor if the “Manual Draw”
selection box is selected. Connected components are found by
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thresholding a small region (a cube that is six times the electrode
radius) around the click point using a user-specified threshold
value. We operationally defined detection rate or sensitivity as
the ratio of the number of true electrode detections to the total
number of implanted electrodes. False electrode detections can
be easily removed by selecting the electrode with a left click and
pressing either the “delete” or “backspace” key on the keyboard.

Once an electrode is localized, it is drawn in both the 2D and
3D displays. Each electrode is represented as a sphere with a
default radius of 1.3 mm, which is a reasonable approximation
of the radius of most intracranial electrodes; however, this
value can be changed to better match the specific size of an
electrode. Voxels that are enclosed within this radius are used to
determine the atlas label and electrode class (gray or white) as
described later.

Electrode Labeling and Channel
Assignment
After localizing electrodes, clicking on the “Assign Electrodes”
button in LeGUI will open a user interface for assigning labels and
channel numbers to electrodes (Figure 1C, left). This information
is then used for some of the visualizations and functions in the
main GUI window, but it can also be used to match electrode
locations with neural recordings for later analysis. A 3D display of
the electrodes with an overlay of the brain surface is provided to
help with electrode identification. Assignments are then made by
linking each 3D electrode with its corresponding label displayed
in an alphanumeric table. Color-coding of assigned electrodes
also makes navigation easier and helps with the identification
of the remaining unassigned electrodes. Assignments of multiple
electrodes can be made by selecting column-oriented groups in
the table and the corresponding electrodes in the 3D display. This
interface also has a “check” mode that allows the user to visually
confirm the accuracy of the assignments before saving. For more
details, see Supplementary Methods.

Electrode Alignment and Projection
Locate electrodes Graphical User Interface offers both automated
and manual methods for correcting the locations of electrodes if
needed because of either brain shift from surgery or inaccurate
centroid calculations during the automated detection process.
For projecting ECoG grid and strip electrodes that were localized
below the pial surface because of brain shift, an automated
routine (Hermes et al., 2010) has been included. This routine
projects electrodes onto a smoothed projection surface using the
orthogonal local normal vector to the grid. For strips, where an
orthogonal vector cannot be calculated, electrodes are projected
to the nearest point on the surface. Electrode assignments need to
be performed prior to using this projection method because labels
are used to determine electrode neighbors for the orthogonal
vector calculation.

As an alternative to automated projection, a manual method
is included that does not require prior electrode assignments to
be made. For this method, three projection vectors are calculated
for each selected electrode, which can then be selected from a
dropdown menu. The first vector points in the direction of the

brain center (mid-commissural point) to the selected electrode.
The second vector is in the direction of the current view of the
3D display so that it points out of the screen from the electrode
center. The third vector is orthogonal to the projection surface at
the point nearest to the selected electrode. Once a vector type has
been chosen, vectors for each selected electrode are displayed as a
red line projecting out from the electrode center to help visualize
the trajectories. Electrodes can then be projected to the surface
with a button press. Alternatively, the up/down arrows on the
keyboard can be used to incrementally move selected electrodes
along each vector path. This is useful for nudging electrodes
outward if the brain surface partially obscures them or inward
if electrodes have been projected too far and they fail to overlap
with a nearby anatomical location.

A procedure for correcting spacing and alignment errors
has also been included with LeGUI. This is typically applied
to SEEG electrodes if irregularities in centroid spacing and
alignment occurred during the detection step. This procedure
uses electrode labels and the known intercontact spacing from
the lead geometry to iteratively adjust the positions starting
from the deepest electrode/contact and moving outward to the
most superficial contact. Because labels are needed, the electrode
assignments must be performed prior to this procedure. Also,
the labels for each lead must be arranged as columns in the
table in the electrode assignment user interface with the deepest
electrode/contact as the last (bottom) row in each column. The
deepest contact is used as the starting point because it typically
is far away from contacts on other leads and has a more clearly
defined intensity in the CT for the centroid calculation. Nearby
crossing of leads and contacts that are close to the skull can
cause a distorted CT artifact leading to a misplaced centroid and
electrode/contact center. Before proceeding, the deepest contact
should be visually inspected for accurate alignment with the CT
artifact. This procedure starts by calculating the average vector
between the deepest and 2nd and 3rd deepest contacts. The
2nd deepest contact is then repositioned using this vector so
that its distance from the deepest contact is equal to the known
intercontact spacing of the lead. This process is then repeated
by repositioning the 3rd deepest contact using the average vector
from the 2nd to the 3rd and 4th deepest contacts, and so on until
the most superficial contact is reached. Upon completion of this
repositioning step, the spacing between contacts is corrected to
match the known, commercially defined spacing, and some subtle
changes in contact position are made resulting in a straighter
path of the contacts along a lead. Because this procedure operates
along the columns of the table in the assignment interface, it
could be applied to the electrode contacts of an ECoG grid or
strip to correct the column-wise spacing if desired.

Inline Projection
A unique feature called “inline projection” has been included in
LeGUI to improve the visualization of SEEG electrodes relative to
the images in the 2D display. This feature projects selected SEEG
leads onto the current slice plane in the 2D display so that all
contacts in a lead are visible in the same slice (Figure 1C, right).
The corresponding MRI and CT images are rotated to match this
projection line so that each contact along a lead can be visualized
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relative to MRI or CT structures. The vector made by the first
and the last contact of a lead is used as the projection vector for
calculating the rotation matrix that is applied to the MRI and
CT images. Rotation is performed using the built-in “imwarp.m”
function in MATLAB. Because leads are often oriented at an angle
relative to the viewing plane, contacts along an individual lead
cannot typically be viewed simultaneously. Therefore, without
inline projection, these contacts can only be viewed individually
by scrolling through the slice planes of the 2D image.

Gray and White Electrode Classification
Each electrode/contact that has been created in LeGUI is
classified as being in gray or white matter. This information is
displayed in the main LeGUI window for selected electrodes and
is saved to disk for later use in analysis. Class assignments are
made by applying a two-sided Wilcoxon rank-sum test to the
voxels enclosed within each electrode sphere taken from the gray
and white tissue probability maps that are created during the
SPM segmentation step. The rank sum tests the null hypothesis
that the gray and white voxel probabilities are from continuous
distributions with equal medians, against the alternative that they
are not. If the null hypothesis is false (p < 0.001), assignments
are made accordingly. If it is true, a default assignment of
gray is given. If the mean voxel probability for an electrode is
less than 0.1 for both gray and white, then an assignment of
“Unknown” is given. These calculations are performed using the
“LeG_calcGrayWhite.m” function.

Anatomical Localizations and Atlas
Overlays
Each electrode that has been created in LeGUI is assigned an
anatomical location based on available atlases. The default atlases
that are included with LeGUI are the Neuromorphometrics atlas
(NMM)3 that comes bundled with SPM and the probabilistic
cytoarchitectonic maps included in the SPM Anatomy toolbox
(Eickhoff et al., 2005). To find the anatomical location and
subsequent label, voxel indices for an electrode sphere in patient
space are warped to MNI space by applying the SPM non-
linear deformation fields in “iy_MR.nii.” Labels from the loaded
MNI registered atlas are then found for each warped voxel
location, and the most common label is assigned to that electrode.
When saving, probabilities for all labels within a 1-cm radius
around each electrode are also calculated and can be used
later for analysis.

For visualization in LeGUI, available MNI-registered atlases
are warped to patient space. This transformation is performed by
applying the SPM MNI-to-patient deformation fields “y_MR.nii”
to each voxel location in the labeled atlas NIfTI image. Atlases
that are warped into patient space are saved to the main
“Registered” folder and have the prefix “lw” (label warping) added
to the file name. For example, the NMM atlas will have the name
“lwNMM.nii.” Warped atlases can then be viewed in the 2D
display in LeGUI as an overlay, with the ability to fade in and
out with respect to the MRI. This provides a way to visually check
the accuracy of the MNI normalization step.

3http://Neuromorphometrics.com

In addition to the default atlases, custom atlases can be loaded
into LeGUI by following a few simple steps. All custom atlases
must be registered to MNI space. To load, the labeled NIfTI
image can be placed in a folder named “atlases” that is in the
same root directory as the LeGUI program. If LeGUI is run
using the compiled binaries, then this folder must be in the
same directory as the executable file. If LeGUI is run from
the source code, then the “atlases” folder must be in the same
directory as the “LeGUI.mlapp” file. In addition to the labeled
atlas image, a tab-delimited text file containing the index numbers
and corresponding label names must be included. Both the
labeled image and text file must also have the same name. Once
the “atlases” folder has been populated with these files, LeGUI
will automatically detect the custom atlases and add them to a
dropdown menu after the initial image-processing step.

Saving
All data that is generated in LeGUI during the processing
of images and electrodes is saved to the main “Registered”
folder. This includes the MRI and CT images (“MR.nii”
and “CT.nii”), the tissue segmentations (“MRGray.nii,”
“MRWhite.nii,” “MRBone.nii,” “MRCSF.nii,” and “MRSkin.nii”),
deformation fields from patient to MNI space and MNI to
patient space (“iy_MR.nii” and “y_MR.nii”), atlases warped to
patient space (“lwNMM.nii”), brain and projection surfaces
(“surfaces.mat”), and all electrode information (“Electrodes.mat”
and “ChannelMap.mat”). The images and surfaces are
automatically generated during the image-processing steps.
The electrode information is saved by pressing the “Save”
button at the top of LeGUI after the detection and labeling steps
have been performed.

The electrode files (“Electrodes.mat” and “ChannelMap.mat”)
consist of MATLAB structures with fields that contain
information about electrode location in millimeters for
both patient and MNI space, anatomical location for each
of the loaded atlases, and tissue class (gray or white matter).
“Electrodes.mat” is primarily used by LeGUI to load electrode
localization information for a previously processed dataset. This
file can also be used for analysis. However, it is important to
note that the data in this file is sorted based on the sequence
of user interactions in LeGUI. Therefore, rows in each of the
relevant data fields do not correspond to channel number.
“ChannelMap.mat” contains electrode information that is sorted
by channel number so that the row indices of each variable
correspond to the channel number specified by the user during
the assignment step. The “ChannelMap.mat” file is therefore
preferred for use in analysis because electrode information
is sorted to match the channel order of the recorded data.
Details of all data that is included in these two files can be
found in the “ReadMe.txt” file, which is automatically saved
to the “Registered” folder during runtime. An example of the
“ReadMe.txt” file is included in the Supplementary Material.

Testing and Validation
Locate electrodes Graphical User Interface was used to process 48
datasets (4695 ECoG and SEEG electrode contacts) from patients
undergoing long-term intracranial monitoring for epilepsy at
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the University of Utah. An additional three datasets from the
University of Washington (394 SEEG electrode contacts) were
also processed and were used to validate the anatomical labels
generated by LeGUI.

Testing and validation were performed specifically to quantify
processing times, automatic electrode detection, electrode
projection and alignment, and anatomical localization. Most of
the testing and validation was performed by T.D., the author
of the software. Processing times were automatically collected
for each dataset using built-in MATLAB timing functions.
Automatic electrode detection was validated by comparing the
automated results to the final detection results after removing
false positives and manually adding electrodes that were missed
by the algorithm. Electrode projection and alignment results
were validated by comparing electrode locations before and
after projection or alignment using Euclidean distance. Finally,
anatomical localization was validated by comparing the labels
generated by LeGUI to electrophysiology recordings as well as
labels that were assigned by hand by a trained neuroanatomist
(K.W.). Hand labeling was performed by coregistering the CT to
the MRI through an affine registration and applying a mutual
information cost function in FSL4. Electrode labels were then
assigned by manually scrolling through overlaid slices of the
two images and assigning labels specifically selected from the
NMM atlas. An attempt was made to assign a label based on the
center of the electrode artifact when visualized on the registered
MRI scan. This was done in a blinded fashion such that no
prior knowledge existed of the electrode locations or labels from
LeGUI. Given the vast gyral complexity of human prefrontal and
parietal association cortices in 2D, only temporal lobe, including
medial temporal lobe structures and mid-line limbic regions,
were manually labeled.

Other aspects of LeGUI, such as the quality of the
coregistration and segmentation steps or aspects relating to user
interface such as ease-of-use, were not quantified.

RESULTS

Processing Times
We measured elapsed times for the initial image-processing
steps, which included image selection, rotation of MRI to ACPC
space, coregistration of CT to MRI, segmentation of MRI into
six tissue types, and normalization of MRI to MNI space. The
median time and range for 48 datasets was 31.7 (21.9–40.3) min
(Figure 2A). This included approximately 5–10 min of user time
for selecting images and identifying AC, PC, and midsagittal
points for rotation to ACPC space. The remaining time was
computational and dedicated to the coregistration, segmentation,
and normalization steps.

Automatic electrode detection times were measured and
found to be small relative to the other processing steps. The
median time and range for detection for 48 datasets (4695 total
electrode contacts) was 15.6 (12.2–19.2) s. However, this does
not include the user time required to correct for false-positive or

4https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL

false-negative detections. This time was not directly measured,
but it is estimated to take approximately 5–10 min depending
on the complexity of the implant and the performance of the
automatic detection.

Most of the user time is devoted to electrode labeling and
channel assignment. This step requires prior knowledge of the
implanted electrodes based on patient-specific clinical notes and
cannot be fully automated; however, the assignment interface
in LeGUI has been designed to improve the efficiency of this
step. Assignment times were measured for 48 datasets (4695
electrode contacts) (Figures 2B,C). The overall median time
and range was 9.8 (4.5–23.6) min. Times were also divided into
groups based on electrode type (Figure 2B). Assignment for
Ad-Tech ECoG and Dixi SEEG took more time than for Ad-
Tech SEEG, with median times and ranges of 13.9 (7–23.6),
12.1 (7.4–20.7), and 6.9 (4.5–12.1) min, respectively. However,
after normalizing by the number of electrodes in each dataset, it
was found that Ad-Tech ECoG assignment required significantly
more time than assignment for both Dixi and Ad-Tech SEEG
datasets (pairwise rank-sum test, p < 0.01), with a median time
and range of 8.8 (6.1–12), 5.2 (3.6–8.0), and 5.1 (3.7–9.8) sec
per electrode, respectively (Figure 2C). This is probably due to
the increased complexity of these implants that often contain
overlapping electrodes.

Automatic Electrode Detection
Automatic electrode detection has been included in LeGUI. The
detection algorithm was designed to be robust across datasets
and electrode types. This is achieved by searching for an optimal
threshold that is unique to each dataset based on stability in the
detection rate or sensitivity (see Materials and Methods). This
algorithm was tested on 48 datasets (4695 electrode contacts) and
demonstrated good performance, with an overall sensitivity of
0.93 and only 71 false positives. Results were grouped by electrode
type (ECoG vs. Ad-Tech SEEG vs. Dixi SEEG) (Figure 3A),
and the detection performance was highest (pairwise rank-sum,
p < 0.01) for Ad-Tech SEEG, with a median rate and range
of 1 (0.94–1). Ad-Tech SEEG also had the lowest number of
false-positive detections, with a median of 0 (0–7). Ad-Tech
ECoG and Dixi SEEG had lower detection performance, with
rates of 0.87 (0.75–0.99) and 0.87 (0.65–1), respectively, and
higher false positives of 2.5 (0–18) and 1 (0–3), respectively.
The lower performance for these electrode types is likely due
to the smaller electrode contact size and intercontact spacing
of the Dixi electrodes and the more complex and overlapping
implant geometry of ECoG grids and strips. Dixi SEEG leads
oriented perpendicular to the CT slice plane typically showed
inferior performance and more false positives (Figure 3B). The
small intercontact spacing (3.5 mm) of the Dixi leads and the
lower resolution of the CT along the slice plane likely contributed
to this outcome.

Because the detection algorithm works by finding an optimal
threshold for each dataset, optimal thresholds for all 48 datasets
were analyzed. The median optimal threshold and range was
2365 (1789–3977) Hounsfield units (HU). Optimal thresholds
also demonstrated a bimodal distribution across datasets, with
two distinct peaks occurring at approximately 2200 and 3400 HU
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FIGURE 2 | Image processing and electrode assignment times for 48 datasets in LeGUI. (A) Histogram of image processing times per dataset. Total time includes
image selection, rotation to ACPC space, coregistration of CT to MRI, segmentation of MRI, normalization to MNI space, and surface generation. (B) Electrode label
assignment times grouped by vendor and electrode type. Each boxplot shows the median (red line), interquartile range (blue box), and extremes (whiskers). The
number of datasets per group is shown below each boxplot. (C) Electrode label assignment times normalized by number of electrodes per dataset. ECoG
electrodes take a significantly (pairwise rank-sum test, p < 0.01) longer time to assign a label than SEEG. Asterisks indicate significance.

FIGURE 3 | Automatic electrode detection results from 48 datasets containing 4695 total electrode contacts including ECoG and SEEG. (A) True-positive detections
(left) and false positive detections (right) grouped by electrode type. Ad-Tech SEEG electrodes performed the best, with a median detection sensitivity of 1 and
false-positive count of 0. Values under each boxplot indicate number of datasets included. Asterisks indicate significance (pairwise rank-sum, p < 0.01). (B) Example
of false positives (FP) and false negatives (FN) for a dataset that included Dixi SEEG. Electrode locations relative to the brain surface (left) and CT image (right) are
shown. (C) Histogram of optimal thresholds in Hounsfield units (HU) for all 48 datasets demonstrates a bimodal distribution with two peaks at 2200 and 3400 HU.
(D) Examples showing the number of detected electrodes as a function of threshold for two datasets with both a low (left) and a high (right) optimal threshold (red
circle). The overall median threshold (2365 HU) for all 48 datasets is indicated with a red vertical line.

(Figure 3C). When grouped by electrode type, no significant
difference in threshold was found [Kruskal-Wallis (KW) test,
df = 2, χ2 = 2.47, p = 0.29], indicating that the bimodality of
optimal thresholds could not be attributed to the type of electrode
implanted. These results indicate the potential benefit of using
multiple thresholds when detecting electrodes across different
datasets. Examples are given for two datasets that have a low
(Figure 3D, left) and a high (Figure 3D, right) optimal threshold,
respectively. The number of detected electrodes as a function
of threshold are shown for each dataset. The median optimal

threshold from all 48 datasets is shown as a vertical red line. It
is clear from these two examples that prespecifying a threshold
would diminish the automatic detection performance.

Electrode Alignment and Projection
There are several ways in LeGUI to adjust the positions of
electrodes to correct for brain shift or inaccurate centroid
calculations due to variable-quality CT scans or rounding
errors when converting between voxels and millimeters. Brain
shift correction or electrode projection to the smoothed brain
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(projection) surface for ECoG grids or strips can be performed
using a fully automated routine where the projected direction
is the local normal to the electrode (grid) surface (Hermes
et al., 2010). Projection can also be performed manually for
selected electrodes where the projected direction is the local
normal of a nearby patch of the projection surface. The
advantage of this method is that it does not require prior label
assignments to be made. Both methods were tested using 10
ECoG datasets containing 764 electrode contacts (Figures 4A,B).
An example is shown of the projection results using the “manual”
method for a dataset with a standard grid (Ad-Tech FG64C-
SP10X-000, 10-mm spacing) and a mini grid with smaller
electrode contacts and closer spacing (Ad-Tech FG64C-MP03X-
000, 3-mm spacing) (Figure 4A). Projected distances (median
and range) across all datasets for the “grid” approach were
4.07 (0.00–17.95) mm. Projected distances for the “manual”
approach were 3.88 (0.00–11.17) mm. No significant difference
was found between these two approaches (KW test, df = 1,
χ2 = 3.14, p = 0.076) (Figure 4B, left). Intercontact distances
were also measured before and after projection to quantify
possible expansion or contraction. Distances were normalized
by dividing by the known intercontact spacing for a given
grid or strip. The median and range of unprojected normalized

intercontact distances for all 10 datasets were 1.00 (0.45–
1.78) mm. After “grid” projection, the normalized distances
were higher than the unprojected at 1.02 (0.38–1.93) mm.
After “manual” projection, the distances were higher than the
“grid” projected distances at 1.04 (0.44–1.99) mm (Figure 4B,
right). These results show that projection using either of the
two methods results in a slight expansion of the intercontact
distances; however, the “manual” projection method showed a
slightly higher expansion rate.

Electrode alignment is a method that is primarily used to
“straighten” and regularize the intercontact spacing of SEEG
electrodes as a result of inaccurate centroid calculations from
variable-quality CT scans or voxel-related rounding errors.
An example of this is shown for a dataset with 12 bilateral
SEEG leads (Dixi Medical Microdeep) (Figure 4C). Correction
magnitudes are small and difficult to visualize. However, they
are most noticeable for the vertically oriented right insula lead
(Figure 4C, red ellipse). Correction magnitudes (median and
range) measured for 38 datasets containing 365 SEEG leads
(3726 electrode contacts) were 0.23 (0.00–1.37) mm (Figure 4D).
Normalized intercontact spacings were also measured before
and after correction and found to be 1.00 (0.70–1.24) and
1.00 (1.00–1.00).

FIGURE 4 | Electrode projection and alignment results. (A) Example showing electrodes before (left) and after (right) projection using the “manual” projection
method. An 8×8 ECoG grid and multiple strips (10-mm spacing) along with an 8×8 mini-ECoG grid (3-mm spacing) are visible. Projection vectors (red lines) are
shown for 4 selected electrode contacts (red spheres) that represent the normal vector to the “projection” surface (not shown). (B) Projection distances for 10
datasets (764 electrodes) for the “grid” (Hermes et al., 2010) and “manual” projection methods are shown (left). The median and ranges were 4.07 (0.00–17.95) and
3.88 (0.00–11.17) mm, respectively. No differences were found between the two methods (KW test, df = 1, χ2 = 3.14, p = 0.076). Intercontact spacings were
measured for unprojected electrode contacts, as well as for the two projection methods (right). The median and ranges were found to be 1.00 (0.45–1.78), 1.02
(0.38–1.93), and 1.04 (0.44–1.99) mm, respectively. Asterisks indicate significance (pairwise rank sum, p < 0.01). Separations for the “grid” and “manual” methods
were both higher than unprojected “none,” indicating expansion during the projection process. (C) Example showing electrodes before (left) and after (right)
alignment process. Corrections to electrode positions were small but can be visualized in the right insular lead (red ellipse). (D) Correction magnitudes for 38
datasets (365 leads, 3726 contacts). The median and range were 0.23 (0.00–1.37). The median correction magnitude of 0.23 mm was less than the voxel resolution
(0.4 mm/vox), suggesting that most corrections are for rounding errors due to the voxelization of the image.
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FIGURE 5 | Comparison of gray and white segmentation results using electrophysiology recordings. (A) Patient-specific example showing SEEG electrodes (AdTech
BF08R-SP05X-000, 5-mm spacing) in left hippocampus transitioning to white matter (left to right) with corresponding LFP data (1-kHz sampling rate, 0.3-Hz
high-pass filter). Each data plot spans 1.5 s along the x-axis and 1.5 mV along the y-axis and displays 415 overlaid time segments distributed throughout an
approximately 50-min recording session. Standard deviations from left to right were 95 (gray), 38 (gray), 23 (white), and 21 (white) µV, respectively. (B) Comparison of
recording amplitude (standard deviation) from 17 patients for a total of 1066 gray/white classified electrode contacts (456 white, 610 gray). Gray electrodes recorded
higher amplitudes compared with white (pairwise rank sum, p < 0.001). Asterisk indicates significance.

Anatomical Localization
Verification of the accuracy of anatomical localization in
LeGUI was performed by comparing features of the recorded
electrophysiology data with electrode location. Local field
potential (LFP) power in the lower frequencies (<150 Hz) has
been shown to be a good predictor of electrode location (gray or
white matter) (Greene et al., 2021). Instead of power, we used the
standard deviation of resting-state LFP (1-kHz sampling rate, 0.3-
Hz high-pass filter) as a feature to compare electrodes in both
gray and white matter for 17 datasets (Figure 5). An example
of the LFP recordings for several electrodes that traverse a gray
and white matter boundary is shown for patient 31 (Figure 5A,
insets). Multiple 1.5-s segments of LFP data are shown overlaid
for each electrode. The amplitude of the LFP signal decreases in
the left-to-right direction as the electrodes move from a region of
gray matter to a region of white. A group comparison was also
performed between LFP amplitude (standard deviation) for gray
and white matter electrodes for 17 datasets (1066 total electrode
contacts, 456 white, 610 gray) (Figure 5B). Gray matter electrodes
had higher LFP amplitudes with a median and range of 33.4 (5.6–
248.7) µV than white matter electrodes with a median and range
of 21.6 (5.1–186.3) µV (KW test, df = 1, χ2 = 139.9, p = 2.8e-32).

In addition to gray and white matter comparisons, anatomical
localization was demonstrated in a single patient by comparing
the propagation of corticocortical evoked potentials (CCEPs)
during single-pulse stimulation with the anatomical labels
of the SPM Anatomy toolbox atlas as displayed in LeGUI
(Figure 6). Single-pulse stimulation (amplitude = 7.5 mA, pulse
width = 0.5 ms) was applied to an ECoG electrode in a 32-
channel grid (Ad-Tech FG32C-SP10X-000) over Brodmann area
45 in the left inferior frontal lobe (IFL). CCEPs were measured
on the remaining 31 electrodes of that grid, as well as 32
electrodes of another grid placed over the inferior parietal lobe
(IPL). The CCEP data was sampled at 1 kHz and filtered using
a 0.3–250 Hz Butterworth band-pass filter. Electrodes in PF
and PFm of IPL recorded CCEPs following stimulation in IFL

indicating a functional connection between the site of stimulation
and these areas. Structural connectivity between these areas has
been previously demonstrated with probabilistic tractography
(Caspers et al., 2011).

Finally, verification was further performed by comparing
hand labeling of six datasets (482 electrode contacts) from
two different institutions (University of Utah and University
of Washington) with the anatomical labels produced by LeGUI
using the NMM atlas. Hand labeling was performed by an
experienced neuroanatomist (K.W.). Out of the 482 electrode
contacts, labels from 353 electrode contacts (73%) assigned
by LeGUI matched the hand labels. These LeGUI labels were
based on the most common voxel type contained within a
1.3-mm radius sphere surrounding the electrode center (see
Materials and Methods). When grouped by region, LeGUI
showed high percentage matches (>80%) for amygdala, white
matter, hippocampus, and middle temporal gyrus (Figure 7A,
circles). LeGUI did not perform as well (<40%, >5 data points)
for lateral ventricle, medial postcentral gyrus, and superior
temporal gyrus. An example of the mismatch between hand
and LeGUI labels for five lateral temporal contacts is shown in
Figure 7B.

Importantly, in addition to the 1.3-mm radius labels, LeGUI
also generates a list of labels contained within a 1-cm sphere
around each electrode sorted by percent volume from highest to
lowest (see Materials and Methods). Using these labels (excluding
volumes <5% of the sphere), LeGUI matched 452 out of 482
hand labels (94%). When grouped by region, most labels showed
a 100% match (Figure 7A, asterisks).

DISCUSSION

Locate electrodes Graphical User Interface was designed to
be a fast and accurate tool for detecting and anatomically
localizing intracranial electrodes in patients undergoing epilepsy
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FIGURE 6 | Corticocortical evoked potentials (CCEPs) demonstrate a connection between the inferior frontal lobe (IFL) and the inferior parietal lobule (IPL).
Single-pulse stimulation was applied to an ECoG electrode in area 45 of IFL (white lightning bolts), and CCEPs were recorded in areas PF and PFm of IPL (blue
traces) demonstrating functional connectivity between these areas. These traces are overlaid for the purposes of this figure and are not a feature of LeGUI. Locations
were determined using a cytoarchitectural atlas (SPM Anatomy toolbox) by selecting electrodes and viewing the corresponding anatomical locations in LeGUI (upper
right). A custom colormap was used to color electrodes based on CCEP size (red = largest, blue = smallest). The colormap was loaded using a dropdown menu
provided in LeGUI (red arrow).

monitoring. Its versatility also allows for localization of multiple
types of chronically implanted intracranial electrodes, including
those used for deep brain stimulation (DBS) and responsive
neurostimulation (RNS). LeGUI has minimal dependencies and
few installation steps. Installation includes downloading the
compiled software executable for Windows, Mac, or Linux
platforms and downloading and installing the freely available
MATLAB runtime environment. It requires minimal knowledge
of medical imaging and has a short learning curve, making it a
useful tool for researchers with varying skillsets.

Though LeGUI has not been evaluated by regulatory bodies
(e.g., FDA), several features of LeGUI were designed for clinician
researchers. The initial image-processing, coregistration, and
segmentation steps are fast (∼30 min) relative to other software
packages (Blenkmann et al., 2017; Groppe et al., 2017; Qin et al.,
2017), making it suitable for the typical clinical workflow. For a
clinician, it is important to be able precisely localize electrodes to
understand how they interface with the nervous system. One of
the best ways to localize electrodes is to visualize their positions
relative to the anatomical imaging. Therefore, we emphasized
visualizations of the coregistered CT and MRI images in LeGUI.
The unique interactive split-screen design showing both 2D and
3D representations of electrodes relative to the brain makes

navigating and visualizing electrodes intuitive and efficient. Like
other clinical software packages (Gumprecht et al., 1999), both
the MRI and the CT images can be viewed in 2D, with the
ability to select sagittal/coronal/axial viewing planes as well as
scroll through slices using the keyboard or mouse. Brightness and
contrast (window-level and width) can also be adjusted with a
mouse drag over the image in both the vertical and the horizontal
directions, respectively. A slider at the bottom of the image fades
the MRI with respect to the CT, allowing for the visualization
of the accuracy of the coregistration step as well as the ability
to compare electrode location in the CT relative to the MRI.
Once electrodes have been detected, the 2D plot also displays
each electrode location embedded within the MRI for easy visual
inspection relative to MRI features.

After electrodes have been labeled, a SEEG lead can be rotated
to match the viewing plane (inline projection) so that all electrode
contacts within a lead can be viewed in the same slice plane
and easily visualized relative to surrounding MRI structures.
Information about selected electrodes, such as location relative
to the active atlas, gray/white classification, label, and channel
number, is displayed on the screen.

Locate electrodes Graphical User Interface comes bundled
with two atlases, the NMM atlas and the SPM Anatomy toolbox
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FIGURE 7 | Anatomical electrode labels generated by LeGUI closely match electrodes labeled by hand by an experienced neuroanatomist (K.W.). (A) Percent match
of LeGUI labels with hand labels grouped by NMM label type. Left and right hemisphere labeling was removed for clarity. Circles indicate percent match for LeGUI
labels generated using a 1.3-mm radius sphere around each electrode. Asterisks indicate percent match for labels generated using a 1-cm sphere (see Materials
and Methods). Numbers above each label indicate count. (B) Example of SEEG electrode labels for a lead placed into the left temporal lobe. Electrodes are shown
relative to the MRI (LeGUI inline projection feature) with the hand labels indicated above and LeGUI labels below (left). Electrodes are also shown relative to the NMM
atlas (right). A mismatch can be seen between the hand (STG) and LeGUI (MTG) labels for the 5 lateral contacts. These electrodes closely follow the border between
STG and MTG in the NMM atlas (right). ACgG, anterior cingulate gyrus; AIns, anterior insula; Amyg, amygdala; WM, white matter; Ent, entorhinal area; Hipp,
hippocampus; ITG, inferior temporal gyrus; ILV, inferior lateral ventricle; LV, lateral ventricle; MCgG, middle cingulate gyrus; MPoG, medial postcentral gyrus; MPrG,
medial precentral gyrus; MTG, middle temporal gyrus; PCgG posterior cingulate gyrus; PIns, posterior insula; SCA, subcallosal area; STG, superior temporal gyrus;
TMP, temporal pole; TTG, transverse temporal gyrus.

atlas. These atlases provide labels for both broad and more
specific regions of the brain, with specificity down to the level
of Brodmann areas. LeGUI also comes with the ability to
load custom MNI-registered atlases for users that need this
expanded capability.

Locate electrodes Graphical User Interface has several features
targeted to researchers and more advanced users. These features
include an intuitive and efficient interface for labeling electrodes
and assigning data channels for analysis, automatic electrode
detection, automatic electrode projection to the brain surface
for ECoG grids and strips, automatic electrode alignment for
electrode leads (SEEG, DBS, RNS), and the ability to manually
manipulate electrode location if the automated routines fail.
In addition, all data relating to the electrodes is saved to a
MATLAB (.mat) file for later use in analysis. This file includes
electrode location in patient space, electrode location in MNI
space, electrode location relative to each of the loaded atlases,

and electrode class (gray or white). All saved electrode data are
sorted by channel number, simplifying the link between localized
electrodes and the analysis of electrophysiological data. Many
groups still rely on manual techniques to anatomically label
electrodes (Sato et al., 2011; Lega et al., 2015; Zhao and Wang,
2018; Jiang et al., 2019; Zheng et al., 2019) or use different
software packages for each of the localization steps (Azarion et al.,
2014; Blenkmann et al., 2017; Groppe et al., 2017; Laplante et al.,
2017), which can lead to inconsistent results. Because LeGUI
contains all the steps needed for localization in a single interface,
it can help researchers establish a standardized pipeline that
produces consistent results and boosts overall productivity.

Other software packages incorporate some of the same
features as LeGUI, such as image coregistration and
normalization, automatic electrode detection, electrode
projection, anatomical labeling, and 2D and 3D visualizations of
electrodes relative to the imaging. However, to our knowledge,
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none of the available packages include all these features bundled
together in a single multifunctional interface that is available
across multiple operating systems. A comparison of features
of LeGUI with several other intracranial electrode localization
packages is provided in Table 1.

Most packages provide coregistration of the CT and MRI,
normalization of the MRI to a standardized space, and
segmentation of the different MRI tissue planes. These operations

are typically performed using FreeSurfer5 (Dykstra et al., 2012;
Gramfort et al., 2013; Blenkmann et al., 2017; Groppe et al.,
2017; Laplante et al., 2017; Narizzano et al., 2017; Qin et al.,
2017; Branco et al., 2018; Li et al., 2019), an open-source
software suite that is available for Linux and Mac environments
but not Windows. However, FreeSurfer is often run from the

5www.freesurfer.net

TABLE 1 | Comparison of intracranial electrode localization packages.

Name URL Features Testing/Performance Platform/Dependencies

LeGUI https://github.com/
rolston-lab/legui

– MR/CT coregistration
– MR normalization
– Automatic electrode detection
– Brain shift correction
– Electrode labeling
– Anatomical localization
– Custom atlases
– SEEG/ECoG compatibility
– 2D/3D visualizations
– Anatomical overlays
– Single unified GUI

– Tested on 51 datasets (5089 electrode contacts)
– ∼30 min user time, ∼30 min computer time
– Automatic electrode detection showed 93% true

positive rate
– Median brain shift correction (3.88 mm, n = 764,

ECoG only)
– Median SEEG correction (0.23 mm, n = 3726)
– Anatomical labels showed 73% (1.3-mm radius) or

94% (1-cm radius) match with hand labels by expert
– Gray/white classifications verified using

electrophysiology recordings
– Superior longitudinal fasciculus confirmed using

anatomical labels and cortico-cortical evoked
potentials

– Windows, Mac, Linux
– MATLAB Runtime

(executables), MATLAB
(source code), SPM
(bundled with software)

iElvis https://github.com/
epiSurg/EpiSurg

– MR/CT coregistration
– MR normalization
– Manual electrode detection
– Brain shift correction
– Anatomical localization
– ECoG compatibility
– 2D/3D visualizations
– Anatomical overlays

– Tested on 5–8 datasets
– 30–60 min user time, 12–24 h computer time
– Brain shift correction accuracy measured using

interoperative photographs (3-mm error, Dykstra
algorithm) or (0.74-mm error, Yang algorithm)

– Hand sensorimotor cortex confirmed using fMRI,
iEEG, and iEBS

– Mac, Linux
– MATLAB, FreeSurfer,

BioImage, FSL

ALICE https://github.com/
UMCU-RIBS/ALICE

– MR/CT coregistration
– Automatic electrode detection
– Electrode labeling
– Brain shift correction
– ECoG and high-density ECoG
– 2D/3D visualizations

– Tested on 17 datasets
– 30–60 min total processing time
– Locations compared to previous algorithm

(Hermes et al., 2010) showing 1.66-mm error
– High-density locations compared to intraoperative

photographs showing 1.01- and 1.94-mm error for 2
datasets, respectively

– Mac, Linux
– MATLAB, AFNI, Suma,

FreeSurfer

iElectrodes https://sourceforge.net/
projects/ielectrodes

– MR/CT coregistration
– MR normalization
– Semi-automatic detection
– Automatic electrode labeling
– Brain shift correction
– Anatomical localization
– SEEG/ECoG compatibility
– 2D/3D visualizations

– Tested on 22 datasets (1242 electrode contacts)
– 2–3 min per electrode array user time, ∼7 h computer

time
– Locations compared to expert manual evaluators with

0.56-mm error (5 datasets, 91 electrode contacts)

– Mac, Linux
– MATLAB, SPM,

FreeSurfer, FSL

iELU https://github.com/
aestrivex/ielu

– MR/CT coregistration
– Automatic electrode detection
– Automatic electrode labeling
– Brain shift correction
– SEEG/ECoG compatibility
– 2D/3D visualizations

– Tested on 12 datasets
– ∼30 min total processing time

Automatic electrode detection/sorting 94.8% true
positive rate (ECoG only)

– Mac, Linux
– Python, chaco,

matplotlib, Mayavi,
MNE-python, nibabel,
PySurfer, PyMCubes,
FreeSurfer

iEEGView https://github.com/
GuangyeLiGit/
iEEGview.git

– MR/CT coregistration
– MR normalization to MNI and

FreeSurfer standard spaces
– Semi-automatic detection
– Brain shift correction (ECoG + SEEG)
– Electrode labeling
– Anatomical localization
– SEEG/ECoG compatibility
– 2D/3D visualizations

– Tested on 28 datasets (3756 electrode contacts)
– 30–60 min user time, 8–24 h computer time
– Average brain shift correction for ECoG (3.71 mm,

n = 568) and SEEG (0.89 mm, n = 32)

– Mac only
– MATLAB, FreeSurfer
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command line, making it difficult to install and use for the
novice user. Additionally, although FreeSurfer can perform the
normalization and provide detailed segmentations of the MRI,
including segmentation of subcortical structures, these processes
can take up to 24 h to complete (Groppe et al., 2017). In contrast,
the image-processing steps in LeGUI are done using SPM,
which is written in the MATLAB programming language and
take approximately 30 min to complete. Because all operations
are performed in the background and are controlled using a
simple user interface, even novice users can process a dataset.
Further, standalone executables are provided for LeGUI, so users
without an active MATLAB license can still run the program.
As part of the image-processing steps, LeGUI also provides the
option to align the images to ACPC space. ACPC alignment
can be performed with FreeSurfer; however, this is typically not
incorporated as an option into most packages.

Automatic electrode detection has the potential to
significantly decrease user time if the detection sensitivity
and accuracy are high. Some packages include automatic
detection as a feature (Laplante et al., 2017; Qin et al., 2017;
Branco et al., 2018); however, some of these packages can detect
only ECoG surface or SEEG depth electrodes, but not both.
Several groups have developed new methods or algorithms to
improve detection sensitivities and accuracies (Ekstrom et al.,
2008; Granados et al., 2018; Hinds et al., 2018; Centracchio et al.,
2021), but these algorithms are standalone and have yet to be
included in a full-featured software package.

Locate electrodes Graphical User Interface includes an
algorithm for automatically detecting electrodes that performs
well for electrodes of different types, sizes, and spacings. This
algorithm works by searching for the optimal threshold unique
to each dataset. Detection performance was found to be similar to
other automated algorithms (Laplante et al., 2017). Performance
was better for Ad-Tech SEEG electrodes than for ECoG grids
and strips and Dixi SEEG electrodes. The difference for grids and
strips is likely due to the frequent overlap and more complex
geometry of these implants. Several of our datasets contained
a grid and multiple overlapping strips, making it difficult to
distinguish between the individual overlapping electrodes or
contacts. We also had a dataset where a grid and strips were
passed into the interhemispheric fissure on both the right and
left side of the brain, resulting in a similar overlap condition
(P5). Grids and strips were also found to have interconnecting
wires that produced more prominent artifact in the CT, resulting
in false detections. The decreased performance for Dixi SEEG
is likely due to the smaller contact size (0.8-mm vs. 0.86-mm
diameter; 2-mm vs. 2.29-mm length) and spacing (3.5 mm
vs. 5 mm). Detection sensitivity was also lower for leads
placed perpendicular to the slice plane (i.e., superior/inferior
leads for an axial-sliced image), a dimension that typically
has a lower resolution (1 mm/vox vs. <0.5 mm/vox). We
found that a slice resolution of 0.6 mm and a bone window
setting worked best to detect these electrodes. We also found
that detection performance along the slice dimension for Dixi
electrodes could be improved by increasing the detection
threshold. However, increasing this threshold resulted in more
false-negative detections and an overall decrease in the detection

sensitivity, suggesting the need for multiple thresholds within
a single dataset. In general, we found that optimal thresholds
for all 48 datasets produced a bimodal distribution with peaks
that differed by approximately 1000 HU. This suggests that a
single threshold applied to any arbitrary dataset has nearly a 1
in 2 chance of producing suboptimal detection results. Future
improvements to the detection algorithm might include the use
of multiple thresholds within a single dataset, as well as prior
knowledge of the geometry of the implanted electrodes to further
improve the sensitivity and minimize false electrode detections.

Many packages include the option to project ECoG electrodes
to the preimplant brain surface to account for brain shift from
surgery (Blenkmann et al., 2017; Groppe et al., 2017; Hamilton
et al., 2017; Laplante et al., 2017; Qin et al., 2017; Branco
et al., 2018; Li et al., 2019). There are several algorithms that
are used to accomplish this task that vary from projection
along a local normal vector to the electrode (grid) surface
(Hermes et al., 2010) to energy-minimizing algorithms that seek
to maintain intercontact spacing during the projection process
(Dykstra et al., 2012) or algorithms that use a surface-based
grid of regions of interest to guide the projection (Trotta et al.,
2018). LeGUI provides electrode projection using a well-known
algorithm that projects in the direction of the local normal
vector to the electrode (grid) surface (Hermes et al., 2010). It
also includes the option to manually project if the automated
method fails. Projection distances were found to be similar
to those reported in the literature (Li et al., 2019). However,
the intercontact spacing was not strictly preserved during both
automated and manual projection, leading to a slightly expanded
representation of a grid or strip. This was more pronounced
if the grid or strip contained regions of large curvature (i.e.,
partially inserted into a sulcus) or was being projected onto
a region of the surface with large curvature. Because these
errors can be easily visualized in LeGUI, corrections can be
made using the manual features on an electrode-by-electrode
basis. Future improvements might include incorporating more
advanced algorithms for projecting electrodes that seek to
preserve intercontact spacing (Dykstra et al., 2012).

Additionally, LeGUI has a feature to correct intercontact
spacing and alignment of SEEG leads based on the known
geometry of the lead. Errors in spacing can arise from poor-
quality CT scans or voxel-related rounding errors during the
detection process. Correcting lead geometry is important when
creating models of the electrodes and surrounding brain tissues
for estimating activation volumes during stimulation or for signal
source localization during recording. This type of correction
performed well on the 38 SEEG datasets that were tested, showing
a median correction magnitude of 0.23 mm (Figures 4C,D).
This amount of correction is approximately half of the image
resolution (0.4 mm/voxel), suggesting that most of the correction
is accounting for rounding errors due to the voxelization of the
images. A few failure modes were observed for the correction
process across these datasets. Correction was observed to fail
when the first electrode/contact of an SEEG lead was not aligned
well with the corresponding CT artifact. This behavior is expected
because the algorithm begins at the first contact and assumes
that it is properly aligned with the CT. Correction also failed
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if the SEEG lead contained a large bend. For some leads, the
correction process was observed to slightly expand or contract
the electrodes, leading to a mismatch with the CT image. This
happened infrequently and is likely a result of compounding
correction errors as the algorithm moves up the contacts in a lead
because of a slight mismatch between the known intercontact
spacing and the actual spacing within the CT image. Future
improvements to this algorithm might include fitting electrodes
to functions with some curvature to account for bends in a
lead and remove the dependency on the first electrode similar
to the approach taken by another group (Granados et al.,
2018). The side-by-side display of 2D and 3D images in LeGUI
facilitates comparison of reconstructed electrodes with the raw
images, aiding in the user’s recognition of any alignment and
projection errors.

Anatomical localization of electrodes using brain atlases can
provide important information about the location of electrodes
relative to surrounding brain structures. This information can be
used to estimate the source of signals that are recorded on the
electrodes or to predict the brain regions that might be activated
when stimulation is applied to those electrodes. Most packages
include anatomical localization using one or more bundled
atlases and provide some type of anatomical overlay so electrodes
locations can be visualized relative to the different regions of
each atlas (Blenkmann et al., 2017; Groppe et al., 2017; Li et al.,
2019). However, some packages do not provide this feature,
requiring the user to perform the normalization step separately
and transform the electrode coordinates to this standardized
space on their own (Laplante et al., 2017; Branco et al., 2018).
Further, most packages come bundled with a fixed set of atlases
and do not provide the option of importing new custom atlases.

Locate electrodes Graphical User Interface provides
anatomical localization of electrodes for two atlases that
come bundled with the software (NMM and SPM Anatomy
toolbox). In addition, LeGUI allows the user to import any
MNI-registered atlas that might be of interest. This is a valuable
feature for researchers who are studying specific regions of
the brain and need more detailed maps of those areas. LeGUI
also provides a rich set of visualizations including overlays of
each of the imported atlases and the ability to rotate the images
so electrodes can be viewed in a single 2D slice plane (inline
projection), further enhancing the user’s ability to reconstruct
electrode positions within a complex 3D space.

Anatomical localization of the electrodes in LeGUI is
performed by finding the most common labeled voxel within an
electrode sphere for the selected MNI-registered atlas. Voxels are
warped from patient space to atlas space using the deformation
fields that are generated by SPM during the normalization step.
Validation was performed by comparing anatomical electrode
labels from LeGUI to labels that were manually assigned by an
experienced neuroanatomist. This comparison demonstrates that
the automatic labels from LeGUI are similar to hand labeling
by an expert, representing a significant savings in time and
labor. Overall, LeGUI performed well, with a high percentage
match to the manual labels for most brain regions. However,
performance was lower for some brain regions, such as the medial
postcentral gyrus and superior temporal gyrus (Figure 7A).

Potential methodological discrepancies or partial volume effects
between the two labeling approaches may account for these
differences. Performance improved when the probabilistic atlas
labels generated by LeGUI were used to find a match. These
labels contain a list of volumes occupied by nearby anatomical
regions within a 1-cm radius sphere around each electrode.
The 1-cm radius was chosen to provide a conservative search
volume for estimating potential sources of signals recorded
on an electrode. Low frequency signals can have sources as
distant as 1 to 2 cm from an electrode (Muller et al., 2016).
The hand labeling was primarily limited to temporal lobe and
mid-line limbic structures due to the vast gyral complexity
of human prefrontal and parietal association cortices in 2D.
While limited in scope, the hand labeling shows that the
SPM normalization step was successful and that the non-
linear transforms from patient to MNI space in LeGUI have
been properly implemented. Additional labeling using locations
outside these areas would only further validate SPM, an already
well-established and highly cited software package for medical
image processing. However, because labels outside these areas
were not formally evaluated, the level of uncertainty is unknown.
Validation was also performed by comparing evoked potentials
during single-pulse electrical stimulation with corresponding
labels from LeGUI for a single dataset (P15) (Figure 6). This
comparison demonstrated a functional connection between the
inferior frontal lobe (Brodmann area 45) and the inferior
parietal lobule (PF and PFm), which is a known connection
(superior longitudinal fasciculus) that has been validated using
structural connectivity metrics (Caspers et al., 2011; Barbeau
et al., 2020). LeGUI assigns a gray or white classification to
electrodes based on the most common voxel type within the
electrode sphere taken from the SPM gray and white segmented
images. This was validated by showing that electrodes classified
as white matter exhibited lower-amplitude electrophysiological
recordings when compared with electrodes classified as gray
matter (Figure 5). These results all support the accuracy of
electrode localization using LeGUI.

Locate electrodes Graphical User Interface is a modular
software program. As new or more efficient methods of
electrode localization, anatomical localization, and visualization
are created, LeGUI can incorporate these methods as optional
or standard algorithms. This modularity is already present in the
software’s ability to dynamically add atlases and remap electrode
labels. As usability was a major concern in the development of
LeGUI, feedback has been actively solicited internally and across
institutions. Feedback from users has already led to significant
improvements in layout, workflow, and feature availability. To
encourage a larger base of users and continue to improve LeGUI,
additional resources like video and written tutorials and local
workshops will be planned.

CONCLUSION

Locate electrodes Graphical User Interface has been optimized
for speed and ease of use, making it suitable for a wide range
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of users with varying levels of experience in medical imaging
and image processing. The visualizations and user interactions
that are incorporated into LeGUI allow for a seamless and
intuitive exploration of the image space, resulting in efficient
localization of electrodes. Many automated routines have been
included to further optimize the task of localizing electrodes,
such as automatic electrode detection, ECoG electrode projection
to correct for brain shift, and SEEG lead alignment. If the
automated routines fail, the ability to manually detect and
reposition electrodes has been included as an alternative. Finally,
the location of electrodes relative to common MNI-based atlases
and the ability to load custom atlases has been included. All of
these features combined together into a single interface make
LeGUI a valuable tool for both clinicians and researchers.
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