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ABSTRACT
Background. AP2/ERF transcription factors are involved in the regulation of plant
growth, development, and stress responses. Our research objective was to characterize
novel apple (Malus × domestica Borkh.) genes encoding AP2/ERF transcription
factors involved in regulation of plant growth, development, and stress response. The
transcriptional level of apple AP2/ERF genes in different tissues and under various
biotic and abiotic stress was determined to provide valuable insights into the function
of AP2/ERF transcription factors in apple.
Methods. Thirty full-length cDNA sequences of apple AP2/ERF genes were isolated
from ‘Zihong Fuji’ apple (Malus × domestica cv. Zihong Fuji) via homologous
comparison and RT-PCR confirmation, and the obtained cDNA sequences and the
deduced amino acid sequences were analyzed with bioinformatics methods. Expression
levels of apple AP2/ERF genes were detected in 16 different tissues using a known array.
Expression patterns of apple AP2/ERF genes were detected in response to Alternaria
alternata apple pathotype (AAAP) infection using RNA-seq with existing data, and the
expression of apple AP2/ERF genes was analyzed under NaCl and mannitol treatments
using qRT-PCR.
Results. The sequencing results produced 30 cDNAs (designated as MdERF3-
8, MdERF11, MdERF16-19, MdERF22-28, MdERF31-35, MdERF39, MdAP2D60,
MdAP2D62-65, and MdRAV2). Phylogenetic analysis revealed that MdERF11/16,
MdERF33/35, MdERF34/39, and MdERF18/23 belonged to groups A-2, A-4, A-5, and
A-6 of the DREB subfamily, respectively; MdERF31, MdERF19, MdERF4/25/28/32,
MdERF24, MdERF5/6/27, and MdERF3/7/8/17/22/26 belonged to groups B-1, B-
2, B-3, B-4, B-5, and B-6 of the ERF subfamily, respectively; MdAP2D60 and
MdAP2D62/63/64/65 belonged to the AP2 subfamily; and MdRAV2 belonged to the
RAV subfamily. Array results indicated that 30 apple AP2/ERF genes were expressed
in all examined tissues to different degrees. RNA-seq results using previously reported
data showed that many members of the apple ERF and DREB subfamilies were induced
by Alternaria alternate apple pathotype (AAAP) infection. Under salt treatment, many
members in the apple ERF and DREB subfamilies were transcriptionally up or down-
regulated. Under mannitol treatment, many members of the apple ERF, DREB, and
AP2 subfamilies were induced at the transcriptional level. Taken together, the results
indicated that the cloned apple AP2/ERF genes were expressed in all examined tissues.
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These genes were up-regulated or down-regulated in response to AAAP infection and to
salt or mannitol treatment, which suggested they may be involved in regulating growth,
development, and stress response in apple.

Subjects Agricultural Science, Bioinformatics, Genetics, Genomics, Plant Science
Keywords Sequencing, Expression analysis, Apple, AP2/ERF transcription factors, Abiotic stress,
Biotic stress

INTRODUCTION
AP2/ERF is one of the large transcription factor families in plants that is involved in many
biological processes, such as plant growth, development, and environmental stress (Chuck et
al., 2002; Aharoni et al., 2004; Broun et al., 2004; Mizoi, Shinozaki & Yamaguchi-Shinozaki,
2012). Each AP2/ERF contains the AP2/ERF conserved domain that consists of 60–70
amino acid residues, which results in the name for the AP2/ERF family. The AP2 domain
regulates the expression of target genes by binding to the GCC-box (Ohme-Takagi &
Shinshi, 1995), the dehydration responsive element (DRE) (Sun et al., 2008; Guttikonda et
al., 2014), and/or the TTG element (Wang et al., 2015). The AP2/ERF family is divided into
three subfamilies (AP2, ER, and RAV) based on the similarity of amino acid sequences
and number of conserved domains (Nakano et al., 2006). There are two AP2/ERF domains
in the AP2 subfamily, one AP2/ERF and one B3 domain in the RAV subfamily, and one
AP2/ER domain in the ERF subfamily. In addition, the ERF subfamily is divided into ER
and CBF/DREB subgroups, with differences at the 14th and 19th amino acid (Sakuma et
al., 2006).

AP2/ERF family members have been isolated, and their functions have been identified
in many species (Xu et al., 2011; Mizoi, Shinozaki & Yamaguchi-Shinozaki, 2012; Licausi,
Ohme-Takagi & Perata, 2013). Overexpression of members of the subfamily DREB in
transgenic plants increased resistance to abiotic stress, such as drought (Hong & Kim, 2005;
Oh et al., 2009; Fang et al., 2015), salt (Hong & Kim, 2005; Bouaziz et al., 2013), cold (Fang
et al., 2015), and high temperatures (Qin et al., 2007). Also, the overexpression of ERF
members not only improved the resistance to multiple biological stresses by regulating the
expression of defense genes (Berrocal-Lobo, Molina & Solano, 2002;Guo et al., 2004;Dong et
al., 2010;Moffat et al., 2012), but also increased resistance to abiotic stress, such as drought
(Zhang et al., 2010a; Zhang et al., 2010b; Yang et al., 2016), high salt concentrations (Guo
et al., 2004), freezing (Zhang & Huang, 2010), and osmotic stress (Zhang et al., 2010a).
Members of the AP2 subfamily played important roles in the development of flowers,
fruits, and seeds (Maes et al., 2001; Jofuku et al., 2005; Chung et al., 2010; Horstman et al.,
2014). RAVmembers were responded to ethylene, brassinolide (BR), and biotic and abiotic
stress (Mittal et al., 2014).

Apple (Malus× domestica Borkh.) is one of the most important tree fruits in the world.
However, progress on the ERF transcription factors in apple is more limited than that in
model plants likeArabidopsis thaliana, andmost researches about apple are focused on fruit
ripening and softening (Wang et al., 2007; Tacken et al., 2010; Li et al., 2016; An et al., 2017;
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Li et al., 2017; Han et al., 2018a; Han et al., 2018b). In this study, we obtained the AP2/ERF
transcription factor in apple based on previous results (Girardi et al., 2013) and from
the Plant Transcription Factor Database (http://planttfdb.cbi.pku.edu.cn/). When the 60
known transcription factors were excluded by sequence alignment in the GenBank database
(Tacken et al., 2010), the other genes were cloned and analyzed. In total, 30 genes in the
AP2/ERF family were obtained. Furthermore, we analyzed the phylogenetic relationships,
subcellular locations, and expression levels in different tissues under different biotic and
abiotic stresses for the 30 AP2/ERF genes. The results are helpful for further studying roles
of AP2/ERF transcription factors played in growth, development, and biotic and abiotic
stress in apple.

MATERIALS & METHODS
Plant materials
The apple cultivar ‘Gala’ (Malus × domestica cv. Gala) was used as material under stress
conditions. In vitro seedlings of ‘Gala’ were cultivated on basic subculture medium (MS
medium + 0.2 mg L−1 indole-3-acetic acid (IAA) + 0.8 mg L−1 6-benzylaminopurine
(6-BA) + 30 g L−1 sucrose + 7 g L−1 agrose) that was changed every 30 d. The cultivation
conditions were under 14-h light/10-h dark and a temperature of 24 ± 2 ◦C. On the 20th
day on the basic subculture medium, some relatively uniform seedlings were selected and
transplanted to different media. The basic subculture medium was used as the control. We
added 150 mmol L−1 NaCl or 300 mmol L−1 mannitol to the basic subculture medium to
create different treatments (Li et al., 2019).

Gene cloning and sequence analysis
RNA was extracted in the fully expanded leaves of ‘Zihong Fuji’ apple (Malus × domestica
cv. Zihong Fuji) by the CTABmethod, then cDNAwas synthesized using a PrimeScriptTM II
1st Strand cDNASynthesis Kit (Takara, Dalian, China). Based on the nucleotide sequence of
259 identified members in the apple AP2/ERF gene family and the 60 known transcription
factors in the GenBank database (Tacken et al., 2010; Velasco et al., 2010; Girardi et al.,
2013), we designed primers for PCR amplification and 30 apple AP2/ERF genes were
finally cloned (Table S1). The PCR reaction conditions were 94 ◦C for 5 min, then 35 cycles
for 94 ◦C for 1 min 20 s, 56–60 ◦C for 1 min, 72 ◦C for 2 min, and a final extension at 72 ◦C
for 10 min. PCR products were purified and cloned into pMD19-T vector to construct
recombinant plasmids. The recombinant plasmids were transformed into the competent
cells of Escherichia coli DH5α, and then the positive clones were selected.

The cDNA sequences that we obtained were used as queries in BLASTN searches
against NCBI (https://www.ncbi.nlm.nih.gov/). The open reading frame (ORF) and
amino acid sequences were analyzed by DNAMAN 6.0 software. The phylogenetic
tree was constructed by MEGA 6 software according to the unrooted Neighbour
Joining (NJ) method with execution parameters: the Poisson correction, pairwise
deletion, and bootstrap (1,000 replicates), using full-length amino acid sequences from
AP2/ERF proteins of apple and Arabidopsis. The conserved domains were predicted
by Pfam 26.0 (http://pfam.xfam.org/) and the Conserved Domains program in NCBI

Li et al. (2020), PeerJ, DOI 10.7717/peerj.8391 3/20

https://peerj.com
http://planttfdb.cbi.pku.edu.cn/
http://dx.doi.org/10.7717/peerj.8391#supp-4
https://www.ncbi.nlm.nih.gov/
http://pfam.xfam.org/
http://dx.doi.org/10.7717/peerj.8391


(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). CELLO v.2.5 (http://cello.life.
nctu.edu.tw/), PSORT (https://psort.hgc.jp/form.html), and SoftBerry ProtComp 9.0
(http://linux1.softberry.com/) were used to predict subcellular locations (Dong et al.,
2018a; Dong et al., 2018b; Dong et al., 2018c; Hao & Qiao, 2018).

Subcellular localization analysis
The full-length cDNA without the stop codon of MdERF28 was introduced into the
pCAMBIA2300-GFP vector. The fusion vectors were then introduced into Agrobacterium
tumefaciens strain EHA105 and then infiltrated into tobacco leaves. Those infected tissues
were analyzed 72 h after infiltration, under a fluorescence microscope (BX63; Olmypus,
Tokyo, Japan).

Gene expression analysis
The expression data for the AP2/ERF gene family in different tissues were obtained
at Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) with GEO
accession number GSE42873 (Celton et al., 2014). These existing data included a set of
expression arrays from 16 different apple tissues (from 10 different genotypes of apple:
leaf_M14 (fully developed), fruit_M20_100 DAM (100 days after anthesis)/_harvest
(harvested at maturity), leaf_M49 (fully developed), flower_M67, flower / fruit _M74_100
DAM/_Harvest, root (growing root tip)/ stem (fully developed)/ seedling (10 days old)_GD,
seedling (10 days old)_X4102, root (growing root tip)/ stem (fully developed)_X8877, seed
(dormant seed)_X4442 × X2596 and seed (dormant seed)_X3069 × X922), with two
biological replicates for each tissue, and a known array probe was used as the MDP
identification number in apple genome database V1.0. The RNA-seq data for AP2/ERF
response to AAAP was from Zhu et al. (2017).

The RNA was extracted from the treated tissues of ‘Gala’ using a RNeasy Plant Mini Kit
(QIAGEN,China, ItemNo. 74903), and the cDNAwas synthesized using the PrimeScriptTM

II 1st Strand cDNA Synthesis Kit (Takara, Dalian, China). The qRT-PCR primers (Table S1)
were designed based on the 3′- or 5′-UTR of AP2/ERF genes, and then qRT-PCR was
conducted using a 3-step method by BIO-RAD IQ5 (USA) with MdMDH RNA as the
internal reference gene (Perini et al., 2014). Three independent biological replicates were
used for calculations. Each 20 µL qRT-PCR reaction mixture consisted of SYBR Green
Master I 10 µL, 5 µmol L−1 forward prime 1 µL, 5 µmol L−1 reverse prime 1 µL, template
1 µL, and ddH2O 7 µL. qRT-PCR conditions were 95 ◦C for 3 min, then 40 cycles for 95 ◦C
for 10 s, 58.5 ◦C for 30 s, 72 ◦C for 15 sand, after annealing to 55 ◦C, the temperature was
increased 0.5 ◦C every 7 s till 95 ◦C, with 81 cycles in total. The 2−11CT method was used
to analyze the data (Livak & Schmittgen, 2001).

RESULTS
Cloned genes in the AP2/ERF family in apple
Based on the nucleotide sequence of 259 identified members in the apple AP2/ERF gene
family and the 60 known transcription factors in the GenBank database (Tacken et al.,
2010; Velasco et al., 2010; Girardi et al., 2013), the other primers for PCR amplification
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were designed, and a total of 30 genes in the apple AP2/ERF family were cloned (Table 1).
Homology alignment for the amino acid information showed that all the MdAP2/ERF
proteins contained an AP2 conserved domain (Fig. 1). Both MdAP2D60 and MdAP2D62-
65 had two AP2 conserved domains, and MdRAV2 had one B3 conserved domain (Fig. 1).

Phylogenetic analysis of AP2/ERF proteins in apple
The MdAP2/ERF proteins were clustered and analyzed using MEGA6 software, and the
known MdAP2/ERF protein types in Arabidopsis thaliana were used to identify the type of
apple AP2/ERF protein. There were four subfamilies, DREB, ERF, RAV, and AP2 in the
apple AP2/ERF protein family; DREB included groups A-1, A-2, A-3, A-4, A-5, and A-6,
and ERF contained groups B-1, B-2, B-3, B-4, B-5 and B-6. Further, proteins MdERF11/16,
MdERF33/35, MdERF34/3, and MdERF18/23 were clustered into groups A-2, A-4, A-5,
and A-6 in the DREB subfamily, respectively. MdERF31, MdERF19, MdERF4/25/28/32,
MdERF24, MdERF5/6/27, and MdERF3/7/8/17/22/26 were clustered into groups B1,
B-2, B-3, B-4, B-5, and B-6 in the ERF subfamily, respectively. Proteins MdAP2D60 and
MdAP2D62-MdAP2D65 were clustered into the AP2 subfamily; MdRAV2 was clustered
into the RAV subfamily (Fig. 2, Table 1).

Subcellular locations of AP2/ERF proteins in apple
Subcellular localization of AP2/ERF proteins was performed by SoftBerry ProtComp
9.0, CELLO, and PORST using their protein sequences. All prediction results indicated
that MdERF3-8, MdERF11, MdERF16-19, MdERF22-28, MdERF33-35, MdERF39,
MdAP2D60, MdAP2D62-65, and MdRAV2 were target to nuclear (Table 2). To further
verification of these subcellular locations revealed by the online software, the MdERF28-
GFP fusion protein was performed to detect the subcellular location of MdERF28 protein
and a transient transfection assay into tobacco leaves. The GFP control was ubiquitously
distributed throughout the cell, whereas MdERF28-GFP fusion protein was predominantly
detected in the nucleus (Fig. 3), indicating that MdERF28 was localized in the nucleus.

Expression analysis of 30 AP2/ERF gene family in apple
The array (GSE42873) in 16 different apple tissues in GEO (https://www.ncbi.nlm.nih.
gov/geo/) was used to evaluate the expression level of the AP2/ERF gene family in different
tissues (Fig. 4). The 30 AP2/ERF genes exhibited diverse expression patterns among the
various tissues (Fig. 4).

Further, we detected the expression level of the response of the AP2/ERF gene family
to AAAP infection using RNA-seq with existing data (>two-fold and FDR<0.001) (Zhu
et al., 2017). MdERF16 in A2, MdERF35 in A4, MdERF23 in A6, MdERF25/28/32 in B3,
MdERF6/27 in B5, and MdERF8 in B6 were all up-regulated in the response of apples’
AAAP infection (Fig. 5 and File S3). Particularly, the expression level of B3 inMdERF32was
increased significantly, which was 12.6-folds by 18 h post inoculation (HPI). Expression
levels of MdERF23 in A6, MdERF25 in B3, MdERF28 in B3, and MdERF27 in B5 were
all increased, which were 18.2, 8.4, 16.2, and 8.7-fold by 72 HPI, respectively. During the
early (12 HPI) and intermediate (18 and 36 HPI) phase of infection, expression levels of
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Table 1 The AP2/ERF genes in apple.

Gene name V1.0 gene IDa GDDH13 gene IDb GeneBank
accession

GDDH13 Chromosome
location

ORF Amino
acid

MW PI Group

MdERF3 MDP0000119204 MD14G1226300 MG099812 Chr14:30769541-30771506 1029 342 38.731 4.763 B6
MdERF4 MDP0000322279 MD04G1228800 MG099813 Chr04:30908814-30909560 747 248 27.933 4.795 B3
MdERF5 MDP0000464704 MD11G1052100 MG099814 Chr11:4448529-4449446 918 305 33.478 6.05 B5
MdERF6 MDP0000190504 MD03G1049900 MG099815 Chr03:3981184-3982008 825 274 30.132 7.242 B5
MdERF7 MDP0000290880 MD15G1172600 MG099816 Chr15:13418043-13419309 708 235 26.092 9.006 B6
MdERF8 MDP0000759299 MD16G1043500 MG099817 Chr16:3058483-3060008 1032 343 38.168 4.514 B6
MdERF11 MDP0000290585 MD17G1089700 MG099820 Chr17:7361577-7363808 594 197 21.478 5.857 A2
MdERF16 MDP0000153866 MD04G1165400 MG099825 Chr04:25593675-25596164 1476 491 55.192 4.949 A2
MdERF17 MDP0000127123 MD06G1125700 MG099826 Chr06:26773748-26774617 870 289 31.312 5.64 B6
MdERF18 MDP0000246184 MD04G1009000 MG099827 Chr04:1044443-1045735 1293 430 47.099 9.09 A6
MdERF19 MDP0000308922 MD17G1152400 MG099828 Chr17:14092036-14095154 1164 387 42.728 4.698 B2
MdERF22 MDP0000287350 MD15G1124900 MG099831 Chr15:9070265-9071680 642 213 23.903 6.365 B6
MdERF23 MDP0000764803 MD17G1244300 MG099832 Chr17:29279809-29281131 1338 445 49.63 7.101 A6
MdERF24 MDP0000190237 MD14G1147100 MG099833 Chr14:23978106-23980121 630 209 23.033 9.918 B4
MdERF25 MDP0000689946 MD10G1286300 MG099834 Chr10:37571420-37572034 615 204 22.67 9.731 B3
MdERF26 MDP0000279733 MD17G1220600 MG099835 Chr17:26952408-26953440 429 142 15.885 5.821 B6
MdERF27 MDP0000854039 MD01G1214500 MG099836 Chr12:30790168-30791244 750 249 27.666 3.996 B5
MdERF28 MDP0000805422 MD05G1306900 MG099837 Chr05:43876234-43876827 573 190 20.896 9.165 B3
MdERF31 MDP0000457509 MD10G1191300 MG099840 Chr10:28815601-28816149 549 182 20.062 10.012 B1
MdERF32 MDP0000235313 MD16G1216900 MG099841 Chr16:21318271-21318960 555 184 20.958 6.433 B3
MdERF33 MDP0000652413 MD02G1060200 MG099842 Chr02:4815948-4816775 828 275 29.869 4.844 A4
MdERF34 MDP0000125673 MG099843 477 158 17.134 8.467 A5
MdERF35 MDP0000228713 MD07G1099500 MG099844 Chr07:10964414-10968649 1203 400 44.015 7.624 A4
MdERF39 MDP0000122739 MD15G1396500 MG099848 Chr15:49614193-49614798 606 201 22.232 5.245 A5
MdAP2D60 MDP0000187703 MD15G1064600 MG099849 Chr15:4496397-4499611 1956 651 71.47 7.209 AP2
MdAP2D62 MDP0000121984 MD13G1252700 MG099851 Chr13:27049619-27053293 1668 555 60.599 8.049 AP2
MdAP2D63 MDP0000314518 MD12G1075200 MG099852 Chr12:9108198-9111657 1407 468 50.657 8.133 AP2
MdAP2D64 MDP0000281079 MD01G1113400 MG099853 Chr01:22726643-22730520 1275 424 46.804 8.297 AP2
MdAP2D65 MDP0000801540 MD02G1190000 MG099854 Chr02:17483494-17487257 1962 653 72.224 7.145 AP2
MdRAV2 MDP0000939633 MD16G1047700 MG099860 Chr16:3329564-3330772 1206 401 43.821 9.241 RAV

Notes.
aV1.0 gene ID represents gene ID from apple V1.0 database (Velasco et al., 2010).
bGDDH13 gene ID represents gene ID from apple GDDH13 v1.1 database.
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Figure 1 Sequence analysis of the AP2 and B3 domain in apple AP2/ERF proteins. The AP2 and B3 do-
mains were reconstructed based on the alignment of the apple conserved AP2 and B3 regions. Sequence
alignment was generated by DNAMAN 6.0 software. Sequence logo was built by online software WebLogo
3.0. The heights of symbols within each stack indicate the relative frequency of each amino acid at that po-
sition.

Full-size DOI: 10.7717/peerj.8391/fig-1

MdERF4 in B3 and MdERF5 in B5 were increased at the beginning and then decreased
later, and expression of MdERF4 was 4.6-fold by 18 HPI. Expression levels of MdERF22
in B6 and MdAP2D65 was down-regulated on 72 HPI (Fig. 5 and File S3). The relative
expression level of other genes did not change significantly (Fig. 5 and File S3).

The AP2/ERF gene family expression in ‘Gala’ seedlings under mannitol and NaCl stress
was analyzed by qRT-PCR. Under NaCl stress, eight members in the AP2/ERF family were
up-regulated, which included MdERF16 in A2, MdERF23 in A6, MdERF25/28/32 in B3,
MdERF24 in B4,MdERF17 in B6, andMdRAV2 (Fig. 6). Among them, the expression level
of MdERF23, MdERF25, and MdERF28 were increased more than 10 times when treated
for 48 h compared with that of the control.MdERF11 in A2,MdERF33 in A4,MdERF34 in
A5,MdERF18 in A6,MdERF31 in B1,MdERF4 in B3,MdERF5 in B5, andMdERF22/26 in
B6 were down-regulated. Expression levels of MdERF5 and MdERF39 were only 0.04 and
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Table 2 The information in predicting apple AP2/ERF subcellular localization.

Location Nuclear Plasma
membrane

Extracellular Cytoplasmic Mitochondrial Endoplasm.
retic

Peroxisomal Golgi Chloroplast Vacuolar

MdERF3 4.41 1.16 0 2.19 1.25 0.25 0.53 0 0 0.2
MdERF4 9.99 0 0 0 0 0 0 0 0.01 0
MdERF5 9.99 0.01 0 0 0 0 0 0 0 0
MdERF6 9.99 0 0 0 0 0 0 0 0.01 0
MdERF7 9.99 0 0 0 0 0 0 0 0.01 0
MdERF8 6.04 0.34 0.27 0.35 2.43 0.16 0 0 0.41 0
MdERF11 10 0 0 0 0 0 0 0 0 0
MdERF16 4.9 0.53 0.18 2.43 1.34 0.28 0.26 0 0 0.08
MdERF17 5.61 0.36 1.04 1.08 1.44 0 0.33 0.04 0.1 0
MdERF18 9.97 0 0 0 0 0 0 0 0.03 0
MdERF19 9.98 0 0 0 0 0 0 0 0.02 0
MdERF22 9.96 0.04 0 0 0 0 0 0 0 0
MdERF23 9.46 0 0.03 0.3 0.2 0 0 0 0 0.01
MdERF24 9.98 0.02 0 0 0 0 0 0 0 0
MdERF25 9.99 0 0 0 0 0 0 0 0 0
MdERF26 9.99 0.01 0 0 0 0 0 0 0 0
MdERF27 4.35 0.98 0.64 0.16 3.3 0.1 0.22 0 0.23 0.02
MdERF28 10 0 0 0 0 0 0 0 0 0
MdERF31 9.9 0 0 0 0 0 0 0 0.09 0.01
MdERF32 9.97 0 0 0 0 0 0 0 0.03 0
MdERF33 9.99 0 0 0 0 0 0 0 0.01 0
MdERF34 9.99 0 0 0 0 0 0 0 0 0
MdERF35 5.69 1.01 0.43 1.1 1.09 0 0 0 0.69 0
MdERF39 9.99 0 0 0 0 0 0 0 0 0
MdAP2D60 10 0 0 0 0 0 0 0 0 0
MdAP2D62 10 0 0 0 0 0 0 0 0 0
MdAP2D63 9.99 0 0.01 0 0 0 0 0 0 0
MdAP2D64 9.98 0 0 0 0 0 0 0 0.02 0
MdAP2D65 10 0 0 0 0 0 0 0 0 0
MdRAV2 9.99 0 0.01 0 0 0 0 0 0 0
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Figure 2 Phylogenetic relationships and subfamily classification of AP2/ERF proteins from apple and
Arabidopsis. Unrooted Neighbour Joining (NJ) phylogenetic tree was constructed with MEGA 6 soft-
ware using full-length amino acid sequences from AP2/ERF proteins of apple and Arabidopsis. The tree
was classified into four subfamilys (DREB: A1–A6, ERF: B1–B6, AP2 and RAV).

Full-size DOI: 10.7717/peerj.8391/fig-2

0.23 times that of the control, respectively, when treated with NaCl for 24 h, but expression
level ofMdERF39 was increased to 3.11 times that of the control when treated for 48 h. The
other AP2/ERF genes under NaCl stress had almost the same expression level compared
with that of the control (Fig. 6).

Under mannitol treatment condition, the relative expression levels of MdERF11 (A2),
MdERF33 (A4), MdERF39 (A5), MdERF31 (B1), MdERF19 (B2), MdERF28/32 (B3),
MdERF5/6/27 (B5), MdERF7 (B6), and MdAP2D60/62/64/65 were increased compared
with the control,MdERF39 (A5) reached 5.96 times that of the control at 24 h, andMdERF11
(A2) and MdAP2D65 reached 7.99 and 10.7 times that of the control, respectively, when
treated for 48 h (Fig. 6).The relative expression level ofMdERF25 (B3) andMdRAV2 were
inhibited compared with that of the control, but the relative expression level of other
AP2/ERF genes did not change significantly under mannitol treatment (Fig. 6).
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Figure 3 Subcellular localization assay of the MdERF28 protein. (A) Fluorescence microscopy image
of GFP; (B) bright-field image of GFP; (C) GFP merged image; (D) fluorescence microscopy image of
MdERF28-GFP; (E) Bright-field image of MdERF28-GFP; (F) MdERF28-GFP merged image. Scale bar=
50 mm.

Full-size DOI: 10.7717/peerj.8391/fig-3

DISCUSSION
Based on the draft genome sequence of the domesticated apple (Malus × domestica) and
the highly conserved domain in the AP2/ERF transcription factors of plants, 259 genes in
the apple AP2/ERF family were selected for analyzing ERF transcription factors in apple
genome database ver 1.0 (Velasco et al., 2010; Girardi et al., 2013). In this study, we cloned
30 apple AP2/ERF genes, which belonged to the AP2, ERF, DREB, and RAV subfamilies
of AP2/ERF, and their changes in expression level in different tissues were analyzed under
AAAP infection, and NaCl and mannitol stresses.

ERF is one the largest transcription factor families in plants. The A. thaliana genome
contained 147 AP2/ERF proteins, which were divided into the AP2, ERF (ERF and DREB),
and RAV sub-families based on their similarity in amino acid sequences and domain
number (Nakano et al., 2006; Mizoi, Shinozaki & Yamaguchi-Shinozaki, 2012). The 30
genes cloned in this study were divided into four subfamilies; 8, 16, 5, and 1 gene belonged
to the subfamilies DREB, ERF, AP2, and RAV, respectively (Fig. 2). AAAP infection, NaCl
stress, and mannitol stress all affected the expression ofMdERF4/25/28/32 in the B3 group
at transcriptional level, except for MdERF4 under mannitol stress. In A. thaliana, AtERF1,
AtERF2, AtERF5, and AtERF6 in the B3 group, which could be induced by osmotic
stress (Moffat et al., 2012), were responded to Saprophytic bacteria by up-regulating the
downstream resistance genes PDF1.2 and b-CHI, resulting in enhanced resistance to S.
bacteria infection (Fujimoto et al., 2000; Berrocal-Lobo, Molina & Solano, 2002; Lorenzo
et al., 2003; Moffat et al., 2012). Alfafa exhibited increased resistance from MtERF1-1 in
the B3 group that up-regulated the resistance downstream gene PDF1.2 (Anderson et al.,
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Figure 4 Expression profiles of apple AP2/ERF genes in various tissues. The data of apple AP2/ERF
expression (GSE42873) in 16 different were searched at GEO database in NCBI. The heat map of apple
AP2/ERF genes was generated by TIGR MeV v4.8.1 software.

Full-size DOI: 10.7717/peerj.8391/fig-4

2010). In wheat, TaPIEP1 in the B3 group was up-regulated by Bipolaris sorokiniana,
which boosting disease resistance (Dong et al., 2010). Transgenic tobacco plants had
enhanced resistance to Tobacco Mosaic Virus and brown spot through overexpression
of NtERF5 and GbERF2 (Fischer & Droge-Laser, 2004; Zuo et al., 2007). The transgenic A.
thaliana with SpERF1, which was the ERF member of the B3 group in Stipa purpurea, had
increased drought tolerance when SpERF1 was up-regulated (Yang et al., 2016). In this
study, MdERF4/25/28/32 was clustered into the B3 group of ERF and was up-regulated
significantly under AAAP infection and NaCl stress; also, mannitol stress had some
effects on MdERF4/25/28/32 expression (Figs. 5 and 6). These results indicated that
MdERF4/25/28/32 may play important roles in response to various biotic and abiotic
stress.

Several studies have proved that the DREB transcription factor subfamily was important
for abiotic stress (Nakano et al., 2006). For example,A. thaliana showed increased tolerance
to high-salt and drought by overexpression of certain DREB transcription factors that
included DREB2A and DREB2B in the A2 group, HARDY in the A4 group, and RAP2.4
in the A6 group. DREB2C, DREB2D, and DREB2F in A. thaliana played an important
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Figure 5 Expression profiles of apple AP2/ERF genes in response to Alternaria alternata apple patho-
type infection. (A) Expression profiles of 21 apple AP2/ERF genes in response to AAAP infection; (B) ex-
pression profiles of five apple AP2/ERF genes in response to AAAP infection; (C) expression profiles of
three apple AP2/ERF genes in response to AAAP infection. The expression data of apple AP2/ERF genes
in response to AAAP infection were obtained from supplementary data previously published study (Zhu et
al., 2017). The heat map of apple AP2/ERF genes was generated by TIGR MeV v4.8.1 software.

Full-size DOI: 10.7717/peerj.8391/fig-5

role in high-salt stress (Nakano et al., 2006; Sakuma et al., 2006; Karaba et al., 2007; Qin et
al., 2007; Lin, Park & Wang, 2008). Drought tolerance in maize was enhanced by DREB2A
overexpression in the A2 group (Qin et al., 2007). Overexpression of the PsAP2 gene in
the A6 group of Papaver somniferum enhanced the resistance of transgenic tobacco to
pathogenic bacteria, salt, and mannitol stresses (Mishra et al., 2015). In this study, under
mannitol stress, MdERF11 in the A2 group, MdERF33 in the A4 group, and MdERF39 in
the A5 group were up-regulated at transcriptional level. Seven genes were induced by NaCl
at transcriptional level. Three of them, MdERF16 in A4, MdERF39 in A5, and MdERF23
in A6, were up-regulated at transcriptional level under NaCl stress, and four genes, which
included MdERF11 in A2, MdERF33 in A4, MdERF34 in A5, and MdERF18 in A6, were
down-regulated. In addition, there were four genes, which included MdERF16 in A2,
MdERF35 in A4, and MdERF23 in A6, were up-regulated at transcriptional level by AAAP
infection (Figs. 5 and 6). These results showed that the DREB transcription factors cloned
in this study might be important for responding to abiotic stress, and somemembers might
play a role in response to biotic stress.

The AP2 subfamily may be important for plant growth and development (Maes et al.,
2001; Jofuku et al., 2005; Chung et al., 2010; Horstman et al., 2014), but also be critical for
defending against biotic and abiotic stress (Park et al., 2001; Yi et al., 2004). For example,
the overexpression of the Tsi1 gene improved tobacco’s tolerance to pathogenic bacteria
and osmotic stress (Park et al., 2001), and the CaPF1 gene in Capsicum annuum cv. Bukang
responded to ethylene (ET), jasmonic acid (JA), and cold stress, and its overexpression
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Figure 6 Expression heatmap of apple AP2/ERF genes under normal growth, mannitol and salt treat-
ments. The expression data of apple AP2/ERF genes under normal growth, mannitol and salt treatments
were obtained from qRT-PCR. The heat map of apple AP2/ERF genes was generated by TIGR MeV v4.8.1
software.

Full-size DOI: 10.7717/peerj.8391/fig-6

improved A. thaliana resistance to low temperature and to infection by Pseudomonas
syringae pv. tomato DC3000 (Yi et al., 2004). In this study, MdAP2D65 in AP2 responded
to AAAP infection only at transcriptional level, but it did not respond to NaCl stress, and
MdAP2D60/62/64/65 were up-regulated by mannitol stress (Figs. 5 and 6). These results
indicated that MdAP2D60/62/64/65 had some effect on osmotic stress, and MdAP2D65
might be involved in responding to biotic stress.

CONCLUSIONS
Thirty novel AP2/ERF genes have been successfully isolated from Malus domestica, which
belong to DREB, ERF, AP2, and RAV subfamily. Results of a known array and RNA-seq
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analysis using existing data as well as qRT-PCR-based transcription profiling indicated
that 30 apple AP2/ERF genes were expressed in all examined tissues at different expression
levels, and responded differentially to various stresses, suggesting that these genes may
be involved in the regulation of growth, development, and stress responses in apple.
These results serve as the theoretical basis for understanding the biological function and
regulation of AP2/ERF transcription factors in apple.
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