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Risk estimation of SARS-CoV-2 transmission from bluetooth

low energy measurements
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Digital contact tracing approaches based on Bluetooth low energy (BLE) have the potential to efficiently contain and delay

outbreaks of infectious diseases such as the ongoing SARS-CoV-2 pandemic. In this work we propose a machine learning based
approach to reliably detect subjects that have spent enough time in close proximity to be at risk of being infected. Our study is an
important proof of concept that will aid the battery of epidemiological policies aiming to slow down the rapid spread of COVID-19.
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INTRODUCTION

Contact tracing is an effective instrument to contain and delay
outbreaks of infectious diseases such as the ongoing SARS-CoV-2
pandemic. Individuals that have been in contact with an infected
person are identified, asked to remain in quarantine and are being
tested. However, manually following contact histories is labor-
intensive, slow and incomplete, as chance encounters, e.g. in the
public transport, can not be fully reconstructed. The emergence of
digital solutions, which automatically reconstruct the duration and
proximity of encounters, is highly promising to enhance
established manual procedures with speed, efficiency, precision
and full coverage of relevant contact history. Ultimately, such
proximity tracing technologies have the potential to “reduce
transmission enough to achieve R<1 and sustained epidemic
suppression, stopping the virus from spreading further”'.
Various concepts for proximity tracing have been proposed in
the past [e.g. refs. 2°]. Recently, the Pan-European Privacy-
Preserving Proximity Tracing (see ref. /) and Decentralized Privacy
Preserving Proximity Tracing (see ref. ®) initiatives were launched,
both promising to enable proximity tracing in compliance with
the European general data protection regulation (GDPR)®. Since
a large percentage of the world’s population carries smart-
phones, these approaches make use of the Bluetooth low
energy (BLE'®) technology. BLE is a wireless communication
protocol, designed for the energy-efficient transmission of data
over the 2.4 GHz licence-free band. Contact advertisements
regularly emitted via BLE are used to assess the proximity of
encounters. For effectively containing the current SARS-CoV-2
pandemic, it is necessary to reliably translate the BLE signal
strength measurements into risk estimates of infection transmis-
sion. Different studies have investigated the use of BLE
measurements for distance estimation and positioning, see, for
instance, refs. ''"'*. These studies show that accurate distance
estimation using BLE is difficult due to alternating advertising
channels and multi-path effects. These issues are particularly
severe in the complex and unknown 3d environments we
encounter in our particular use-case. In this letter, we propose a
data driven approach to achieve feasible risk estimates from BLE
measurements and show that, despite all of these well-known

issues, raw RSSI measurements can be sufficient to provide
useful contributions to the epidemiological risk assessment.

Figure 1a illustrates a typical infection scenario, which is difficult
to manage with manual contact tracing procedures. Here, an
infected person enters a public place (e.g. a supermarket) and
spends an extended amount of time in close proximity (<2 m) to
the contact person. Both factors, namely the contact distance and
the contact duration, influence the risk for the contact person of
being infected.

Proximity tracing technologies allow to reconstruct such high
risk encounters between the infected and contact person, once the
former has been tested positive. The infected person is recording
anonymous IDs of contact persons within certain critical distance
range. These anonymous proximity histories are encrypted and
remain on the phone of the infected person at all times. Only if
tested positive and upon agreement, the proximity history is
analyzed and contact persons with a high risk of being infected
can be alerted anonymously. In addition, health authorities can be
involved to handle these high risk cases by standard procedures
(e.g., test and quarantine the contact persons).

To make this approach practically applicable, i.e., to avoid that
every short time or distant encounter raises an alarm, it is crucial
to reliably estimate the risk of infection transmission from the BLE
signal strength measurements. In this letter we propose techni-
ques to perform this conversion.

METHODS

Epidemiological risk modeling

We first define an epidemiological model to convert proximity time
series to infection risk scores. The models E displayed in Fig. 1b
implement different non-linear functions to translate time series of
proximity values into infection risk scores. For infections transmitted via
the droplet route, one usually assumes that the infection risk decreases
as the distance d; between people increases; with some critical distance
from which on the risk of being infected becomes vanishingly low'>.
See Supplementary Methods 1 for more details on our choice of
epidemiological risk functions. The chosen epidemiological model is
then used to label the data needed to train the ML-based infection risk
predictor. For that, one integrates the marginal infection risk within the
critical distance over the contact duration T to obtain an infection risk
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Overview of the proximity tracing concept and results. a Typical infection scenario in a public space (e.g. a supermarket), where close

contact between an infected and a contact person is established over a long enough period of time. b An epidemiological risk function
translates a time series of contact distances into infectiousness scores, which are then used to label the encounters in the training data set.
¢ Example of a raw RSSI time series of the BLE signal, as well a corresponding contact distances. d We train a linear regression model to predict
the infectiousness scores obtained from a given risk model. The linear regression receives as input a list of features, which were derived from
the raw RSSI data. e The predictions of the linear regression model correlate strongly with the ground truth risk (up to 0.95 for the linear risk
model). For a fixed critical risk threshold n the approach achieves high true positive rates with very few false classifications. f To this day only
little is known about spreading behaV|our of SARS-Cov-2. In this work, we calibrated our epidemiological models according to the latest

recommendations of epidemiologists'®

. After large-scale deployment of proximity tracing technologies, it will be possible to compare the

predicted infection events with the actually measured ones. This may help to refine epidemiological models.

1= E(dy). m

An encounter between two individuals is considered as “high risk” if the
value of | exceeds a predefined critical risk threshold n. This threshold
can either be set either locally, i.e., for each encounter, or globally
based on the estimated reproduction rate R. For COVID-19 it is assumed
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that a physical proximity between two people of less than 2 meters
over a time period of 900s (15min) results in a high risk of being
infected'®. When setting n locally, one would use these parameters to
determine if an encounter is labelled as “high risk” or not. On the other
hand, a globally set critical risk n, will label the data such that the
number of “high risk” encounters exceeds the expected total number of
new cases by a certain safety-margin. See Supplementary Methods 2 for
more details on how to chose the value of n.
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Machine learning for risk prediction
Finally, we train a linear regression model

IX)=w'x+b @)

to predict the infection risk score from the measured received signal
strength (RSSI) time series of the BLE signal. For simplicity, we do not
provide the raw RSSI time series to the ML model, but compute features x
(sum, mean, max etc.) on it and provide this aggregated information to the
model. By thresholding /, the output of the linear regression, we obtain a
family of classifiers

i el i T
risk, (x) = { highrisk” if I(x) >y 3)

"low risk” else

which allows us trade-off sensitivity and specificity of our predictions. Fig.
1d illustrates the entire training and evaluation pipeline, including ground
truth risk estimation, feature extraction and training of the linear
regression model. See Supplementary Methods 3 for more details on our
machine learning approach.

Figure 1c displays the time series of raw RSSI values from the BLE signal,
which the smartphone of the infected person receives from the
smartphone of the contact person. Although there is high variability in
the RSSI values caused by complicated multi-path effects and alternating
advertising channels, it is still possible to reliably decide whether or not the
infection risk | exceeds a certain threshold, as shown in our real-world
experiments performed with 48 participants (see Supplementary Note 1 for
the details on the experimental setup).

Experimental evaluation and discussion

Figure 1e, compares the ground truth risk, as computed from the time
series of ground truth distances, with the predicted risk, estimated from
the Bluetooth signal strength data, for 392 contact episodes from a
holdout validation set. As we can see, our machine learning based
approach, is able to achieve correlation numbers of up to 0.95 for the linear
infection risk model. We compute the critical risk threshold n by inserting
the reference sequence d™, with

d =200cmand T =900s @

into the different risk models. By varying the classifier sensitivity y, we can
trade-off the number of correct and false alarms. The resulting receiver
operating characteristic (ROC) curve of the real-world experiment
displayed in Fig. 1e shows that high true positive rates can be achieved
with relatively few false classifications. Note that these ROC curves depend
on the data labeling procedure, i.e., the epidemiological model and the
threshold n. Here we used the assumed parameters for COVID-19, namely
distance <2m and exposure time >15min'®. We provide mean and
maximum RSSI value as well as the number of received Bluetooth beacons
as features to the linear regression model; results with other features
derived from the RSSI time series can be found in Supplementary Fig. 1.
The AUC (area under the ROC curve) value of the predictor is found to be
larger than 0.9 for all investigated epidemiological models. For the linear
model AUCs of up to 0.96 were obtained. The prediction task becomes
slightly more difficult for the box and sigmoid models, which assign only
negligible risk to encounters above a certain distance. The repetition of this
analysis on data recorded on another day led to very similar performance
results, demonstrating the reliability of the proposed approach (see
Supplementary Table 1).

An important open question is how in detail the distance and duration
of a contact to an infected person relate to the risk of contracting Sars-Cov-
2. Investigating this relationship in experiments in a controlled environ-
ment is morally questionable, since it puts the health of test subjects at
risk. Our approach has the potential of discovering the true relationship
between contact proximity and infection risk, without putting lives at risk.

Once the true infection events will be observed (given data donations
and consent of all users involved), a large record of RSSI time-series with
associated ground-truth risk labels will be available. By minimizing the
prediction error w.r.t. these true risk labels over the set of risk models £ and
classifier thresholds y, we will be able to identify the true relationship
between proximity and infection risk, which will help further improving our
risk assessment.

This idea is illustrated in Fig. 1f, which displays RSSI sequence data along
with the classification decisions of linear classifiers, that were trained to
match the predictions of three different epidemiological models. Every
RSSI sequence is represented as a dot and we display only two features of
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every RSSI sequence, the maximum and the sum of the negative inverse
RSSI values.

In this letter we have proposed an approach to reliably detect subjects
that have spent enough time in close proximity to be at risk of having
contracted an infectious disease. Thus our study is an important proof of
concept that will aid the battery of epidemiological policies aiming to slow
down the rapid spread of COVID-19. Note that while we have assumed the
standard modeling of viral spread with the currently agreed on parameters
(distance <2 m and exposure time >15 min, see ref. '), it may in fact be
conceivable that these parameters are not chosen conservatively enough
in the light of recent results on contagious droplet spreading across larger
distances rsp. in aerosols (see e.g. ref. '’) and moreover the improved
binding affinity of SARS-CoV-2'%. Clearly, once proximity tracing technol-
ogies will be rolled out for the broad population, then transmission events
will become available that will provide evidence for the true epidemio-
logical modeling assumptions. With that we could find out whether the
current risk assessment is conservative enough or whether indeed social
distancing would need to be increased further.

Finally, it is important to emphasize that there are technical limitations of
the BLE technology which make it impossible to detect certain epidemio-
logically relevant events. For instance, it is impossible to detect, using BLE
measurements, whether a contact tracing app user is wearing a face-mask or
not. To further improve the results, it could therefore be helpful to consider
additional sources of data, like user questionnaires or the phones GPS and
gyroscope sensor. These are interesting directions of future research.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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