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Visualizing the orientational dependence of an
intermolecular potential
Adam Sweetman1, Mohammad A. Rashid1, Samuel P. Jarvis1, Janette L. Dunn1, Philipp Rahe1 & Philip Moriarty1

Scanning probe microscopy can now be used to map the properties of single molecules with

intramolecular precision by functionalization of the apex of the scanning probe tip with a

single atom or molecule. Here we report on the mapping of the three-dimensional potential

between fullerene (C60) molecules in different relative orientations, with sub-Angstrom

resolution, using dynamic force microscopy (DFM). We introduce a visualization method

which is capable of directly imaging the variation in equilibrium binding energy of different

molecular orientations. We model the interaction using both a simple approach based around

analytical Lennard–Jones potentials, and with dispersion-force-corrected density functional

theory (DFT), and show that the positional variation in the binding energy between the

molecules is dominated by the onset of repulsive interactions. Our modelling suggests that

variations in the dispersion interaction are masked by repulsive interactions even at

displacements significantly larger than the equilibrium intermolecular separation.
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T
he nature of intermolecular interactions underpins a vast
array of physical and chemical phenomena, and is a
scientific theme that straddles the disciplines of physics,

chemistry and biology. Particular impetus has been given to the
study of intermolecular forces at the single-molecule level due to
the stunning advances in ultrahigh resolution scanning probe
imaging pioneered by Gross et al.1. Three-dimensional (3D) force
maps were acquired over planar organic molecules that bore a
striking resemblance to the classic textbook ‘ball-and-stick’
models. These advances were first realized via the controllable
functionalization of the scanning probe tip with a single
pre-selected atom or molecule, which provides a unique level of
control with which to investigate the atomic and molecular scale
properties of matter, and also helps to eliminate the most
troublesome aspect of scanning probe experiments, that is, the
uncertainty surrounding the tip structure.

Although this tip functionalization strategy is now commonly
applied to single CO molecules to allow intramolecular
imaging1,2, the technique has application well beyond imaging,
and similar protocols have also been used to study the
electronic3,4 and mechanical5 properties of single molecules
trapped in the tip-sample junction, and to quantitatively measure
intermolecular interactions6–8. There has also been considerable
interest centred around the possibility of using this technique to
directly visualize intermolecular interactions9, although
considerable debate surrounds the interpretation of these
results2,10–12.

In this paper, we discuss the results of a series of experiments—
and their interpretation on the basis of both simple analytical
potentials and DFT—that map the orientational dependence of
the 3D potential between two-complex molecules. By measuring
the full 3D potential we are able to apply a novel visualization
method that directly shows the variation in the equilibrium
binding energy for the molecular system for different relative
orientations of the molecules. We also discuss the feasibility of
detecting the variation in dispersion forces due to molecular
rotation via DFM.

Results
Experimental results. Figure 1 shows representative constant
height Df images, taken from a 3D grid, acquired at decreasing
tip-sample separation over three surface-adsorbed C60 molecules
in different orientations, using a C60-terminated tip.

At larger separations a featureless circular attractive interaction
is observed (Fig. 1b), but on closer approach intricate
intramolecular features are resolved (Fig. 1c,d), followed by their
intense ‘sharpening’ (Fig. 1e,f). This evolution in contrast is
similar to the onset of sub-molecular features during imaging of
planar molecules with flexible tips1,12. However, because in this
experiment both molecules have a complex structure, the
intramolecular features in these images cannot be easily
assigned to the molecular structure of the surface molecule as is
the case for images taken with simple (that is, atomic point-like)
tip terminations.

Converting the acquired Df grid into a map of potential allows
us to create similar constant height images of the tip-sample force
and potential (Fig. 2a,b and Supplementary Fig. 1). Although
constant height slices of force and energy provide the closest
visual analogue to how the data are collected, these images
necessarily conflate the value of the tip-sample energy and the
topographic height of the molecule at a given position.
Consequently, topographically higher features dominate the
constant height image due to their being effectively shifted in z,
even if the range of energies at these positions is identical to other
locations over the molecule.

Representative single U(z) curves may be extracted (Fig. 2c)
and allow a selection of the energy minimum values at different
positions to be observed, but this is an indirect, and not
necessarily intuitive, method of analysing the variation in
intermolecular potential across the molecules.

In Fig. 2d, we instead show an image constructed by searching
each vertical column in the 3D data set (that is, each U(z) curve)
for the value of the potential energy minimum, and then
projecting this minimum value over the xy plane of the grid,
which we hereafter refer to as a ‘Umin’ image. This provides an
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Figure 1 | Experimental data acquisition protocol. (a) cartoon showing the method of data acquisition for 3D potential mapping—a single C60 molecule

is attached to the tip of the scanning probe microscope and brought close to a group of surface-adsorbed molecules. Constant height scans are

acquired at decreasing tip-sample separation, with active drift compensation between each scan, and the variation in the frequency shift Df measured.

(b–f) representative Df images (in Hz) at decreasing tip-sample height. Tip-sample heights shown for each image are given relative to the Df set point used

for atom-tracking over the molecule. The slightly different z heights for the two data sets result from the slightly different tracking heights used in each

case. Image sizes: 3.5� 2.2 nm2 and 2.5� 2.5 nm2.
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immediate and intuitive way of visualizing the strength of the
equilibrium interaction as the relative position of the tip- and
sample-adsorbed molecules is varied. We note that, because of the
near-unique high-rotational symmetry of the C60 molecules,
displacements in the xy plane should be equivalent to changes in
rotational orientation.

We highlight here that some care must be taken in the
interpretation of these images, as the value of the minimum in the
potential energy curve only has a directly interpretable
physical meaning when the actual minimum of the potential is
present in a given U(z) curve (that is, the turn-around in the U(z)
curve is present in the data set). If the minimum is not reached,
then the closest point of approach will usually be identified as
the minimum value. We therefore also map the height of the
potential energy minimum in terms of z, which yields a
complementary map of zmin. By masking the Umin map with
the zmin map we can exclude those curves which do not
contain the U(z) turn-around, and visualize only the region of
the image, which can be interpreted directly as representing
the intermolecular interaction minimum (Fig. 2f). Application
of this visualization technique also reveals a gradient in the
value of the minimum in the potential across the molecule, most
likely related to an asymmetric mounting of the molecule on the
tip. Since this gradient directly affects the spread in the energy
values we therefore only discuss the variation observed in the
region located over the centre of the molecule, where the
variation due to the gradient is small compared to the variation
produced by the changes in molecular orientation
(Supplementary Figs 16–18).

The same technique may also be applied to the 3D force field
and raw 3D Df measurements (see Supplementary Fig. 3).
Although these maps do not have such a direct physical
interpretation as for the minimum in the potential, they still
provide an extremely powerful technique for visualizing the
relative interaction over the molecule. Interestingly, we note a
strong qualitative similarity in the appearance of these images and
recent data acquired using a profile-corrected constant height
technique by Moreno et al.13. We also note that Mohn et al.14

recovered a pssuedo-topographic Df image from a 3D data set,
and experimentally it has been shown how to operate in the
Df¼ 0 regime15, which might, in principle, produce similar
imaging if applied to intermolecular measurements. Critically,

however, none of these earlier works directly measured and
visualised the physical quantity of interest here: the variation in
the value of the minimum in the intermolecular potential.

Our data demonstrate that as the relative orientations of the tip
and surface C60 molecules are varied the potential minimum
between the two molecules varies of the order 60 meV. A key
question is therefore—what is the origin of this variation?
A common approach to evaluating the C60–C60 intermolecular
interaction is to model molecular energy variation using the
Girifalco potential7,16, but this simplified model assumes a
uniform spherical interaction, and does not give any
information about sub-molecular variation in the potential. In
particular, given the extended 3D nature of the molecule, it is not
immediately clear how the attractive and repulsive components of
the intermolecular potential contribute to the variation in the
magnitude, and position, of the energy minimum. Following
recent studies investigating the variation in dispersion force as a
function of molecular size6, there is also an open question as to
whether the difference in the dispersion interaction can be
observed for changes in the orientation of extended molecules.
C60, with its near-spherical symmetry represents a particularly
important test bed for this hypothesis.

Computational results. To interpret our results, we modelled our
experimental system with two different approaches (as described
in the Methods section). First, we used a simple Lennard–Jones
(L–J) potential for two C60 molecules, coupled with a modified
version of the flexible tip model introduced by Hapala et al.12, to
simulate the C60 interaction. The simple nature of the model
means that it is computationally inexpensive and thus can be
exploited to generate high-resolution 3D data sets of comparable
data density to those we obtain experimentally (Fig. 3d–g).
Second, to test the validity of our empirical model, we compare
the results of the L-J calculations to simulations of the same C60–
C60 interaction performed using the ab initio CP2K DFT code.
The significant computational cost of the ab initio simulations
precludes the calculation of a full 3D grid as for the L–J
simulations, and we therefore instead compare 2D xz slices taken
across the centre of the molecule–molecule interaction (Fig. 3b,c).
In this comparison, we modelled a prototypical high symmetry
orientation (hexagon face on hexagon face, hereafter referred to as
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Figure 2 | Experimental measurement of variation in potential between C60 molecules in different orientations. Constant height images of (a) force

(in nN) and (b) energy (in eV). (c) Representative U(z) curves taken at different positions across the left hand C60 molecule, dotted line shows the height

of the force and energy slices shown in a,b. (d) Image showing the variation in the value of the energy at the minimum in the U(z) curve (in eV) at each

position in the grid. The positions of the curves shown in c are marked. (e) As for d but showing instead the z height at which the minimum occurs, note

that the black regions indicate parts of the grid where the minimum is found at the lowest tip-sample separation (that is, no turnaround detected).

(f) Variation in energy minimum masked using the minimum in z position. Red shading indicates locations where the minimum in the intermolecular

potential is not present in the U(z) curve.
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Hex–Hex) for the two molecules using both simulations methods.
In general, we find good agreement between the two techniques,
noting in particular that the potential gradients in both the
attractive and repulsive branches of the potential curve are very
similar. We do, however, observe some quantitative differences
between the empirical L–J simulations and ab initio DFT.
Specifically, for the L–J parameters chosen (Ea ¼ 2:5 meV and
ra¼ 1.966 Å (ref. 16)), the maximum depth and width of the well
is slightly larger that for the DFT simulations, as is the variation in
the range of Umin (DUmin for L–J xz plot B50 meV compared
with B20 meV for the DFT xz plot over the same range
(Supplementary Figs 20–22)). We note, however, that variation in
the positions of the minimum is almost identical (DZmin for L–J
xz plot B0.09 nm, compared with DZminB0.11 nm for the DFT
xz plot). Furthermore, it is clear that tuning the choice of L–J
parameters based on the DFT results could improve the
quantitative agreement between the two simulation methods,
but here we prefer to use those L–J parameters derived from
previous experimental work and which are also consistent with
our earlier publications, rather than arbitrarily adjusting the L–J
parameters. These results imply that while the L–J model is a
simplification of the complex intermolecular interaction, it
nonetheless appears to be sufficient to model much of the
essential physics underpinning the variation in intermolecular
potential.

Although we stress that the high-symmetry Hex–Hex
configuration used in the simulations is not the configuration
of the C60 molecules in the experimental data set shown in Fig. 2,
we nonetheless observe a number of qualitatively similar features
in both the simulations and experiment. In particular, the
simulations reproduce the ‘sharpening’ of the features observed in

the constant-height experimental images, in line with the
sharpening reported for CO-terminated tips. In addition, the
appearance of the simulated Umin image is qualitatively similar to
that acquired in the experiment, which reveals the complex
variation in potential minimum as the molecular positions are
varied. Interestingly, the L–J simulations overestimate the depth
of the potential relative to the DFT calculations, but better
reproduce the variation in Umin observed experimentally, with a
variation of B50 to 60 meV in the Umin image depending on
molecular orientation (Supplementary Figs 16–18). We also note
that simulations performed with other tip-sample molecular
configurations, such as those found for C60 adsorption on the
Si(111)-7� 7 substrate, produce much more complex patterns in
the constant height, and Umin, images (see Supplementary
Figs 7–13), qualitatively similar to those observed experimentally.

Discussion
Because of the simple additive, and analytical, nature of the L–J
model, it is possible to decompose the interaction into its
attractive and repulsive components, and ascertain if we might in
principle be able to observe rotational variation in the dispersion
interaction between the C60 molecules. To assess the relative
influence of the repulsive and attractive elements of the potential
on the value of the potential minimum we investigated the change
in the potential for several orientations of the tip and sample C60

(Fig. 4a). We then plot the modulus (i.e. the absolute value) of the
differences in the total energies, and the separate energies from
the r6 and r12 terms, between these orientations and the high
symmetry ‘Hex–Hex’ configuration (Fig. 4b), and then extract the
differences in these DUr6 and DUr12 terms (Fig. 4c). Specifically,
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we define DUr6j j � DUr12j j as the modulus of the difference of the
DUr6 term (between the stated orientation and the Hex–Hex
orientation), minus the modulus of the difference in the DUr12

terms (between the stated orientation and the Hex–Hex
orientation).

This quantity gives the relative influence of the two terms in
defining the difference in the energy curves between the two
orientations. If the difference in r6 terms at a given separation is
greater (that is, dispersion forces vary significantly between
different orientations), then this quantity will be positive. If the
difference in r12 terms is large (that is, Pauli forces vary
significantly between different orientations), then it will be
negative. If both quantities contribute equally to the difference in
energy, then the term will be approximately zero. Surprisingly, we
observe that the difference is negative and, consequently, the
differences observed in the total energies, even in the part of the
well where the potential gradient is positive, are dominated by
repulsive interactions. Here we wish to make it explicitly clear
that, for intermolecular separations greater than the equilibrium
value (that is, before the energy ‘turn-around’), the magnitude of
the r6 term is indeed larger in all cases, and dominates the r12

term, but that contribution of the r6 term is very similar for all the
orientations.

It must be noted, however, that the interplay between the two
terms is somewhat subtle. If we examine the ratio of the
differences (Fig. 4d), then it is clear that the r6 term does begin to
dominate the difference in the energies at around 1.06–1.1 nm
separation. However, by reference to (Fig. 4c) it becomes clear
that at this separation the difference in the potentials is o5 meV,
that is, below our experimental sensitivity. Therefore, our

modelling suggests that at the point at which the potential curves
for different orientations become experimentally distinguishable,
the difference between them is dominated by repulsive, rather
than dispersive, interactions. As such it seems likely that although
the magnitude of the variation in energy due to the variation in
dispersion interaction under rotation of the molecule might
in principle be within the noise limit of current DFM techniques,
its direct measurement will always be hindered by the intrinsic
convolution of the variation in energy due to repulsive forces,
even at intermolecular separations significantly greater than the
equilibrium value, where the gradient in the potential is positive.

We have presented 3D mapping of the variation in
intermolecular interaction under changes in rotational
orientation of a complex molecule with sub-Angstrom resolution
via the functionalization of a scanning probe tip. Using a novel
visualization method we can directly observe the variation in the
value and position of the minimum of the potential energy as the
orientation of the molecules is varied. By comparison of our
results to both simple analytical and ab initio simulations, we are
able to show that the variation in binding energy across the
molecule is dominated by the onset of repulsive interactions
between the front-most parts of the molecules. Surprisingly, we
also find that variation in the net attractive part of the potential
due to rotation of the molecules is still dominated by the repulsive
forces, and the majority of the molecule only adds a
uniform background to the potential. We anticipate that similar
experimental techniques to those described here could be utilized
to intuitively visualise the reactivity across complex interatomic
and intermolecular potentials, including molecules with polarized
or hydrogen bonding end groups.
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Methods
Experimental methods. Clean Si(111)-7� 7 surfaces were prepared by flash
annealing a silicon wafer to 1,200 �C, rapid cooling to 900 �C and then slow cooling
to room temperature. A low coverage of C60 was prepared by depositing the
molecules from a home made tantalum pocket deposition source onto the room
temperature substrate. Post-deposition, the sample was transferred into the scan
head of an Omicron Nanotechnology LT DFM operating in UHV at cryogenic
temperatures, and left to cool to 5 K before imaging.

Commercial qPlus sensors (Omicron Nanotechnology GmbH) with
electrochemically etched tungsten wire tips were introduced into the scan head
without any further preparation. The sensors were first prepared on clean Si(111)-
7� 7 surfaces by standard STM techniques until good STM/DFM resolution was
achieved. Single C60 molecules were transferred to the tip by close approach to
surface-adsorbed molecules, and the functionalization of the tip was checked by
inverse imaging of the tip adsorbed molecule on the surface adatoms
(Supplementary Figs 2,4 and 5)7. In all experiments an oscillation amplitude (A0)
of 110 pm was used, and the tip-sample bias was set to 0 V. Three-dimensional Df
volumes over the molecules were collected via the ‘slice’ method17 and site specific
(short-range) Df values were extracted using the ‘on–off’ method18,19 then
converted to potentials using the Sader–Jarvis algorithm20. Due to the long
acquisition times required, residual thermal drift and piezoelectric creep were
corrected using a custom atom-tracking and scripting setup21,22. Further details on
the experimental setup, data processing steps and additional experimental data sets
may be found in the Supplementary Methods.

Flexible tip model and simulated spectroscopy procedure. To simulate DFM
images, we adapted the method proposed by Hapala et al.12 to model the
interaction between a sample and a CO-functionalized DFM tip. In our simulation
the functionalized tip is assumed to consist of a tip base (outermost atom of the tip)
and a probe. The probe is the flexible end of the model tip, and is allowed to move
around the tip base. In our simulation, the probe is a C60 molecule consisting of 60
carbon atoms acting as a single effective probe particle attached to the tip base
(Supplementary Fig. 6). Each atom in the probe experiences three forces; (i) a
Lennard–Jones (L–J) force due to the tip base, (ii) a sum of all pairwise L-J forces
due to interactions with atoms in the sample and (iii) a lateral harmonic force from
the tip base. The net force on the probe is calculated by summing up all the forces
experienced by each atom on the probe. The L–J interactions between atoms a and
b are written as

Fab Rð Þ ¼ 12EabR
r12
ab

r14
�

r6
ab

r8

� �
ð1Þ

Uab rð Þ ¼ Eab
r12
ab

r12
�

2r6
ab

r6

� �
; ð2Þ

where r¼ |R| is the distance between atoms a and b, Eab ¼
ffiffiffiffiffiffiffiffi
EaEb
p

is the pair-
binding energy and rab¼ raþ rb is the equilibrium separation of the two atoms
with Ea and ra being the atomic parameters. In our calculations the L–J parameters
for the carbon atoms were set to Ea ¼ 2:5 meV and ra¼ 1.966 Å to ensure
consistency with the work of Girifalco et al.16 and our own earlier work7.
For the tip base a value of ra¼ 5.0 Å was chosen, in order to take into account the
larger size of the C60 molecule. The probe lateral stiffness and apex L–J parameter
were set to kxy¼ 0.5 N m� 1 and Ea ¼ 1; 000 meV, respectively (Supplementary
Figs 14–15). We acquired the simulation data by scanning the sample laterally
with a step of Dx, Dy¼ 0.1 Å. At each lateral position we placed the tip base
at an initial separation z0¼ 22 Å from the surface molecule and approached the
sample (in our simulations another C60 molecule) in steps of Dz¼ 0.1 Å until
z¼ 17.5 Å allowing the probe position to be relaxed at each step due to the
combined force of the sample and tip base. Note, however, that for ease of
comparison to the DFT simulations all molecular separations discussed in the
paper are given relative to the initial vertical core-core separation of the probe C60

from the surface C60.

Density functional theory. DFT calculations were performed using the same
initial high symmetry geometry (as described in main text) as the L–J simulations
using the open source CP2K/Quickstep code23,24 utilising a hybrid Gaussian and
plane-wave method25. Goedecker, Teter and Hutter pseudopotentials26 and the
Perdew Burke Ernzerhof generalized gradient approximation method27 were used
with a 300 Ry plane-wave energy cutoff. To account for dispersion interactions we
employed the Grimme DFT-D3 method28, which well reproduced the C60–C60 pair
potential (Supplementary Fig. 19) A double-zeta Gaussian basis set plus
polarization (DZVP-MOLOPT)29 was used with a force convergence criterion for
geometry relaxation of 0.05 eV Å� 1. Geometry relaxation was carried out by
allowing all atoms to relax other than the hexagonal faces of each molecule furthest
apart from one another (to simulate attachment to the surface/tip).
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