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Abstract
This paper describes a novel dataset of iconic gestures, together with a publicly available robot-based elicitation method to
record these gestures, which consists of playing a game of charades with a humanoid robot. The game was deployed at a
science museum (NEMO) and a large popular music festival (Lowlands) in the Netherlands. This resulted in recordings of
428 participants, both adults and children, performing 3715 silent iconic gestures for 35 different objects in a naturalistic
setting. Our dataset adds to existing collections of iconic gesture recordings in two important ways. First, participants were
free to choose how they represented the broad concepts using gestures, and they were asked to perform a second attempt
if the robot did not recognize their gesture the first time. This provides insight into potential repair strategies that might
be used. Second, by making the interactive game available we enable other researchers to collect additional recordings, for
different concepts, and in diverse cultures or contexts. This can be done in a consistent manner because a robot is used
as a confederate in the elicitation procedure, which ensures that every data collection session plays out in the same way.
The current dataset can be used for research into human gesturing behavior, and as input for the gesture recognition and
production capabilities of robots and virtual agents.
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Introduction

To support studies into non-verbal behavior, and in order
to imbue robots and virtual agents with the ability to
communicate with us in a human-like way, there is a
need for structured, labeled, and large-scale datasets of
human-performed gestures (Argall et al., 2009; Ortega &
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Özyürek, 2020). Ideally, these datasets contain gestures that
are recorded in an ecologically valid way, and stored in a
format that lends itself to automated analysis. Furthermore,
it should be possible to collect additional data in a consistent
manner, for example in order to include gestures for
additional concepts or to replicate data collection in a
new (demographic or cultural) context. With the aim of
collecting such a dataset of iconic gestures in a naturalistic
setting, we developed a game of charades with a humanoid
robot. This game was used to record a large number of
iconic gestures from a diverse group of participants at the
NEMO science museum and at the Lowlands Science event,
as part of the Lowlands music festival. Both events took
place in the Netherlands.

The resulting dataset of motion-capture recordings
for 35 different objects, such as animals and musical
instruments, has a number of unique aspects that make
it a valuable tool for studies and applications involving
iconic gestures. First, it is a large-scale set both in terms
of the number of unique recordings, as well as the number
of participants that are included. Second, the participants
were free to choose how they wanted to portray the
concepts using silent gesture. Third, a broad range of
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demographic backgrounds—children and adults, several
different cultures—is represented in the dataset. Fourth,
to our knowledge, no existing research has looked into
the degree to which people tend to change their gesturing
approach when an interlocutor fails to recognize their
first attempt at depicting a concept. The current dataset
provides support for first explorations into these repair
strategies, and how often they were used. The combination
of these four aspects has allowed us to capture different
variations that are likely to occur in gesture production. This
enables researchers to answer various research questions
related to human-performed gestures, and factors that could
potentially influence gesturing behavior.

The dataset contains two-dimensional and three-
dimensional motion-capture recordings of the participants
performing the gestures. These are stored in a consistent
format, which makes the set suitable for automated, large-
scale gesture analysis, as well as various applications in the
field of artificial intelligence such as gesture production
and recognition by virtual agents and robots. Automatic
gesture recognition is often done only for well-defined
gestures, where the system knows what motion to expect.
However, this means that people are limited in choosing
their preferred way of depicting a concept using gestures.
The current dataset allows researchers to explore whether
it is possible to create recognition systems that can handle
a variety of different representations for the same concept.
An agent’s gesture production capabilities can also be based
on the recordings in our dataset, thus supporting studies
into the added value of using data-driven gestures, and how
comprehensible these are compared to manually designed
gestures. Because the game of charades is made publicly
available, it is possible to extend the dataset to include
new concepts, or to record additional gestures in different
cultures or contexts.

Gesture and interaction

Manual gestures (Kendon, 2004) are an integral part of
our communicative abilities: they help guide the recipients’
attention, and support the comprehension of information
that is being conveyed in speech (Goldin-Meadow, 2005;
Hostetter, 2011). They serve a purpose for the person
producing the gestures as well, by helping them to be
more fluent and rich in their speech (Cravotta et al.,
2019; Hostetter, 2011). In this work, we focus on iconic
gestures, a specific subset that includes movements where
the depicted shape is related to the concept that is referred
to (McNeill, 1992). For example, an iconic gesture for the
concept of a bird could consist of gracefully moving one’s
hands up and down repeatedly, as a reference to the act of
flying. Iconic gestures in particular play an important role
in supporting speech comprehension (Kelly et al., 1999),

especially in noisy environments (Drijvers & Özyürek,
2017). Furthermore, people with certain impairments that
prevent them from (fully) using or understanding speech,
such as aphasia (language impairment due to brain
injury), can benefit from gestures as a communicative
and therapeutic device (van Nispen et al., 2018). Finally,
research in the field of education has shown that iconic
gestures can be used as a means of providing scaffolding
to support the learning process (Alibali & Nathan, 2007).
In light of this important role of iconic gestures in
communication and education, with the current work we
aim to provide a dataset and recording method to support
further studies into the intricacies of gesturing behavior.

Because gestures are a natural and intuitive way for us
to communicate with each other, researchers have started to
explore whether we can use them to interact with machines
as well (Karam & Schraefel, 2005). Recent technological
developments enable everyday computer systems to track
body posture and hand gestures in a minimally invasive
fashion, which allows for the use of gestures as input
device instead of using traditional controllers such as a
mouse and keyboard (Lun & Zhao, 2015). This is especially
relevant when these interactions involve artificial agents,
either virtual or robotic, with whom we expect to be able
to communicate by means of natural language (Bartneck
& Forlizzi, 2004). Ideally, these agents should be able to
understand the gestures produced by humans, as well as
produce gestures of their own to support their social and
communicative behaviors (Fong et al., 2003). We recently
investigated whether gestures are able to support a robot’s
teaching efforts and found that children of 4–6 years old
were more engaged with the interaction and showed higher
learning gains when they interacted with a robot tutor that
performed iconic gestures while teaching second language
vocabulary, compared to one that did not use gestures (de
Wit et al., 2018).

There are various methods—or modes of representa-
tion (Müller, 2014)—to describe a certain concept by means
of iconic gestures. For example, one could gesture by out-
lining the physical shape of an object, such as the handle
and bristle of a toothbrush, or by performing the act of
using or interacting with the object: brushing our teeth.
Although many concepts appear to have a default mode of
representation (Dargue & Sweller, 2018; Masson-Carro et
al. 2017; van Nispen et al. 2014, 2017; Ortega & Özyürek
2016, 2020), this is known to vary based on aspects such
as the cultural background (Kita, 2009) or age of the per-
former (Jain et al., 2016; Masson-Carro et al., 2015; Sekine
et al., 2018; Stites & Özçalışkan, 2017). The study by
Sekine et al. (2018) showed that 3-year-old children had a
tendency towards using their entire body to represent the
protagonist when retelling a story (character viewpoint),
and they used a larger gesture space compared to adults.
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The adult participants instead performed gestures from the
perspective of an outsider looking in (observer viewpoint),
representing and manipulating the protagonist as a smaller,
imaginative object. Even when performing the same ges-
ture, Jain et al. (2016) observed that children of 5–9 years
old tend to produce faster and less coordinated motions than
adults.

These variations in the way we depict concepts
using gestures poses two challenges when attempting to
imbue robots with the ability to understand and produce
these motions. First, the robot-performed gestures are
often designed by researchers using common animation
techniques such as key framing. These researchers may
not necessarily belong to the same demographic as the
people that will end up interacting with the robot, and
the robot’s gestures might therefore fail to match the
recipient’s preferred modes of representation (Ortega &
Özyürek, 2020), which could cause miscommunication.
Second, a robot with social intelligence should also be able
to recognize gestures performed by others, which are likely
to include a number of variations for the same concept.
Therefore, both the production and recognition of gestures
by a robot would benefit from a data-driven approach, where
many examples of people performing gestures are used
to inform the robot’s gesture production and recognition
capabilities. There is a call for more data in the field of
gesture studies as well (Ortega & Özyürek, 2020), in order
to investigate whether patterns that we see on a smaller
scale, e.g., regarding default modes of representation, can be
generalized to a broader range of concepts or demographics.
This ongoing research into human-performed gestures can
be further supported by tools that have recently been
developed to support automatic extraction of features
such as size, velocity, and sub movements from three-
dimensional gesture recordings (Pouw & Dixon, 2020;
Trujillo et al., 2019), which enable analysis of gestures
on a large scale. In order to improve the design of
robot-performed gestures, and to support further studies
into gesturing behavior, we have set out to collect such
a dataset of three-dimensional recordings of human-
performed gestures in a naturalistic setting.

These datasets can be collected in a number of different
ways. For example, in recent work in the field of human–
robot interaction, gestures were automatically extracted
from natural interactions, such as recordings of TED
talks (e.g., Ghosh et al. 2019; Hua et al. 2019; Shimazu
et al. 2018; Yoon et al. 2019). These recordings were
never intended to be used for this purpose, which means
that the gestures that occur are naturalistic, but there
is also no control over which (types of) gestures are
performed. As a result, these gestures can be used for
generating human-like co-speech gestures, but are less
suitable for studying iconic gestures. The present work

therefore focuses on the use of an elicitation procedure,
which involves recording a number of participants as
they perform gestures belonging to a predefined set of
concepts. These concepts are presented to them one by
one, either verbally or using visual cues. This method has
also been used in the field of human–computer interaction,
initially for the design of gesture interactions with a touch
surface (Wobbrock et al., 2009), and subsequently for full-
body gestures (e.g., Silpasuwanchai & Ren 2014), also with
children (Connell et al., 2013). The goal in the context
of human–computer interaction is to reach consensus on
the gesture that best describes a particular action within
a computer system (Vatavu, 2019), such as shooting and
reloading a gun in a videogame. Elicitation studies enable
the collection of gesture datasets in a structured manner. It is
possible to ask participants to perform examples of concrete
motions (e.g., “claw like a bear”), but a more diverse set
with different modes of representation can be collected
by giving participants more general cues (e.g., “bear”).
However, the data resulting from elicitation studies can be
relatively unnaturalistic because participants are prompted
to perform these gestures, often in a controlled setting, and
they are aware of the goal and context of the study.

In order to obtain more naturalistic results, Eisenbeiss
(2010) suggests the use of a semi-structured elicitation
procedure, where the context is kept as natural as possible
by having participants engage in a “game”, while still
providing prompts to elicit certain responses. One example
of a gameful approach is the director-matcher task. In this
task a participant is assigned the role of director and is asked
to describe a complex abstract shape to another participant,
the matcher, who has to recreate this shape without having
seen it (Krauss & Weinheimer, 1964). In gesture research,
this method can be used to elicit a combination of speech
and spontaneous gestures (e.g., Holler & Wilkin 2011).
This task can be considered an unstructured elicitation
procedure, with little control over which exact gestures will
be produced. Semi-structured and game-like approaches
appear to be understudied in research. One example is
Bartertown (van den Heuvel, 2015a), where participants
engaged in a science-fiction game in which they were asked
to communicate the appearance of certain primitive shapes
to a virtual agent by means of gesturing. The recorded
gestures were then mirrored by the virtual character and
the participant was asked to confirm whether they were
recorded correctly, and to re-do them if needed. Later in
the game, other virtual characters performed gestures that
were previously recorded from different participants and
the current participant was asked to label these, essentially
covering both the generation and labelling of data in one
sitting.

To our knowledge, the potential use of repair strategies
when there is a breakdown in non-verbal communication,
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both between two humans and between a human and a robot,
has not yet been studied. However, we can find inspiration
in the field of human–computer interaction, where mid-
air (Walter et al., 2013) or touch gestures (Bragdon et al.,
2009; Bragdon et al., 2010) can be used to trigger certain
software commands. In this case, it takes time and multiple
attempts for the user to explore which gestures are available,
and to learn how they should be performed in order to
trigger the correct functionality. Bragdon et al. (2009) found
that a number of participants in their study either did not
discover some of the available touch gestures at all, or
they were unable to perform them in the proper way to
trigger the functionality of the interface. This indicates
a mismatch between the designer’s expectations of the
gestures that people will perform when interacting with
their software, and the gestures that users actually come
up with and the strategies they use to explore the space
of potential gestures. We can apply the same principle
to our studies in human–robot interaction: If we design
the robot’s gesture production and recognition capabilities
solely on our own frame of reference, we are bound to
introduce a certain degree of miscommunication. Therefore,
it would be better to start by observing interactions, and
then inferring common gesturing and repair strategies from
these observations. Miscommunication can also occur when
technology such as automatic speech recognition or, in our
case, gesture recognition is not successful at recognizing
the user’s input correctly, a situation in which users can
rely on multiple modalities for correcting these recognition
errors (Suhm et al., 2001).

Existing gesture datasets

Several gesture datasets have been presented in literature,
with various goals ranging from studies into human
gesturing behavior, to applications related to artificial
intelligence such as gesture recognition and gesture
synthesis for virtual agents (e.g., Ortega & Özyürek 2020;
Sadeghipour et al. 2012; Vatavu 2019). These sets differ in
scale, in terms of the number of concepts included and the
number of people recorded. Furthermore, different sensors
were used to record the gestures, including traditional
video cameras, depth sensors such as the Microsoft Kinect,
and tracking devices that were held by or attached to the
participants performing the gestures. These existing datasets
can further be categorized by the elicitation procedure that
was used, either (semi-)structured with specific cues, or
unstructured where all of the gestures that were produced
spontaneously during a broad task were recorded. An
example of the latter approach is EGGNOG (Wang et al.,
2017), where participants were given a collaborative task to
recreate a structure out of wooden blocks from a picture.
This resulted in a total of 8 h, collected over 360 trials

with 40 participants, of naturally occurring gestures along
with speech (for a subset of the trials). Another example
is SaGA (Lücking et al., 2010), in which 25 pairs of
participants were asked to perform tasks that involved
giving directions and describing various scenes containing
multiple objects. The resulting set contains recordings
of speech and non-verbal behavior from 25 dialogues,
including a total of almost 5000 iconic and pointing
gestures.

A literature review by Ruffieux et al. (2014) describes
15 datasets that were compiled specifically for developing
and evaluating gesture recognition algorithms, which were
collected using a structured elicitation procedure in a
controlled setting. In most of the work discussed in this
survey, the gestures do not refer to real-life objects, instead
they are motions that were designed specifically to trigger
certain actions during human–computer interactions (e.g.,
swiping to the right in the air to trigger the next song to
play). Furthermore, participants were often given concrete
prompts that already steered towards a particular aspect
of the target concept, thus already implying a desired
mode of representation, such as the aforementioned “claw
like a bear” instead of just “bear”. Only in the 3DIG
dataset (Sadeghipour et al., 2012) participants were given
the freedom to choose which representation technique (e.g.,
shape versus action) to use. This transforms the challenge of
gesture recognition into being able to recognize any gesture
that represents an object, rather than one specific motion.
This form of gesture recognition is more realistic when
communicating with (virtual) agents, where the focus lies
on being able to understand which object is being described,
regardless of individual differences in preferred gesturing
strategy. In addition to their role in gesture recognition, such
extensive and varied datasets can also be used for research
into gesturing behavior in general. The 3DIG set contains
recordings from a total of 29 participants, who were
presented with ten primitive objects and ten complex objects
such as house or apple. The aforementioned semi-structured
elicitation procedure Bartertown (van den Heuvel, 2015a)
also resulted in a publicly available dataset (van den
Heuvel, 2015b), which includes three-dimensional gesture
recordings of 36 participants each depicting four shapes,
with eight different shapes in total included. A recent
example from the field of gesture research is the work
by Ortega and Özyürek (2020), where 20 participants
were asked to provide silent gestures for 272 different
concepts across five semantic domains (manipulable and
nonmanipulable objects, actions with and without objects,
and animate entities), and were also given the freedom to
choose their gesturing strategy.

Although the previously discussed datasets were all
recorded with adult participants, there are datasets that
include gestures performed by children as well. Vatavu
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(2019) published a set containing 1312 whole-body gestures
in total across 15 different concepts including objects such
as flowers as well as actions such as climbing a ladder
or turning around. These gestures were recorded from 30
children between the age of three and six. Children in this
case were given concrete instructions on how to represent
the concepts, for example to “Draw a flower in mid-air”.
The Kinder-Gator dataset (Aloba et al., 2018) contains
recordings of 58 different gestures related to the categories
warm-up, exercise, mime, and communication, such as
“Motion someone to come here”. These were recorded from
ten children (aged five to nine) and ten adults.

Our survey of related work identifies several gaps
in the datasets that are currently available. In most
cases, participants were given concrete prompts for the
types of gestures to perform, which makes these datasets
unsuitable for studying individual differences in modes
of representation. In addition, literature has found that
gesturing strategies tend to differ between children and
adults, however the only set from our survey of related work
that includes both children and adults performing the same
gestures is Kinder-Gator (Aloba et al., 2018). A limitation
of this elicitation study is that the number of participants
is relatively small (ten children and ten adults), they were
given concrete prompts, and only few of the concepts
elicited iconic gestures where the motion was semantically
related to the concept being depicted. As a result, while
this does support studies into quantifiable differences in
motion characteristics (e.g., speed, size) between adults
and children, it does not provide the variation needed to
investigate differences in modes of representation. Finally,
to our knowledge there is no iconic gesture dataset that
includes the same participant performing a second gesture
for the same concept, after they realize that the first example
is not understood by the confederate. These second attempts
would give insight into repair strategies that people tend to
use when miscommunication occurs.

In our review of related datasets, we also found
that generally none of the materials from the elicitation
procedure that were used to collect the data are made
available. This impedes potential future extensions of the
datasets. In addition, the elicitation procedure relies on a
human confederate, who has to follow a specific protocol.
By having a robot perform this procedure instead, it
is possible to replicate the data collection process in a
consistent manner. In the present study, we aim to address
the limitations of currently available iconic gesture datasets
in two different ways: 1) by publishing a dataset that
includes recordings from children and adults, who were
free to choose their preferred mode of representation,
and who were asked to perform a second gesture in
case miscommunication occurred; 2) by making the game
of charades publicly available, thereby allowing other

researchers to further extend the dataset with different
concepts, or in different cultures and contexts. Our dataset
includes three-dimensional motion capture recordings from
a depth camera, and two-dimensional motion capture data
that were extracted from video recordings post hoc using
an algorithm. Both formats have certain advantages and
drawbacks, which will be discussed later in the paper.

The next sections describe the game of charades with
a robot that was used as elicitation procedure, followed
by details regarding the technical implementation, and a
description of the resulting dataset.

Gesture elicitation procedure

The game of charades was set up at the NEMO science
museum in Amsterdam for 2 weeks in July and August,
2018, and at all 3 days of the Lowlands music festival, which
took place August 17–19, 2018. Visitors to the science
museum and music festival were free to observe the study
and, if they were at least 5 years old, could choose to
volunteer as a participant. The study was carried out with
approval from the research ethics committee of the Tilburg
School of Humanities and Digital Sciences at Tilburg
University. Participants, or their legal guardian in case they
were younger than 16 years old, had to sign an informed
consent form in order to participate, with which they also
agreed that their data could be incorporated into the dataset.
We also obtained verbal assent of all participants, and asked
whether or not their interactions could be recorded on
video in order to be able to extract two-dimensional motion
capture data. These video recordings were optional, while
the motion capture recordings from the depth sensor were
required in order to participate.

Participants

A total number of 317 visitors to the science museum
participated in the study, and 116 at the music festival. Due
to children not finishing the game, or participants that took
part in a demonstration of the system without wanting to
have their data stored, we had to exclude five participants
from the science museum. The total number of participants
whose data were included, as well as their demographic
information, is displayed in Table 1.

Materials

The experimental set-ups at the science museum and the
music festival are shown in Fig. 1. The system that was
used in the experiment included a SoftBank Robotics NAO
V5 robot, a Kinect V2 for recording, a Microsoft Surface
tablet as the interface for the participant and a control
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Table 1 Participant information

NEMO Lowlands Total

Participants 312 116 428

Gender 157 male 49 male 206 male

149 female 67 female 216 female

6 unknown 6 unknown

Age (Y;M) 12;11 28;4 17;2

SD = 10;7 SD = 8;8 SD = 12;2

11 unknown 2 unknown 13 unknown

Countries 27 4 28

1 unknown 1 unknown

panel running on a separate laptop or computer for the
experimenter. A Logitech C920 webcam was also included
to capture video from which two-dimensional pose data
were extracted after data collection was completed.

Thirty-five different concepts were included in the
experiment for participants and the robot to depict. These
were picked from the Bank of Standardized Stimuli (BOSS)
containing photographs of a multitude of objects (Brodeur
et al., 2014). Because we expected a substantial part of
our participants to be younger children, we traced and
colored the photographs to make them look more cartoon-
like (Fig. 2). The age of acquisition (Kuperman et al., 2012)
was used as a guideline when choosing the concepts to
ensure that the youngest participants (5 years old) would
be familiar with them. The concepts were divided into five
different categories, with seven concepts in each category:
animals, static objects, tools, musical instruments, and
means of transportation. These categories were chosen in
order to capture a diverse range of concepts, including both
animate and inanimate objects, objects of varying sizes,
and objects that afford different types of interactions (e.g.,
walking on a bridge, handling a toothbrush). To get a
realistic idea of the robot’s gesture recognition performance,
several of the concepts were chosen to be similar to
each other in terms of the default gesture we expected
participants to use, such as car and bus, or xylophone and
drum set. Appendix A contains an overview of all the
included concepts.

Procedure

After visitors showed an interest in participating in the
study, they were presented with a letter containing general
information about the goals of the study, an explanation of
the interaction with the robot (i.e., that they would play
a game involving gestures), the nature of the recorded
data (with a picture illustrating the output of the Kinect
sensor), and details on the way their data would be collected
and managed. To get an overview of what the game was
like, visitors were also free to observe participants that
were currently playing. After signing the informed consent
form, their participant number was entered into the control
panel. If the participant allowed their video to be recorded,
a checkmark was set which enabled the system’s video
recording functionality. Additionally, participants could
receive a link to a website with their own motion capture
recordings. If they were interested in receiving this link,
their e-mail address was entered into the control panel.
The game was then started by the researcher by pressing
a button on the control panel. The robot stood up and
started “breathing” (shifting its weight from one leg to the
other and swaying its arms slowly—a built-in feature of the
NAO robot) to make it look more active and alive. It also
blinked its eyes every five seconds by turning the LEDs
off and on again. A language choice between Dutch and
English was shown on the tablet, which affected the robot’s
speech as well as the labels for the items presented on the
tablet.

The participant was invited to stand close to the tablet
device so that they could operate it, and in front of the
Kinect camera, which was moved approximately to the
participant’s shoulder height. The researcher then gave a
short introduction to the game, indicating that the robot
would only be able to see their upper body motion and
instructing the participant to stand still with their hands
pointing down at their sides when they were done gesturing.
After choosing a language, the robot greeted the participant
and explained the basics of the game to them. This was
followed by a practice round, where the robot performed
a prerecorded gesture to depict glasses, and the participant
had to guess by selecting the corresponding image out of
four different options (Fig. 3).

Fig. 1 Photographs of the set-up at the NEMO science museum (left) and the Lowlands music festival (right)
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Fig. 2 Three examples (bus, tortoise, and bridge) of photographs from the BOSS set and the corresponding traced images that were used in the
game of charades—tortoise was also renamed as turtle

Regardless of whether the participant guessed correctly
or incorrectly, the game then proceeded to the second part
of the practice round where the participant was asked to
show a gesture for the object ball. After taking time to
think of a way to depict the ball, the participant triggered a
countdown by pressing the start button on the tablet, after
which he or she could start performing the gesture (Fig. 4).
Participants were instructed to stand still after completing
a gesture, which enabled the system to automatically detect
when to stop recording. In a later version of the system (used
at Lowlands), there was also a button for the researchers
to manually stop the recording. After the recording was
stored, the robot tried to guess the gesture, which for this
introductory stage was hard-coded to always be the correct
guess regardless of the actual gesture that was performed by
the participant.

After guessing the gesture, the robot displayed a top three
of candidates for its guess along with a percentage showing
how much confidence the robot had in that particular
candidate. This step was included to give participants

Fig. 3 During the practice round, a participant guesses the gesture for
glasses that the robot had just performed

insight into the robot’s thought process and reasoning
behind its guesses. As with the other parts of the practice
rounds, this was fixed and always showed the same three
concepts with the same confidence values. All of the items
used in the practice round were not part of the 35 concepts
that make up the final dataset.

The participant then played five turns of the actual game,
which were identical to the practice round except now with
a selection of ten out of the 35 included concepts—five to
be depicted by the robot, and five by the participant. These
concepts were chosen randomly, while ensuring that the
number of total recordings across participants was equally
distributed between the 35 concepts. The robot now based
the gestures it performed on recordings from previous
participants. In addition, it used a gesture recognition
algorithm to try and identify the gestures performed by
participants, and showed the actual top five candidates
proposed by the algorithm. If the robot or participant
guessed incorrectly a second attempt took place for the
same concept. In many cases, this meant that the robot

Fig. 4 Second part of the practice round: The participant performs a
gesture for ball
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Fig. 5 Screenshots of the tablet screen during the game of charades.
Left: the participant’s turn to perform a gesture for toothbrush; middle:
when guessing, the robot shows its top five candidates, of which it will

guess the first one (in this case toothbrush), the correct answer is high-
lighted; right: the robot just performed a gesture and the participant
has to choose the matching item

chose a different recording to perform for the concept.
The four answer options on the tablet did not change,
therefore participants had to guess from three items in
the second round, because they already knew that one
of the four original items was incorrect. The participants
were also free to change their gesturing strategy for their
second attempt (e.g., come up with a different mode of
representation altogether, or repeat their previous gesture
but then bigger or slower), although they were not actively
asked to do so. The gesture recognition algorithm was
purposefully implemented, even though it would mean
an unequal number of repair attempts per concept, and
per participant. We felt that it was important to offer a
transparent and fair game experience to the participants,
since we were working in two real-world environments.
Furthermore, if participants would realize that the robot’s
guessing performance was controlled by us, they might not
take the experiment seriously anymore, which would have
negatively affected the quality of the recorded gestures.
Figure 5 shows the information displayed on the tablet at
various stages during the game of charades. The interaction
with the robot lasted approximately 10 min.

Technical implementation

In this section, we present a general overview of the game
of charades that was used as a semi-structured elicitation
procedure. Additional details are available with the publicly
available source code.1 The implementation consists of
several modules that communicate with each other using
a local network connection. A key advantage of this
architecture is that modules that have been developed in
different programming languages can still work together.
The current system contains a combination of C# for Kinect,
Javascript for the tablet interaction, and Python to drive the
robot. In addition, each module is freely interchangeable as

1https://github.com/l2tor/NEMO-Lowlands-charades

long as it sends the expected output to other modules and is
able to handle the provided input. This means that different
algorithms such as a better performing gesture recognition
approach can easily be added in the future. In a similar vein,
it is possible to support other robots or virtual agents as
well as other recording devices without having to rebuild the
entire system.

The current configuration uses a SoftBank Robotics
NAO V5 robot, which is a commercially available and
widely used humanoid robot. With 25 degrees of freedom it
is more limited than humans in performing gestures. Most
notably, it is unable to move its three fingers individually,
so it is only able to open and close its hand in a gripping
motion. In addition to the robot, the system requires a
participant-facing tablet on which the game itself runs, and
a computer where data can be stored and from which the
researcher can control the experiment. We used a Microsoft
Surface tablet for both the participant and the researcher.
The human gestures were recorded using a Microsoft Kinect
V2 depth camera, a device that was originally designed as
an input device for the Xbox 360 gaming console but can be
connected to a computer by means of an adapter. This device
has since been discontinued but alternatives are available,
including an updated version of the Kinect (Azure) which
we aim to support with future updates to the source code.
The robot and the devices for the participant and researcher
were connected to a router via ethernet cables to ensure a
stable connection. In the next two paragraphs we will briefly
discuss the gesture recognition and production modules, two
key components of the system.

Gesture recognition

To ensure that both the robot and the human participant
were playing the game of charades fairly, both parties had
to observe a gesture from the other player and then guess
which concept it tried to describe. We therefore decided to
implement an algorithm for the robot’s gesture recognition
capabilities. Because one of the potential use cases for our
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dataset was to train gesture recognition algorithms, this also
enabled us to verify that the dataset was indeed suitable
for this task. Finally, we could monitor the robot’s gesture
recognition performance as it interacted with people in a
real-world setting and added new examples to the dataset.

Motion capture recordings such as the ones obtained
from our game of charades are complex time series
that describe three-dimensional locations of different
joints (e.g., elbows, hands) over time. Therefore, even
if two gesture recordings relate to the same concept
and the performer used the same strategy to depict this
concept, differences in speed, size of the movement, or
the number of times a particular motion was repeated
make it difficult to identify these similarities between
gestures. A commonly used approach to compensate for
these differences, particularly in speed, is dynamic time
warping (e.g., Arici et al. 2014), which is able to match
similar gestures even if they are not synchronized and
move at different speeds. However, this method does not
differentiate between motions that are crucial parts of the
gesture, and the noise that stems from random movement
or measurement errors during the recording of the gesture.
It is also not robust to differences in participants’ height,
distance to the camera, or the size of the gesture, which may
cause the joints’ locations between two recordings to be far
apart while the overall motion is in fact quite similar.

In order to distinguish between important movements
and noise, and to also correct for differences in location due
to the position or height of the participant, a pre-processing
step is performed to identify salient features of the gestures,
also known as primitives (Ramey et al., 2012). We based
our approach on the work by Cabrera and Wachs (2017) by
using the inflection points of the hands’ motion trajectories,
combined with peaks in the hands’ position (Fig. 6 shows
a time series trajectory where inflection points and peaks
are marked). Research suggests that inflection points are

Fig. 6 Inflection points (green) and peaks (red) of a motion trajectory

important features for humans to remember and reproduce
gestures (Cabrera et al., 2017). To also take into account
differences between participants’ location and height and
the size of the gesture, instead of the recorded absolute joint
positions we use the positions relative to other joints. For
example, we calculate whether the hand was in front of
or behind, and above or below the shoulder. Cabrera and
Wachs (2017) call the resulting sequence of inflection points
and relative locations the gist of the gesture. One limitation
that remains is that the same gesture could be performed at
different positions relative to the body. A gesture for ball
performed above the shoulders would therefore result in a
different description than the same gesture performed in
front of the body, below shoulder height.

The former preprocessing steps result in a feature vector
describing salient points in the trajectory of the gesture. This
feature vector consists of 14 dimensions that include the
peaks near inflection points of the motion trajectory of the
left hand relative to the left shoulder, the right hand relative
to the right shoulder, the left hand relative to the right hand,
and the spine at shoulder height relative to bottom of the
spine (to measure bending/hunching). These peaks are all
extracted from the X, Y, and Z trajectory, resulting in 12
dimensions. Each of these dimensions is a variable length
text, which includes the location of the joint relative to the
other joint (this is simplified by dividing the physical space
into numbered quadrants), and whether at the inflection
point the trajectory moved from convex to concave, from
concave to convex, or whether it was a stationary point (+,
-, or 0). Depending on the duration of the gesture and the
number of salient points found within the trajectories of the
limbs, one such dimension could contain between 0 and
39 salient points (M = 1.95, SD = 2.47 points). Each
salient point is described by 2 characters of text: a quadrant
identifier, and the type of inflection point. The last two
dimensions of the feature vector are the percentage of the
time the left and right hands were opened.

The next step is to find feature vectors of previously
recorded gestures that are similar to that of the newly
observed gesture. As a measure of similarity between
gestures, we used the Needleman–Wunsch alignment
score (Needleman & Wunsch, 1970), applied to the 12
dimensions of the feature vector separately. The similarity
matrix is included with the published source code of the
system. The difference in percentage of time that the
hands were open was then subtracted from the similarity
score. This helped the algorithm to distinguish between
gestures that look similar if the hands are not taken into
consideration, such as pretending to play the piano (open
hands) and xylophone (closed hands). After calculating the
alignment score between the new gesture and all existing
ones in the set, the k-nearest neighbors algorithm (Altman,
1992) was used to determine to which concept the gesture
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was most likely to belong. This is done by taking the k

gestures with the highest alignment scores, in other words
the k recordings in the set that are most similar to the gesture
we are trying to recognize. The value of k was set to

√
N/2,

where N is the number of total recordings in the dataset.
However, the maximum value of k was set to 8 to ensure that
the algorithm remained computationally feasible. This was
determined empirically while developing the system, so it is
possible that this is not yet the optimal value for k.

From the neighbors, the concept that occurred most
often was chosen as the robot’s guess (majority voting).
For example, if the eight closest matches included four
recordings belonging to spoon, three to comb and one to
toothbrush then the new gesture would be classified as
spoon, and this is what the robot would then guess. If two
concepts were tied (e.g., both four matches), the neighbor
with the lowest similarity score was removed from the set of
neighbors, and this process was repeated until there was one
concept that had the largest number of matching neighbors.

All of the robot’s guesses were logged while the system
was deployed at the science museum and the music festival
in order to get an overview of the gesture recognition
performance and how this developed as more data were
added. For both events, we initialized the dataset with three
recordings for each of the 35 concepts, performed by one
of the researchers. This was the starting point to which
the system automatically started adding new recordings.
Figure 7 shows the moving average, with an interval of 100
recognition attempts and exponential smoothing (α = .1),
of the robot’s gesture recognition performance over time
as it gained more data. Participants who did not want their
data included in the analyses have been excluded. The
average recognition rate was 17.7% at the NEMO science
museum, and 21.0% at the Lowlands festival. Chance level
is approximately 2.9%—1/35 for first attempts, and 1/34 for
second attempts at guessing. The Lowlands set contains less

data because the system only ran for 3 days at that location,
compared to 14 days at NEMO.

Gesture production

The recorded gestures do not contain any visual informa-
tion, essentially turning the performer into a stick figure.
This results in a loss of information compared to regular
video recordings: context and facial expressions are miss-
ing, and subtle motions may not have been picked up by
the Kinect camera. A further loss of information occurs
when trying to automatically translate these recordings to
a robot with fewer degrees of freedom, less smoothness in
its motion, and a smaller reach than a human. However, if
this automatic translation were to work while preserving the
comprehensibility of the gestures, the robot would have the
possibility to imitate human-performed gestures, so that the
gestures no longer have to be designed by hand.

To measure the comprehensibility of the gesture record-
ings and the impact of the loss of information resulting from
the recording and translation steps, we had the robot directly
use gestures that were previously recorded from other par-
ticipants. We used an existing implementation to translate
the joint locations as they were recorded by Kinect into the
yaw, pitch, and roll values needed by the robot (Suay &
Chernova, 2011). Because it is not possible for the robot
to perform certain motions as fast as a human can, the
recordings were slowed down and then sampled at 300ms
intervals. In addition, there were recordings where the sys-
tem did not register that the gesture had ended, and thus also
captured noise at the end. Therefore, only a maximum of ten
seconds of the recordings were performed by the robot.

Each recording had a weight assigned to it, which
started at 0 and was updated after the robot had performed
this particular recording to a participant. If the participant
guessed the corresponding concept correctly, the system

Fig. 7 Moving average of the percentage of correct guesses by the robot
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increased the weight of this gesture. If the participant chose
an incorrect answer, the system decreased the weight. These
weights were then used when deciding which recording
to use next. To make it easier for the participant to guess
a gesture correctly, the robot could perform the recording
with the highest assigned weight (the one that had been
guessed correctly most often in the past). On the other hand,
the robot could also avoid the highest scoring example and
explore alternatives instead. To get diverse ratings while
still providing participants with a good chance to win, in
the current set-up we implemented a 60% chance that the
“best” example would be used (exploitation), and a 40%
chance that any other recording would be performed by the
robot (exploration). Although it would have been possible to
ensure that each gesture would receive an equal number of
ratings, we opted for this exploration-exploitation approach
to lower the difficulty for participants to win the game,
and to automatically filter out incorrect or unclear gestures
(noise).

Similar to the automatic gesture recognition perfor-
mance, it is possible to see from the log files how well
participants were able to recognize gestures performed by
the robot by measuring how often participants guessed a
gesture correctly. Figure 8 shows the moving average, with
an interval of 100 recognition attempts and exponential
smoothing (α = .1), of participants’ guessing performance.
On average, participants guessed correctly 41.9% of the
time at NEMO, and 50.3% of the time at Lowlands. Chance
level in this case is between 25% (first attempt at guess-
ing, four possible answers) and 33.3% (second attempt at
guessing, three possible answers).

Description of the resulting dataset

After deploying the system at the NEMO science museum
and the Lowlands music festival, the resulting data
were cleaned and then published on the Open Science

Fig. 8 Moving average of the percentage of correct guesses by
participants

Foundation2 as supplementary materials to this paper. The
dataset includes metadata describing the participants’ age,
gender, and country of residence, as well as the three-
dimensional gesture recordings from the Microsoft Kinect
V2 and the two-dimensional gesture recordings that were
extracted from videos of participants that gave permission
to have them recorded. These recordings are grouped in
folders, one for each of the 35 concepts. Each filename
contains the participant number, and whether this was a
first or second attempt at performing the gesture. We have
published the data for each of the two data collection
locations separately, although they can easily be combined
into a larger set by merging the folders with each other as
the 35 concepts were the same between locations. The first
character of the participant numbers can then still be used to
tell entries from the different locations apart (N = NEMO,
L = Lowlands).

Also included in the dataset are log files of all the
sessions, which document the interactions that occurred
(e.g., which exact gestures the robot performed, and all
guessing attempts by the participants and the robot), as well
as Python scripts that can be used to visualize (play back)
the recordings.

Three-dimensional recordings

The Kinect V2 depth sensor is able to track the position
of 25 different body joints (e.g., head, hips, hands, feet) at
30 frames per second. For each recording, we stored the
estimated X, Y, and Z position of the 25 joints through
time in a comma-separated (.csv) text file, with one line for
each timestep. The Kinect uses the center of its sensor as
the origin (0, 0, 0), and measures joint positions by their
distance in meters from this origin. This means that the
value of X increases as you move to the left of the sensor
(from the perspective of the sensor, facing the participant),
Y increases as you move up from the sensor, and Z increases
as you move further away from the sensor. As a result,
what is reported as the right shoulder was in fact the
participant’s left shoulder, as seen from the Kinect sensor.
In other words, these recordings will be mirrored by default
when played back. Figure 9 shows a frame from three
different recordings for the concept bridge, visualized from
the comma-separated file using one of the Python scripts
included with the dataset. Note that not all participants were
standing far enough away from the sensor for it to be able to
capture their entire body, hence the positions of their lower
joints (e.g., knees and feet) could not be tracked.

In addition to the 25 joint positions, the system stored
joint orientations (in X, Y, Z, W), but these appear to
be redundant with the joint positions and are therefore

2https://osf.io/r59hj/
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Fig. 9 Three recordings of bridge, showing different ways of depicting
this concept using gesture. From left to right, the focus is on the bridge
surface, the arches, and opening of a drawbridge. The leftmost example
is performed by an adult (24 years old), while the other two examples
are by children (9–10 years old)

not used in our current implementation. The estimated
face orientation—an indication of where participants were
looking—was also added, which has been converted into
pitch, yaw, and roll values. Finally, although the sensor
cannot track individual fingers, it is able to determine
whether the participants’ hands are open (1), closed (0),
or whether this is unknown (-1). This information was
also added for each hand at every timestep, along with a
confidence value indicating how sure the system was that
the hand was in fact opened or closed (Low or High).

The total number of unique three-dimensional recordings
is 3715. Table 2 shows how many gestures are in each
subset, and how many of the recordings were first or second
attempts from the same participant. Appendix A provides
a more detailed overview of the number of recordings per
concept for each subset.

Two-dimensional recordings

Out of the 428 participants in our study, 367 gave
permission to also have their gestures recorded on video.
A Logitech C920 webcam was used, which captured the
gestures at 25 frames per second. After data collection had
completed, we first corrected the video recordings for the
camera’s lens distortion, and then extracted motion capture
data using OpenPose (Cao et al., 2017). This resulted in a
similar data file to the three-dimensional Kinect recordings,
including the positions of 25 body joints through time, but
without depth information (the Z-coordinate). The X and Y
coordinates in this case were measured in pixel locations
within the video frame, which had a resolution of 1280x720

Table 2 Number of three-dimensional gesture recordings per location,
divided into first and second attempts

First attempts Second attempts Total

NEMO 1512 1198 2710

Lowlands 561 444 1005

Total 2073 1642 3715

pixels, with the top left corner of the frame as the origin (0,
0). In these data the left shoulder refers to the participant’s
viewpoint, so it is actually positioned further to the right
than the right shoulder (which shows up on the left side
of the video recording). Contrary to the three-dimensional
recordings, these will therefore not be mirrored when played
back. In addition to the 25 body joints OpenPose is able
to track 21 keypoints on each hand (i.e., finger joints), and
70 points describing the outline and features of the face.
This approach is therefore able to extract several details
from video that are missing from the three-dimensional
recordings, such as finger movement or facial expressions.
Figure 10 shows a comparison between recordings using
Kinect, and the results of running OpenPose on video
recordings of the same gesture. Similar to the three-
dimensional recordings, lower parts of the body such as the
feet were often obscured from view and could thus not be
tracked.

Because not all participants (367 out of 428) gave
permission to have their gestures recorded on video, only
3269 out of the 3715 gestures could be analyzed using
OpenPose. Table 3 shows how these are distributed between
the two locations, and how many first and second attempts
from the same participant were included. The number of
two-dimensional recordings for each concept is listed in
Appendix B.

Data cleaning

Because the recording of each gesture was started by the
participant, and finished after the system detected little to
no hand movement for a certain amount of time, each
gesture was automatically isolated and stored in the folder
belonging to the right concept, in its own file, with the
filename including the participant number and whether it
was a first or second attempt. We have reviewed all of
the recorded gestures, and identified 34 recordings from
NEMO, and three from Lowlands in which no movement
resembling an iconic gesture took place. These were
removed from the dataset.

Although the system tried to automatically isolate the
gestures, there were cases where the system prematurely
detected the end of a gesture and therefore the recording
was cut short. There are also examples where the system did
not manage to detect the end of the gesture due to too much
idle movement by the participant. Because a certain degree
of noise is to be expected once interactions such as these
are deployed in a naturalistic setting, we have not edited
the recordings to remove these extraneous movements. The
recordings might also contain participants looking at, or
trying to interact with the tablet device as they double-
checked the concept they were asked to perform, or if they
did not realize that the recording had already started.
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Fig. 10 The two-dimensional and three-dimensional versions of three
recordings, highlighting the advantages of having detailed hand and
face motion. From left to right: piano with extended fingers, performed
by a child (5 years old); pig by pushing the nose upward with the index

finger, performed by an adult (26 years old); stairs with a walking
motion by moving the index and middle fingers, performed by a child
(10 years old)

The tracked positions of body joints and other features
are stored in a raw format, as provided by the system without
any post-processing. This means that the three-dimensional
recordings are currently in a different coordinate system
than the matching two-dimensional versions, as described
in the previous sections. Additionally, the gestures were
not normalized to compensate for differences in the
participants’ height, or their position relative to the Kinect
and camera. Because the Kinect has a relatively wide angle
of view, and because OpenPose is likely to see human-like
shapes in background objects, several recordings contained
data for more than one person. Recordings for which
this was the case were analyzed and any measurements
not related to the participant performing the gesture
were removed. Finally, all data were pseudonymized, and
identifiable information was removed (e.g., email addresses
from the log files).

Conclusions and discussion

In this paper, we present a large dataset of iconic
gesture recordings, collected in a naturalistic setting at
a science museum and a music festival. Contrary to
most existing gesture elicitation procedures, in our set-
up participants were free to choose how they depicted a
concept by gesturing, and they were distracted from the
fact that they were being recorded. With this research
we aim to contribute to the fields of gesture research
and human-agent interaction in two ways. First, we
provide a dataset that can be used as a basis for studies
into human gesturing behavior—e.g., preferred modes of

Table 3 Number of two-dimensional gesture recordings per location,
divided into first and second attempts

First attempts Second attempts Total

NEMO 1284 1013 2297

Lowlands 541 431 972

Total 1825 1444 3269

representation, differences based on age or culture, and
changes in gesturing strategy after miscommunication
occurs—showing the degree to which variation occurs in
human-performed gestures. The dataset can be used for
the design of an agent’s capability to perform human-like
gestures, and to recognize gestures performed by human
interlocutors, taking into account this degree of variation.
Second, we introduce the game of charades with a robot as a
semi-structured elicitation procedure, which can be used to
collect additional data in the future. To our knowledge this is
the first publicly available elicitation method that employs a
gameful interaction to collect gesture recordings.

This gameful elicitation method is able to bring gesture
research out of the laboratory and closer to real-world
settings. However, because the game restricted participants
to only use their upper body, without support from speech,
and because the other player was a robot that was not
very good at recognizing the gestures, we imagine that the
currently recorded gestures are more exaggerated (e.g., in
terms of the size of the motions) than co-speech gestures
used in everyday human-human conversation. It would be
interesting to develop a variation of the system that is closer
to the original game of charades, in which people are asked
to describe an object, either using gestures or a combination
of speech and gestures. In that case, the data would be
less structured, because gestures no longer relate to specific
cued objects but instead to object properties (e.g., ‘big’,
‘heavy’), however this would result in more broadly usable
gestures. It would also be interesting to record co-speech
gestures during free-form conversation with a robot, and to
see if people change their gesturing behavior when their
conversational partner is a robot instead of another person.
The current dataset, although it contains specific gestures
for 35 concepts, can be used to study various aspects of
general human gesturing behavior (e.g., repair strategies,
variation in preferred modes of representation). In addition,
these—arguably relatively expressive—gestures are useful
in domains such as foreign language education, where it
is important that their meaning is especially clear, even
without speech. For example, we recently used a number
of gestures from this dataset in an experimental study,
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in which a NAO robot was used as an English language
tutor for children of 4–6 years old, and the gestures were
implemented to support the children’s learning process (de
Wit et al., 2020).

It is important to stress that these data were collected
in the field, and therefore will contain some degree of
noise. There are examples where participants already started
moving before the recording started, or where the system
did not detect the end of the gesture properly and recorded
additional movements that were no longer related to the
gestures. These recordings were left as is on purpose, to
give a realistic representation of the situations one could
encounter when bringing this type of technology into the
field, and to provide data that can be used to build solutions
that can cope with these situations. As a concrete example,
at one point during the experiment a participant was asked
to perform a gesture for the concept violin, but instead
showed a gesture that clearly referred to a guitar, another
concept from our set. An additional research question
that could therefore be answered using the dataset is how
systems can be made intelligent enough to detect these
discrepancies and handle them accordingly, for example
by asking for clarification and performing the necessary
relabeling autonomously.

To reduce the duration of the interaction we had to limit
the number of concepts that each participant was asked to
perform. Therefore, the dataset only contains recordings of
five concepts per participant, instead of all 35. It is possible
that the selection of concepts, and the order in which they
were presented, has affected the resulting gestures. For
example, both car and bus were included in the list. If
participants were first presented with the cue for bus, they
might only perform the act of driving, thinking that this was
a unique enough description of the bus. However, if they
had previously become aware that car was also included,
they might have added an additional motion describing the
shape of the bus, or the act of letting people board the bus,
in addition to the driving motion to distinguish between the
two related concepts.

The participants’ preferred strategy for depicting the
concepts using gestures may have further been affected by
the images that were used as prompts. For example, the
image for bridge (shown in Fig. 2) contained a particular
example with arches, which caused several participants to
include an arching shape in their gesture. However, it is
still unclear whether this priming effect shows for all of
the included concepts. There could be concepts with a clear
default mode of representation (Dargue & Sweller, 2018;
Masson-Carro et al. 2017; van Nispen et al. 2014; van
Nispen et al. 2017; Ortega & Özyürek 2016, 2020), which is
then not affected by their representation in the images. This
can be further investigated with the data we have available

now, by measuring how often specific features from the
images come up in the matching gestures.

There are several technical limitations to this method of data
collection. The current version of the system relies on external
devices—the Kinect and video camera—in order to record
the gestures. We envision that in the future robots will have
these features embedded, so that gesturing can become a more
integral part of their abilities. This is a necessary step to make
robots more inclusive by enabling them to communicate
in situations where the effectiveness of spoken language
is compromised, such as noisy environments or when the
interlocutor has trouble understanding speech (e.g., due
to being deaf or hard of hearing, or due to aphasia). In
addition, the motion recording quality of the Kinect sensor
is worse than that of a professional motion capture set-up.
However, the portability of the Kinect, and the fact that it
does not require any markers or special clothing made it
more suitable to bring into a naturalistic setting such as the
museum and music festival. We felt that this was also a more
realistic representation of what robots of the near future
would be able to do. Finally, we decided not to publish
video data from the participants. Although this would have
resulted in a higher level of detail, we thought that this
would also increase the barrier for visitors to the museum
and music festival to engage in the interaction, and might
make those that did participate feel more aware of the fact
that they were being recorded.

The recorded gestures were automatically mapped onto
the robot, however the robot is more limited than humans
in its ability to perform the gestures. As a result, it
was often not clear to participants to which concept the
robot-performed gestures belonged. We imagine that the
performance of virtual agents or more articulate robots, both
with more degrees of freedom, would be better. In future
work we aim to extend the system to include support for
these different agents. In addition, it might be possible to
optimize the translation between the recorded gestures and
the NAO robot specifically. In the aforementioned study
in the field of education (de Wit et al., 2020), we applied
a hybrid approach where we used recordings from the
NEMO-Lowlands dataset as inspiration for the design of the
gestures for a NAO robot, which were then recreated using
key framing techniques (de Wit et al., 2020).

In this paper we have only provided first explorations
of the dataset. There are several aspects to the gestures
that can be further quantified, pertaining to the chosen
modes of representation, and to the way the motions were
executed (e.g., size, complexity), both within and between
different concepts. We expect these aspects to be influenced
by factors such as age (Jain et al., 2016; Masson-Carro et al.,
2015; Sekine et al., 2018; Stites & Özçalışkan, 2017), and
whether this was a first or second attempt at performing
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the gesture. In future work, we intend to perform a more
in-depth and structured analysis of the data, in order to
provide an overview of the degree of variation that exists
within the set. This research can be further supported by
the currently available software tools for (semi-)automatic
gesture analysis (Pouw & Dixon, 2020; Trujillo et al., 2019).

In conclusion, we introduce a dataset of iconic gestures
with a number of elements that set it apart from other
currently available datasets: it includes a large number
of recordings, from a diverse group of participants (e.g.,
children and adults), where participants were free to choose
their gesturing method, and they were asked to perform a
second attempt if the robot failed to recognize their first
gesture, to provide insight into possible repair strategies
that people use when non-verbal miscommunication occurs.
Furthermore, the gestures were recorded by means of a
semi-structured, gameful elicitation procedure. As a result,
this dataset can be used for research into human gesturing
behavior, and as input for various automated gesture
analysis, recognition, and production algorithms. Finally,
we have made the elicitation method publicly available, so
that other researchers can extend the dataset in a consistent,
structured manner.

Open Practices Statement

The data and materials for all experiments are avail-
able at https://osf.io/r59hj/ and at https://github.com/l2tor/
NEMO-Lowlands-charades. The experiment was not pre-
registered.
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Appendix A: Overview of three-dimensional
recordings

Table 4 Number of three-dimensional recordings per concept

Concept NEMO Lowlands Total

Airplane 74 25 99

Bed 80 32 112

Bird 72 27 99

Boat 74 29 103

Book 74 28 102

Bridge 78 32 110

Bus 76 30 106

Car 77 27 104

Castle 75 32 107

Chair 78 32 110

Comb 78 27 105

Cow 76 26 102

Crocodile 81 29 110

Cup 76 30 106

Drum set 75 34 109

Fish 83 25 108

Guitar 76 25 101

Helicopter 75 25 100

Horse 78 30 108

Lamp 71 26 97

Motorcycle 81 30 111

Pencil 85 31 116

Piano 78 29 107

Pig 75 29 104

Scissors 78 29 107

Spoon 80 29 109

Stairs 84 29 113

Table 79 31 110

Toothbrush 75 28 103

Tortoise 77 29 106

Train 74 25 99

Triangle 81 33 114

Trumpet 76 28 104

Violin 78 27 105

Xylophone 82 27 109

Total 2710 1005 3715
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Appendix B: Overview of two-dimensional
recordings

Table 5 Number of two-dimensional recordings per concept

Concept NEMO Lowlands Total

Airplane 57 27 84

Bed 61 32 93

Bird 68 25 93

Boat 67 29 96

Book 62 30 92

Bridge 73 32 105

Bus 65 30 95

Car 74 27 101

Castle 66 31 97

Chair 63 30 93

Comb 59 27 86

Cow 65 20 85

Crocodile 75 29 104

Cup 65 27 92

Drum set 63 32 95

Fish 72 25 97

Guitar 72 21 93

Helicopter 60 23 83

Horse 70 30 100

Lamp 58 24 82

Motorcycle 69 28 97

Pencil 76 31 107

Piano 60 29 89

Pig 68 29 97

Scissors 58 27 85

Spoon 66 29 95

Stairs 77 26 103

Table 60 28 88

Toothbrush 65 28 93

Tortoise 65 29 94

Train 63 25 88

Triangle 71 33 104

Trumpet 58 28 86

Violin 62 26 88

Xylophone 64 25 89

Total 2297 972 3269
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Ortega, G., & Özyürek, A. (2020). Systematic mappings between
semantic categories and types of iconic representations in the
manual modality: a normed database of silent gesture. Behavior
Research Methods, 52(1), 51–67.

Pouw, W., & Dixon, J. A. (2020). Gesture networks: Introducing
dynamic time warping and network analysis for the kinematic
study of gesture ensembles. Discourse Processes, 57(4), 301–
319.

Ramey, A., Gorostiza, J. F., & Salichs, M. A. (2012). A social robot
as an aloud reader: Putting together recognition and synthesis
of voice and gestures for HRI experimentation. In 2012 7th
ACM/IEEE international conference on human–robot interaction
(HRI), (pp. 213–214): IEEE.

Ruffieux, S., Lalanne, D., Mugellini, E., & Abou Khaled, O.
(2014). A survey of datasets for human gesture recognition.
In Kurosu, M. (Ed.) Human–computer interaction. Advanced
interaction modalities and techniques, (pp. 337-348). Cham:
Springer International Publishing.

Sadeghipour, A., Philippe Morency, L., & Kopp, S. (2012). Gesture-
based object recognition using histograms of guiding strokes. In
Proceedings of the British Machine Vision Conference, (pp. 44.1–
44.11): BMVA Press.

Sekine, K., Wood, C., & Kita, S. (2018). Gestural depiction of
motion events in narrative increases symbolic distance with age.
Language, Interaction and Acquisition, 9(1), 40–68.

Shimazu, A., Hieida, C., Nagai, T., Nakamura, T., Takeda, Y.,
Hara, T., . . . , Maeda, T. (2018). Generation of gestures during
presentation for humanoid robots. In 2018 27th IEEE international
symposium on robot and human interactive communication, RO-
MAN, (pp. 961-968): IEEE.

Silpasuwanchai, C., & Ren, X. (2014). Jump and shoot!: Prioritizing
primary and alternative body gestures for intense gameplay. In
Proceedings of the 32nd Annual ACM Conference on Human
Factors in Computing Systems, (pp. 951–954): ACM.
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