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Abstract: Never has the world been more challenged by respiratory diseases (RDs) than it has
witnessed in the last few decades. This is evident in the plethora of acute and chronic respiratory
conditions, ranging from asthma and chronic obstructive pulmonary disease (COPD) to multidrug-
resistant tuberculosis, pneumonia, influenza, and more recently, the novel coronavirus (COVID-19)
disease. Unfortunately, the emergence of drug-resistant strains of pathogens, drug toxicity and
side effects are drawbacks to effective chemotherapeutic management of RDs; hence, our focus on
natural sources because of their unique chemical diversities and novel therapeutic applications. This
review provides a summary on some common RDs, their management strategies, and the prospect of
plant-derived natural products in the search for new drugs against common respiratory diseases.
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1. Introduction

The human respiratory system, otherwise known as the ventilatory system, is a
biological system made up of specific organs and structures such as oropharyngeal and
nasopharyngeal cavities, larynx, and trachea (upper respiratory tract), and the lower
respiratory tract, which includes bronchi, lungs, and diaphragm [1–3]. The lungs are an
important part of the respiratory system that facilitate gas exchange from the environment
into the bloodstream for healthy living [4].

The respiratory functions can be hampered by infections and diseases of the lungs
and their associated organs and structures. These diseases are categorised as obstructive
and restrictive lung diseases [4]. Examples of obstructive lung diseases are asthma and
chronic obstructive pulmonary disorder (chronic bronchitis), while restrictive lung diseases
include idiopathic pulmonary fibrosis, pneumoconiosis, and sarcoidosis [5] (Figure 1).
These respiratory diseases (RDs), otherwise referred to as “respiratory disorders”, “airways
diseases”, “pulmonary diseases” or lung diseases, often arise from bacterial and viral infec-
tions in the upper and lower respiratory tracts, causing the common cold, otitis, sinusitis,
pharyngitis, epiglottitis, laryngotracheitis, bronchitis, bronchiolitis, and pneumonia [6].
Some of the causative agents include Mycobacterium tuberculosis, Haemophilus influenza
type b., Streptococcus pyogenes, Chlamydia sp., and Candida albicans [7] (Table 1).

Some viral infections of the respiratory tracts are implicated in disease pandemics
such as influenza (flu), Middle east respiratory syndrome coronavirus (MERS-CoV), and
more recently, the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infection-causing COVID-19 disease that is currently ravaging the world [8]. SARS-CoV
and MERS-CoV broke out in 2003 and 2012, respectively [9], and influenza claimed about
389,000 lives globally in the year 2017 [10]. As of 22 January 2022, about 5.59 million
people had died from 346 million reported cases of COVID-19 globally [11]. These show
the significant negative impacts of RDs on individual lives, national development, and
human existence.
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Inhalation therapy is one of the oldest approaches, yet still relevant to the management
of RDs, dating back to more than 2000 years of Ayurvedic medicine in India [12]. It is centred
around delivery of high pulmonary drug concentrations to the lungs, at low inhaled doses;
thus, it offers substantial efficacy while simultaneously reducing the risk of side effects
associated with many orally or intravenously administered drug doses [13,14]. Recent
advances in the management of RDs include vaccination; use of drugs such as antibiotics,
agonists, and cortisones; ventilatory support; inhalation therapy, and lung surgery [15].
Unfortunately, new RDs continue to emerge, while multi-drug resistant strains and variants
of pathogens continue to render many available drugs ineffective [16,17], hence the need
for more efficacious and less toxic anti-infective agents that could help to reduce the burden
of RDs and forestall seasonal or regular disease pandemics in the nearest future.

The role of natural products (NPs) in drug discovery cannot be over-emphasized. NPs
are chemical substances produced by living organisms such as plants, animals, and marine
organisms [18]. They are primary and secondary metabolites and may only be isolatable in
small quantities from natural sources [19]. Structurally, they range from small molecules,
such as thymol, thymoquinone and penicillin, to complex molecules such as tachyplesin I
and II, with unique chemical and biological properties (Figure 2). They are important leads
to new drugs and are thus categorised as drug candidates [20–22].

NPs are regarded as the hallmark of modern pharmaceutical care because they con-
tinue to provide new leads with novel biological mechanisms of action against emerging
diseases [23]. Currently, about 60% of drugs in the market worldwide are natural product-
derived [24], which underlines the significance of NPs in the discovery of new drugs.

This review puts respiratory diseases (RDs) in perspective and summarises the
prospect of plant-derived natural products in the discovery of new drugs against some com-
mon respiratory diseases, including asthma, COPD, tuberculosis, pneumonia, influenza,
and COVID-19.
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2. Methodology

An extensive literature survey of published articles was conducted, using scientific
databases such as Google Scholar, Mendeley, PubMed, ScienceDirect and Scopus. The
keywords included: “respiratory diseases”, “common respiratory diseases” and “natural
products” searched singly and in pairs; “medicinal plant agents for respiratory diseases”;
“natural compounds for common respiratory diseases”; and “prospects of natural products
in the management of common respiratory diseases”. Publications were obtained from
the literature search until March, 2022 with no language restriction. Data inclusion criteria
included: reports on natural or nature-inspired compounds implicated against respiratory
diseases (RDs); and reports indicating lung, airways and pulmonary disorders or diseases
and their diagnostic and management strategies. Data exclusion criteria were reports on the
same natural compounds with the same biological activities linked to respiratory diseases,
to avoid duplication, and reports on natural compounds against diseases other than RDs
as well as those biological activities (e.g., antidiabetic, antimalaria, neuroprotective and
insecticidal) not directly linked to respiratory diseases. The structures of compounds were
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generated using the ChemDraw Ultra® 7.0 software package, CambridgeSoft Corporation
(Cambridge, MA 02140, USA).

This review may be the first to highlight the major categories of respiratory diseases,
their therapeutic management, and the prospect of natural products of plant origin in the
discovery of new drug candidates against some common RDs such as asthma, COPD, TB,
pneumonia, influenza, and COVID-19.

3. Respiratory Diseases in Focus
3.1. Risk Factors and Epidemiology

Respiratory diseases (RDs) are illnesses that affect the organs and tissues in the lungs
and airways, limiting gas exchange and breathing [26]. They include acute respiratory
infections and chronic respiratory diseases (CRDs) such as influenza, pneumonia, bronchitis,
lung cancer, and chronic obstructive pulmonary disorder (COPD) [27]. CRDs are diseases
of the airways and other structures of the lungs, such as asthma, chronic obstructive
pulmonary disease (COPD), pulmonary fibrosis, occupational lung diseases, interstitial
lung disease, and pulmonary hypertension amongst others [28] (Figure 1).

Common risk factors for RDs include tobacco smoking, high levels of air pollution,
occupational hazards (dusts and chemicals), urbanization, industrialization, poor socioeco-
nomic and health services, the HIV/AIDS epidemic, and respiratory tract infections and
genetics [29–31] (Figure 3). Most upper respiratory tract infections are of viral aetiology
except for a few caused by pathogenic bacteria, such as epiglottitis and laryngotracheitis
caused by Haemophilus influenza type b, and pharyngitis often caused by Streptococcus
pyogenes [32]. For example, the common cold is a viral respiratory infection caused by
rhinoviruses, coronavirus, parainfluenza viruses, influenza virus, adenoviruses, and res-
piratory syncytial virus [32]. Some common respiratory diseases, their global morbidity
ranking (disease burden), and causative agents are presented in Table 1, while Figure 3
shows the major factors responsible for RDs.
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Table 1. Common respiratory diseases, their levels of occurrence, and causes.

Respiratory Disease Global Morbidity
Ranking [33–36] Cause Class Reference

COPD 1st

Haemophilus influenza and
Streptococcus pneumoniae Bacteria

[37]
Influenza viruses, Rhinoviruses Virus

Asthma 2nd

Allergens and irritants (pollen, mould, dust,
feathers, animal fur, smoke, fumes, perfume)

Psychosocial (mental stress, laughter)
Medicines (ibuprofen, aspirin)

-
[38]

Haemophilus influenza and
Streptococcus pneumoniae Bacteria

Pulmonary hypertension 3rd High blood pressure, cirrhosis, congenital and
coronary heart diseases, emphysema, genetic factor - [39]

Tuberculosis 4th Mycobacterium tuberculosis, Mycobacterium africanum,
Mycobacterium bovis, and Mycobacterium microti Bacteria [40]

Pneumonia 5th

Adenoviruses, Parainfluenza viruses, Influenza
viruses, Measles virus, Herpes simplex virus,

Respiratory syncytial virus, Coronavirus
Viruses

[32,41]
Cryptococcus neoformans, Bacteria

Histoplasma capsulatum, Candida albicans,
Aspergillus spp. Fungi

Influenza 6th Influenza A virus, Influenza B virus, Influenza C
virus, Influenza D virus Viruses [42]

Lung cancer 7th

Human Papilloma virus, Epstein-Barr virus, BK
virus, JC virus, Human Cytomegalovirus, Simian

virus 40, and Measles virus, Human Herpesvirus 8,
Human immunodeficiency virus,

Viruses
[43]

Chlamydia pneumonia Bacteria

* COVID-19 8th Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2) Virus [44]

Upper and lower respiratory
tract infections

(Pharyngitis, tonsillopharyngitis
Epiglottitis and

laryngotracheitis,
Bronchitis and bronchiolitis)

9th

Streptococcus pneumonia, Mycoplasma pneumonia,
Haemophilus influenza type b, Corynebacterium

diphtheriae
Bacteria

[32]
Parainfluenza virus, Epstein-Barr virus (EBV),

Herpes Simplex virus, Coronavirus, Rhinovirus,
Respiratory syncytial virus (RSV), Parainfluenza

viruses, Adenoviruses, Herpes simplex virus

Viruses

Candida albicans Fungi

Others:
Common cold 10th

Rhinoviruses, Parainfluenza viruses, Influenza
viruses, Coronavirus, Respiratory syncytial virus Viruses

[45,46]
Oral candidiasis Candida albicans Fungi

* Ranking position subject to change due to the ongoing COVID-19 pandemic.

Respiratory diseases (RDs) constitute a major public health problem worldwide. Ferkol
and Schraufnagel highlighted five conditions that primarily contribute to the global burden
of respiratory diseases, which are asthma, COPD, acute respiratory infections, tuberculosis,
and lung cancer [47].

In the last one decade, an average of 65 million people suffered from moderate to
severe levels of COPD, from which 3 million people die each year [48]. About 334 million
people suffer from asthma, and influenza virus-related diseases are responsible for up to
400,000 deaths annually; tuberculosis caused about 1.4 million deaths in 2015, and about
1.6 million people die annually from lung cancer. More than 100 million people suffer from
sleep-disordered breathing, and over 50 million people struggle with occupational lung
diseases, while millions of people live with pulmonary hypertension [48]. Bronchial asthma
and COPD account for a significant burden in low- and middle-income countries [28].

Furthermore, in 2017, about 540 million people in the world suffered from chronic
respiratory diseases, such as asthma, COPD, pulmonary sarcoidosis, interstitial lung
disease, silicosis, asbestosis, which is an increase of about 40% when compared to the
1990 figures [49,50]. Mortality due to these diseases stood at 3.9 million in 2017, which is
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about 18% increase since the 1990 report [34]. Tobacco smoking accounted for the most
prevalent cause of disability due to RDs in men worldwide, while the leading risk factors
for disability in women were household air pollution from solid fuel use in South Asia and
sub-Saharan Africa, exposure to ambient particulate matter in Southeast Asia, East Asia,
Oceania, and the developed regions within North Africa and Middle East, and smoking in
all other developed regions [36].

In sub-Saharan Africa, about 83% of residents still use solid fuel for cooking, which,
according to the WHO, is responsible for 130/100,000 deaths in the region [50]. Many
countries are still battling rising epidemics of tobacco smoking among women and adoles-
cents, while the levels of ambient particulate matter pollution, ambient ozone pollution,
and several occupational exposures increased significantly between 1990 and 2017 [51,52].
A report has also shown the significant association between ambient temperature and
the burden of morbidity caused by RDs within the sub-tropics, where it was found that
exposure to non-optimal temperatures increased the risk of respiratory morbidity, and
moderate heat contributes significantly to the morbidities of temperature related RDs [53].

Respiratory diseases are known to affect significantly the infant and young population
across the globe. For instance, pneumonia has been reported to cause about 1.3 million
childhood deaths every year, asthma is the commonest non-communicable disease in
children, while paediatric tuberculosis (TB) constitutes up to 20% of the TB morbidity in
high-incidence countries [54]. There are up to 10 million new cases of clinical TB globally
and 1.5 million deaths every year, with the emergence of drug-resistant TB considered as a
major public health crisis [55].

It is noteworthy that respiratory tract infections contribute significantly to morbidity
and mortality of RDs. According to the WHO, lower respiratory infection is the most
common infectious disease-causing deaths worldwide, accounting for the loss of about
3.46 million deaths annually, with most of them being children in developing countries [56].

Respiratory diseases impose a huge economic burden on both industrialized and
developing countries [57]. RDs cost the United Kingdom about GBP 11.1 billion in 2014,
which comprised GBP 9.9 billion in treatment costs and an estimated GBP 1.2 billion loss
in productivity [58]. Annual expenditures for workers in the United States summed up
to USD 7 billion for asthma care and USD 5 billion for COPD care between 2011 and
2015, according to the Centre for Disease Control and Prevention (CDC) report [59]. The
annual cost of treatment for patients with an RD in the Asia-Pacific region was estimated at
USD 4191 per patient, while the mean annual cost of treatment for patients who reported
lung impairment at work was USD 7315 in 2014, thus resulting in a 36% reduction in
productivity [60]. In the Central Asian countries (Eurasia) such as Kyrgyzstan, Uzbekistan,
Tajikistan, Kazakhstan and Turkmenistan, the prevalence of TB is still significantly high,
placing enormous costs on the government and patients [61]. In sub-Saharan Africa, deaths
associated with solid fuel rose by 18% between 1990 and 2013 and cost the African economy
approximately USD 232 billion by the year 2013 [62].

3.2. Management Strategies

The effective treatment of RDs will reduce the disease burden and health care costs
and improve quality of life and productivity [60]. Over the last few decades, RDs have
been managed by vaccination, hormone therapy such as the use of corticosteroids, targeted
therapy such as the use of nebulizer, and chemotherapy such as the use of antibiotics
(antibacterial and antifungal drugs) and antiviral and cytotoxic drugs [63]. However, many
of these management regimens have their complications and adverse side effects. The
continuous emergence of novel respiratory infections such as SAR-CoV-2, the resurgence of
new strains of pathogens such as the multi-drug resistant strains of TB, and the complexities
in their mode of action, are major setbacks to effective vaccination [64,65]. Hormone therapy
has been reported to be associated with increased risk of asthma among pre-menopausal
women [66].
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In recent times, many of the currently approved drugs have presented with numerous
complications. For instance, bleomycin has been reported to cause inflammation of the
lungs (lung fibrosis) and breathlessness, among the most common clinical presentations of
which are interstitial pneumonitis/fibrosis, hypersensitivity pneumonitis, and capillary
leak syndrome [67]. Beta (2)-agonists administered as therapy for asthma and COPD have
recognised systemic sequelae, such as hypokalaemia and chronotropic effects that may be
life-threatening in susceptible patients [68]. Intravenous RSV immunoglobulin has an un-
favourable risk–benefit balance, particularly with the availability of monoclonal antibodies,
while the use of corticosteroids is limited nowadays because of reported cases of adrenal
suppression, especially in children [69,70]. Inhaled corticosteroids, which are commonly
used in combination with long-acting β2-agonists to reduce exacerbation rate in worsening
cases of COPD, have been associated with increased risk of pneumonia [71]. There has
been an increasing rate of macrolide-resistant bacteria in the last few decades, making the
use of drugs such as macrolides in combination with β-lactam agent ineffective for the
treatment of community-acquired pneumonia [72]. Anti-TB drugs such as ethambutol,
isoniazid, pyrazinamide, rifampin, and streptomycin have common side effects, which
include cutaneous reactions, gastrointestinal intolerance, haematological reactions, and
kidney failure [73]. Some FDA-approved anti-influenza drugs such as baloxavir marboxil,
peramivir, oseltamivir phosphate and zanamivir, have proven ineffective in patients with
serious influenza requiring hospitalization, and with common side effects such as bronchi-
tis, common cold, diarrhoea, headache, and nausea [74]. Dexamethasone is a corticosteroid,
anti-inflammatory and immunosuppressive drug that has been widely used in recent years
for the management of COVID-19 patients who are in critical condition. However, the
common side effects of this drug include acne, depression, dizziness, gastritis, headache,
insomnia, restlessness, and vomiting [75]. Azithromycin is an antibiotic drug that received
much attention for clinical use among patients with early-stage SARS-CoV-2 infection.
However, some adverse reactions such as abdominal pain, anaphylaxis, diarrhoea, nau-
sea, QT prolongation, Clostridium difficile infection and vomiting have been reported with
azithromycin [75]. Thus, there is a need to exploit nature for its bioactive agents, which can
be optimized for the chemotherapeutic treatment of the afore-mentioned RDs and many
more with little or no side effect.

4. Plant-Derived Natural Products as Lead Agents against Common Respiratory Diseases

Natural products (NPs) are generally described as chemical substances produced by
living organisms that are found in nature [18]. Natural product sources include plants,
animals, lower and marine organisms, and minerals [76]. Plant-derived NPs are charac-
terised by enormous chemical entities with structural complexities, which are optimized by
evolution to serve specific biological functions [77]. These structurally diverse substances,
also referred to as metabolites, especially secondary metabolites (terpenoids, alkaloids,
flavonoids, coumarins, anthraquinones, saponins, phenolics and phenolic glycosides),
produce physiological actions in man; thus, offering great therapeutic value [78].

Historically, they continue to play a key role in the therapeutic armoury of mankind
against diseases. The earliest records of NPs were plant extracts such as oils from Cy-
press (Cupressus sempervirens) and Myrrh (Commiphora species), inscribed on clay tablets
in cuneiforms from Mesopotamia (2600 B.C.), which are still used today ethnomedici-
nally to treat colds, coughs, and inflammation [78]. The Egyptian pharmaceutical record
(Ebers Papyrus, 2900 B.C.) documented over 700 plant-based drugs in the forms of gargles,
infusions, ointments and pills [79]. The Chinese Materia Medica (1100 B.C.) contained
52 prescriptions, the Shennong Herbal (~100 B.C.) enlisted 365 drugs, while the Tang Herbal
(659 A.D.) contained 850 drugs, and all were documented records on the medicinal uses
of NPs [79]. The Greek physician Dioscorides (100 A.D.) recorded the collection, storage
and uses of medicinal herbs. Monasteries in England, Ireland, France and Germany pre-
served the Western knowledge of natural medicines during the Dark and Middle Ages,
whilst the Arabs preserved the Greco-Roman knowledge and expanded the uses of their
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own resources, together with Chinese and Indian herbs [79]. Avicenna, a Persian pharma-
cist, physician, philosopher and poet, contributed much to the science of pharmacy and
medicine in the 8th century through his work titled “Canon Medicinae” [79].

The early years of the 20th century witnessed remarkable drug discoveries from
natural sources. The world’s first broadly effective antibiotic substance, penicillin, was
first isolated from the fungus Penicillium notatum by Sir Alexander Fleming, a Scottish
physician and microbiologist, in 1928 [80]. This discovery led to the re-isolation and in vivo
and clinical studies by Fleming and co-workers in the early 1940s and commercialization
of synthetic penicillins, which ultimately revolutionized drug discovery and won them
the 1945 Nobel Prize in Physiology and Medicine [81]. After the first clinical report on
penicillin G, there was global interest in exploiting many natural resources for new bioactive
natural products. The post-Fleming era witnessed the isolation of some sulphur-containing
secondary metabolites (natural antibiotics) such as aztreonam, nocardicin G and imipenem
from marine organisms [78]. Erythromycin was discovered from Saccharopolyspora erythraea
as an antibacterial drug with a 14-membered macrocycle composed entirely of propionate
units, broadly active against Gram-positive cocci and bacilli, and is used for mild to
moderate upper and lower respiratory tract infections [82]. A typical natural product drug
discovery process is represented as a flow chart in Figure 4.

Plant-derived NPs continue to contribute significantly to the discovery of newer drugs.
For example, the bark of Pacific yew plant, Taxus brevifolia, gave taxol, a cytotoxic compound
that was latter developed as Paclitaxel for the treatment of human lung cancer and other ma-
lignant tumours [83]. Some antiviral flavonoids such as 6-hydroxyluteolin 7-O-β-d-glucoside,
nepitrin and homoplantaginin were isolated from the methanol extract of Salvia plebeia.
These compounds were found to be active against influenza virus H1N1A/PR/9/34 neu-
raminidase [84]. Matteflavoside G from the rhizomes of Onoclea struthiopteris showed signifi-
cant inhibitory activity against the H1N1 influenza virus neuraminidase with an EC50 value
of 6.8 ± 1.1 µM and an SI value of 34.4 [85]. Extracts of Humulus lupulus and five South
African medicinal plants, namely Volkameria glabra, Cussonia spicata, Myrsine melanophloeos,
Pittosporum viridiflorum and Tabernaemontana ventricose, are known in traditional medicine to
manage inflammatory and respiratory diseases such as the influenza virus, with quercetin
and rutin identified among their putative active constituents [86] (Figure 5).

A review of high-throughput screening (HTS) by Novartis revealed that NPs were
the most diverse compounds tested, with significantly higher hit rates compared to the
compounds sourced from the synthetic and combinatorial libraries [87]. Some potential
natural anti-TB agents include the antifungal phenazine and riminophenazine isolated
from lichens. Clofazimine is a riminophenazine and TB drug originally discovered in 1954
through structural modifications of diploicin, extracted from Buellia canescens. It is currently
used as a WHO group-five drug for multidrug resistant tuberculosis (MDR-TB) [88]. Nat-
ural products and NP-derived compounds, such as aztreonam, colistin, and tobramycin,
have been developed for cystic fibrosis as inhalation drugs, while amikacin, arbekacin, and
capreomycin are being developed for nontuberculous mycobacterial infection, bacterial
pneumonia, and tuberculosis, respectively [89] (Figure 6).
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infections [88,89].

For decades, many herbs and spices have been known to be used in folkloric medicines
for the management of respiratory diseases. Some of these medicinal spices and herbs
are now well established in modern medicine as dietary supplements, nutraceuticals, and
whole drugs because of their identified and well-defined bioactive agents [90]. The peel
methanol extract of Opuntia ficus-indica, known as the prickly pear cactus, has been re-
ported to contain some in vitro anti-pneumonia compounds such as astragalin, quercetin
5,4′-dimethyl ether, isorhamnetin-3-O-glucoside and isorhamnetin [91]. Curcumins from
the turmeric rhizomes (Curcuma longa) are known anti-inflammatory, antiviral, immune
modulating, anti-lung cancer and anti-SARS-CoV-2 agents, as well as inhibitors of acute
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and chronic respiratory disorders [92,93]. Gingerols, 6-shogaol, zingerone, gingerenone-A,
6-dehydrogingerdione, β-bisabolene, α-curcumene and β-sequiphellandrene, all from the
bulbs of ginger (Zingiber officinale), are known bioactive agents against asthma, inflamma-
tion, lung cancer, acute and chronic respiratory disorders, and respiratory viruses including
coronaviruses [94]. 6-Gingerol was reported to decrease the gene expression and produc-
tion of MUC5AC, through affecting the ERK- and p38 MAPK signalling pathways, thus
inhibiting pro-inflammatory actions of many pulmonary diseases [95]. Nigella sativa L.
(black cumin seeds) contain bioactive agents such as nigelline, thymol, thymoquinone,
nigellidine, nigellicine, carvacrol, p-cymene, 4-terpineol, trans-anethol, α-pinene, α-hederin,
and kaempferol-3-glucoside [96]. The constituents improved antioxidant enzymes (catalase,
glutathione peroxidase and glutathione-S-transferase), and exhibit anti-inflammatory, im-
mune modulatory and broncho-dilatory effects against obstructive RDs [96]. The inhibitory
effect of nigellone on the release of histamine from mast cells has been implicated for the
management of bronchitis and asthma [97].

Additionally, some NPs such as the anti-influenza ginkgetin, 4′-O-methylochnaflavone,
hinokiflavone from Ginkgo biloba; six cinnamic amide alkaloids from Tribulus terrestris with
considerable in silico SARS-CoV PLpro activity; procyanidin B1, procyanidin A2 and
cinnamtannin B1 from the dried bark (cortex) of Cinnamomum verum with in vitro anti-
SARS-CoV activity; and resveratrol and pterostilbene from grapes (Vitis vinifera) interfered
with the SARS-CoV-2 infection cycle and significantly inhibited COVID-19 infection in
primary human bronchial epithelial cells cultured under air–liquid interface conditions [9].
Likewise, some triterpenoids such as oleanolic acid, betulinic acid, ursolic acid and saikas-
aponins A, C, D, B1, B2, B3, and B4, which have been isolated from some medicinal plants,
are known to exhibit significant antioxidant, anti-inflammatory, cytotoxic, antibacterial,
antiviral and immune modulatory activities in lung diseases such as COPD, bronchitis,
lung cancer, influenza and coronaviruses [9,95,98–101]. Some medicinal plants and their
active ingredients are presented in Table 2, while the structures of some of these bioactive
compounds are shown in Figures 7–11.

Table 2. Some plant-derived natural products and their biological potentials against common respira-
tory diseases.

Natural Source
(Family) Medicinal Use Biological Property Active Part/Ingredient Reference

Aerva lanata (L.) A. L.
Juss. ex Schultes.
(Amaranthaceae)

Asthma, cough

Anti-asthmatic,
antimicrobial,

immunomodulatory,
diuretic,

anti-inflammatory

Aerial part ethanol
extract [102]

Ageratum conyzoides L.
(Asteraceae) Asthma Antihistaminic,

anticataleptic
Leaf hydroalcoholic

extract [103]

Allium sativum L.
(Amaryllidaceae)

Asthma, pneumonia,
influenza, COVID-19

Antibacterial, antifungal,
anti-inflammatory,

immune modulating,
antiviral (SARS-CoV-2),

anticancer

Organosulfur
compounds such as
diallyl thiosulfinate
(allicin) and diallyl
polysulfane from

the bulb

[104–106]

Amburana cearensis
A.C. Smith (Fabaceae)

Asthma and other
respiratory diseases Anti-asthmatic

flavonoid-5,7,4′-
trihydroxy-3-

methoxyflavone
(isokaempferide) from
the trunk bark extract

[107]

Angelica keiskei (Miq.)
Koidz. (Apiaceae) COVID-19 Antiviral,

anti-SARS-CoV-2
xanthoangelol E from the

leaf extract [108]
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Table 2. Cont.

Natural Source
(Family) Medicinal Use Biological Property Active Part/Ingredient Reference

Argemone mexicana L.
(Papaveraceae) Asthma Antiallergic, antistress Stem aqueous extract [109]

Asystasia gangetica (L.)
T. Anderson

(Acanthaceae)
Asthma Anti-asthmatic,

anti-inflammatory
Leaf fractions (hexane,

ethyl acetate, methanol) [110]

Cinnamon zeylanicum
Blume (Lauraceae)

COPD, lung cancer,
flu-related diseases

such as influenza and
coronaviruses

Antioxidant,
anti-inflammatory,

antimicrobial,
fungitoxicant against

respiratory tract mycoses
(Candida sp.), antiviral,

anticancer, immune
modulatory

Cinnamaldehyde and
trans-cinnamaldehyde,
procyanidins, catechins,

volatile oils from the bark

[111–114]

Cassia sophera (L.)
Roxb. (Fabaceae)

Asthma, bronchitis
(India) Anti-asthmatic

Leaf fractions
(Chloroform, ethyl
acetate, methanol)

[115]

Chamaecyparis obtusa
var. formosana Hayata

(Siebold & Zucc.)
Siebold & Zucc. ex

Endl. (Cupressaceae)

COVID-19,
SARS-CoV

Anti-SARS-CoV-2,
cytotoxic

Ferruginol, betulonic
acid, betulinic acid,
savinin, from the

heartwood extract

[108]

Citrus limon (L.) Burm.
and Citrus peel and

fruit (Rutaceae)

Bronchitis,
Flu-related illnesses,
COPD, lung cancer

Antioxidant,
anti-inflammatory,

immune modulatory,
antibacterial, antiviral
(rhinovirus, influenza
virus, coronaviruses),

anticancer

Flavonoids such as
eriocitrin, hesperidin or

diosmin, apigenin,
naringin, naringenin,
narirutin, quercetin,
luteolin, hesperetin,

nobiletin

[116–121]

Crinum glaucum A
Chev.

(Amaryllidaceae)

Asthma, cough,
convulsion, oral

thrush, COPD, lung

Antiallergic, antifungal
(candidacidal), Bulb aqueous extract [122–124]

Cryptomeria japonica
(Thunb. ex L.f.) D.Do.

(Cupressaceae)
COVID-19 Antiviral,

anti-SARS-CoV-2

7β-hydroxydeoxy-
cryptojaponol from the

heartwood extract
[108]

Curcuma longa L.
(Zingiberaceae)

Common cold,
COVID-19,

pneumonia, influenza,
bronchial asthma,

COPD, lung cancer

Antiviral, anti-SARS-CoV
infections, cytotoxic,
anti-influenza virus,
immune modulating,

anti-inflammatory

Curcumins and
turmerones from the

rhizomes (roots)
[92,93,125–130]

Euphorbia hirta Linn.
(Euphorbiaceae)

Asthma, bronchitis,
hay fever, oral thrush

Antihistaminic,
antiallergic,

anti-anaphylactic,
antibacterial, antifungal,

anti-inflammatory

Quercitrin, rutin, borneol,
quercitol, euphorbin,

gallic acid from the aerial
part ethanolic extract

[131,132]

Ficus deltoidea Jack
(Moraceae)

Flu including
COVID-19 Antiviral (coronaviruses) Rhoifolin from the

leaf extract [108]

Hedera helix L.
(Araliaceae)

COPD, COVID-19,
bronchial asthma,

bronchitis

Anti-inflammatory,
expectorate, antiviral

Hederasaponin-C,
hederagenin and
α-hederin from the

leaf extract

[133]

Lycoris radiata
(L′Héritier) Herbert

(Amaryllidaceae)

Flu such as
SARS-CoV infections,

COVID-19

Antiviral,
anti-SARS-CoV,

anti-SARS-CoV-2
Lycorine from the stem

cortex extract [134]

Mentha spicata L.
(Lamiaceae) Asthma (Japan) Antihistaminic Sideritiflavone from the

leaf methanol extract [135]
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Table 2. Cont.

Natural Source
(Family) Medicinal Use Biological Property Active Part/Ingredient Reference

Momordica dioica
Roxb. ex. Willd
(Cucurbitaceae)

Asthma, bronchitis
(India) Antihistaminic Pulp methanol and

aqueous extracts [136]

Myrica esculenta Buch.
(Myricaceae)

Asthma, bronchitis
(India)

Antiallergic,
anti-inflammatory,

bronchodilator,
anti-anaphylactic

Aerial part and stem bark
ethanol extracts [137]

Nigella sativa L.
(Ranunculaceae)

Bronchitis, COPD,
pneumonia, flu, lung

cancer

Antioxidant, immune
modulatory,

anti-inflammatory,
preventive effect in

respiratory disorders,
broncho-dilatory,

cytotoxic

Thymoquinone,
nigellone, thymol,

carvacrol, p-cymene,
4-terpineol,

trans-anethole, α-pinene,
α-hederin, kaempferol

glucoside

[96,138]

Panax ginseng C. A.
Meyer (Araliaceae)

Oral thrush, acute
respiratory illness

(pharyngitis,
bronchitis, COPD,
respiratory tract

infections

Antifungal
(candidacidal),

anti-inflammatory,
antibacterial, antiviral

(rhinovirus, respiratory
syncytial virus,
coronaviruses),

Ginsenosides such as
20(S)-protopanaxatriol

and
20(S)-protopanaxadiol
from the root extract

[139–141]

Piper betel Linn. Asthma, cold, cough
(Asia and Africa) Anti-asthmatic Leaf ethanol and

aqueous extracts [142]

Polyherbal
formulations

containing some
medicinal herbs and

spices

Different respiratory
diseases including

asthma

Anti-asthmatic, mast cell
stabilization,

anti-inflammatory,
anti-spasmodic,

antiallergic,
anti-anaphylactic,

immunomodulatory and
inhibition of mediators

such as leukotrienes,
histamine, cytokines

Polyherbal mixture [143]

Terminalia chebula
Retz.

Respiratory syncytial
virus Broad spectrum Antiviral Chebulagic acid,

punicalagin [144]

Rheum palmatum L.
(Polygonaceae) COVID-19 disease SARS-CoV-2 inhibition

Chloroform fraction from
ethyl acetate and 75%

ethanolic extract
[145]

Salvia miltiorrhiza Bge
(Lamiaceae) COPD Antioxidant,

anti-inflammatory
Tanshinone IIA from the

root extract [146]

Thymus vulgaris L.
(Lamiaceae)

Pertussis, bronchitis,
asthma, acute lung

injury, influenza,
COVID-19

Antioxidant,
antimicrobial,

anti-inflammatory,
antiviral (influenza,

coronaviruses)

Thymol, p-cymene,
linalool, carvacrol from

the leaf infusion
[147–150]

Tylophora indica
(Burm. f.) Merr.
(Apocynaceae)

Coronavirus
infections Anti-SARS-CoV Tylophorinine [151]

Zingiber officinale
Roscoe

(Zingiberaceae)

Asthma, COPD,
common cold,

bronchitis, influenza,
coronaviruses, lung

cancer

Antioxidant,
anti-inflammatory,

antiviral (SARS-CoV),
immune modulatory,

cytotoxic

6-Gingerol, 8-gingerol,
10-gingerol and

6-shogaol from the bulbs
[94,152]
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5. Structure–Activity Relationships of Some Promising Natural Products against
Common Respiratory Diseases

The study of the structure–activity relationships (SARs) is an approach designed to
find the relationships between chemical structures of ligands and biological targets of
studied compounds [153]. It has become increasingly essential as a tool for organizing,
mining, and interpreting data, to guide further investigation for drug discovery [154]. It is
also a strategy to increase the value of the activity initially detected [155]. Natural products
contain steric and electronic features in their bioactive sites (pharmacophores), which
are responsible for the optimal supramolecular interactions with specific biologic targets
and to trigger (or block) their biologic responses. The most used features for describing
pharmacophore sites are hydrogen bond acceptors and donors, acidic and basic functional
groups, aliphatic and lipophilic moieties, aromatic- and hydroxyl-hydrophilic moieties
amongst others [156].

Reports have shown the SARs of some natural products implicated against some
common respiratory diseases (Table 3). Pires et al. [157] reported the influence of methyl-
, hydroxyl-, and carbonyl functional groups on the in vitro anti-TB activities of eight
coumarin derivatives from Calophyllum brasiliense, with MIC ranging from 15.6–62.5 µg/mL
and a cytotoxicity range of 4.5–82.0 µg/mL against Mycobacterium tuberculosis H37Rv and
its multidrug-resistant clinical isolates. Here, the carbonyl and hydroxyl groups enhance
anti-M. tuberculosis activity by the inhibition of acid-fastness formation in the mycobacterial
cell wall, while the presence of lipophilic side chains such as the alkyl substituent at the
C-3 position and the presence of double bonds increase the lipophilicity of the compound,
thus, helping it to penetrate the lipid-enriched mycobacterial cell wall [157] (Figure 12).

Quercetin 5,4′-dimethyl ether isolated from the fruit peel methanol extract of Opuntia
ficus-indica has been reported to demonstrate double-fold in vitro anti-pneumonia activities,
with MIC values of 0.49 and 0.98 µM against Klebsiella pneumonia and Moraxella catarrhalis,
respectively, when compared to Imipenem, a standard anti-pneumonia drug [91]. Further-
more, an in silico molecular docking study of the compound revealed high H-bonding
affinity with key amino acids such as threonine, asparagine, and tyrosine, thus suggesting
it to be a natural quorum-sensing inhibitor, which is a key anti-pneumonia property [94].
Wollamide B isolated from Streptomyces nov. sp. (MST-115088) has been reported to show
considerable in vitro anti-TB activity with an IC50 value of 3.1 µM against Mycobacterium
bovis. The presence of the basic amino acid ornithine and clusters of lipophilic amino acids
was shown to significantly contribute the typical cationicity and amphiphilicity to the
molecule [158].

The presence of C- and N-glycosylation has also been reported to enhance in vitro
anti-TB activity. For instance, the C-glycosylated benz[α]anthraquinone derivatives and
an N-glycosylated arenimycin isolated from Streptomyces species and Salinispora arenicola,
respectively, showed strong activity against Mycobacterium tuberculosis within an MIC
range of 5.88–24.32 µM, while the latter molecule exhibited an MIC value of 1.5 µM [159]
(Figure 12). It is also noteworthy that unsaturation in the C ring (∆2), the number and
position of hydroxyl groups at the A and B rings, and the carbonyl group at C-4 of ring C
for natural flavonoids are reported to contribute considerably to their anti-inflammatory
properties in some common lung diseases [160].

Table 3. Structure–activity relationships of some natural products against common respiratory diseases.

Compound Source Bioactivity SAR Reference

4-Deoxybostrycin Alternaria eichhorniae 5
(isolate Ae5)

In vitro anti-mycobacterial (TB)
activity (IC50 of 12.5 µM), better

inhibitory effect on clinical
multidrug-resistant M.

tuberculosis (K2903531 and
0907961) than (Nigrosporin, the
standard antitubercular drug

Hydroxyl group at C-5
enhances binding effect

between the bacteria active site
and the molecule

methyl at C-7 increases
lipophilicity and transport

across bacterial cell membrane

[159]
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Table 3. Cont.

Compound Source Bioactivity SAR Reference

Cleistrioside-2

Cleistopholis patens (Benth.)
Engl. & Diels

C. glauca Pierre ex
Engl. & Diels

Cytotoxicty against the human
lung cancer cell lines

(NCI-H460) at CC50 = 9.1 µM.
Antibacterial activity against

Streptococcus pneumonia at
MIC = 4 µM

C-3 glycosylation and C-4
acetate group on the

terminal sugar
[161]

Ginsenosides Panax ginseng C. A. Meyer
Antioxidant,

immune-modulatory, and
antiviral properties

Presence of an aglycon,
protopanaxadiol, and a part of
the sugars may contribute to

the immune-modulatory
properties of the herbs

[162]

Hydroquinone Albizia coriaria Welw
ex. Oliver

In silico anti-TB activity. Better
binding affinities

(−7.8 kcal/mol) for the
mycobacterial ATPase and

polyketide synthase-13 than
isoniazid and rifampicin

Interactions of the
co-crystalized ligand with
amino acid residues in the

binding site of ATP synthase

[163]

Liquiritin apioside Glycyrrhiza glabra L.
Paeonia lactiflora Pall.

Chronic obstructive
pulmonary disorder (COPD)

Presence of hydroxyl group at
C-5 and C-7 of ring A

promotes enzymatic oxidation
and consequently bonding of

flavonoids with
biomacromolecules

[164]

Jusan coumarin
(Dicoumarin)

Artemisia glauca Pall.
ex Willd

In silico anti-SARS-CoV-2
activity

Presence of pharmacophoric
features such as two H-bond
donors, one H-bond acceptor,

an aromatic ring and two
hydrophobic centres

[165]

Ophiobolin K Emericella variecolor
IFM42010 Anti-tubercular activity. Configuration of C-6 is key for

optimal activity [159]

Theopederin Theonella species such as
Theonella swinhoei Gray

In vitro antiviral activity
against SARS-CoV-2)

Inhibition of SARS-CoV-2
main protease aided by

terminal guanidine, cyclic
hemiacetal linkage, and the

length of the side chain

[166]

Quercetin
Many higher plants

including
Polygoni avicularis Herba

Anti-inflammatory effects
against lung diseases such as

asthma, allergy, and acute
respiratory diseases, and

chronic respiratory
disorder (COPD)

The presence of ketonic
carbonyl and double bond at

C-2/C-3 of ring C induces
coplanarity between rings A

and C, favouring the
interaction of the flavonoid

with the enzymatic site
receptor. Hydroxyl group at

C-5/C-7 of ring A as well as at
the C-3′ and C-4′ of ring B

favours enzymatic and
consequently bonding of

flavonoids with
biomacromolecules

[160,167]

Quercetin 5,4′-dimethyl
ether

Opuntia ficus-indica (L.)
Miller

Higher in vitro
anti-pneumonia
than Imipenem.
In silico quorum
sensing efficacy

π–π interaction involving
flavone A- and C-rings,

π–alkyl interactions involving
A-, B- and C-rings

[91]

Vernogratioside A & B Vernonia gratiosa Hance

In silico anti-SARS-CoV-2
main protease with

comparable −7.2 and
−7.6 kcal/mol binding affinity
to N3 inhibitor (−7.5kcal/mol)

C-3 glycosylation
and presence of
alkyl substituent

[168]

Wollamide B Streptomyces nov. sp.
(MST-115088) In vitro anti-tubercular activity

The presence of the basic
amino acid ornithine and

clusters of lipophilic amino
acids impart the typical

cationicity and amphiphilicity
to the molecule

[158]
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6. Mechanisms of Action of Some Plant-Derived Lead Compounds against Common
Respiratory Diseases

Often, the human respiratory tracts become liable to inflammation upon microbial
(especially bacterial and viral) infection and physical injury [169]. Respiratory inflam-
mation is a hallmark of many respiratory diseases, which include asthma, COPD, and
acute respiratory disorders (ARDs) [170]. During the inflammation process, inflammatory
cells, which include eosinophils, lymphocytes, and macrophages, are activated to serve
as the sources of different inflammatory mediators such as histamine, interleukins (IL-4,
IL-1β, IL-6, and IL-5), leukotriene, prostaglandins, nitric oxide, and tumour necrosis factor
(TNF-α) [171]. The release of these inflammatory mediators causes several abnormalities
in the lungs and their function [170,171]. Therefore, natural products (NPs) that can tar-
get the epithelial–mesenchymal transition (EMT), oxidative stress, fibroblast activation,
inflammatory injury, metabolic regulation, and extracellular matrix accumulation within
the respiratory tracts are regarded as candidate anti-inflammatory agents that can be op-
timized as leads for new respiratory drugs [172]. The basic mechanism of action of the
chemical agents involves regulating redox status, inhibiting the activities of bacteria and
viruses, regulating the protease/anti-protease balance, blocking the NF-κB and MAPK
signalling pathways, inhibiting the production of cytokines, suppressing the activation and
migration of inflammatory cells, inhibiting the synthesis and activation of adhesion factors
and growth factors, controlling the cAMP-PKA and PI3K/Akt signalling pathways, and
increasing TIMP-1 expression to serve as anti-inflammatory agents in the lungs [171,173]
(Figure 13).
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The anti-inflammatory properties of curcumins against lung inflammation induced
Klebsiella pneumonia has been demonstrated in a mouse model experiment [174]. Here, it
was shown that curcumin ameliorates lung inflammation considerably by decreasing the
bacterial load in the lung tissue and inducing a significant decrease in neutrophil influx into
the lungs as well as in the production of MDA, NO, and MPO activity and TNF-alpha levels,
whereas Augmentin, the standard antibiotic, takes care of bacterial proliferation. The study,
however, highlighted the potential usefulness of curcumin as an adjunct therapy along
with some antibiotics as an anti-inflammatory or an immunomodulatory agent in the case
of acute lung infection [174]. Studies have also shown the significant anti-inflammatory
actions of quercetin, which are believed to be mediated through the inhibition of phospho-
lipase A2 (via arachidonic acid), lipoxygenase, cyclooxygenase, and thromboxane enzymes
and through the modulation of iNOS, thereby inhibiting NO production [175,176].

Some alkylated chalcones such as xanthoangelol A-G, isolated from Angelica keiskei
leaves, have been reported to show considerable in vitro and in silico anti-SARS-CoV
activity. Xanthoangelol D particularly inhibited the SARS-CoV cysteine proteases with
an IC50 of 1.2 µM, by both competitive and non-competitive modes, thus suggesting
the molecule to be a candidate protease inhibitor in SARS-CoV-related infections [177].
Similarly, some natural phenolic compounds such as brazilin, theaflavin-3,3′-digallate and
curcumin have been reported to have remarkable in vitro anti-SARS-CoV-2 activity with
an IC50 ≥ 10 µM, among 56 polyphenolic compounds and plant extracts that were tested.
The compounds were said to bind with the receptor-binding domain of SARS-CoV-2 spike
protein, thus significantly inhibiting viral attachment to the human angiotensin-converting
enzyme 2 receptor and cellular entry of pseudo-typed SARS-CoV-2 virions [178].

Tetragalloyl quinic acid isolated from Galphimia glauca has been reported as an in vivo
anti-asthmatic agent at 5 mg/kg orally, by suppressing allergen- and platelet-activating
factor, PAF-induced bronchial obstruction, PAF-induced bronchial hyperreactivity, and
thromboxane biosynthesis in vitro. Androsin from Picrorhiza kurroa also demonstrated
similar in vivo activity at 10 mg/kg orally (0.5 mg inhalative) by preventing allergen- and
PAF-induced bronchial obstruction [179].

Additionally, ganoderic acid C1 in the ASHMITM herbal formula comprising Gano-
derma lucidum Sophora flavescens and Glycyrrhiza uralensis has been reported to have potential
for treating TNF-α mediated inflammation in asthma and other inflammatory diseases [180].
Based on clinical studies, the herbal formula significantly reduced TNF-α production by
murine macrophages (RAW 264.7 cells) and peripheral blood mononuclear cells (PBMCs)
from asthma patients [180,181]. The inhibition was associated with down-regulation of
NF-κB expression and partial suppression of MAPK and AP-1 signalling pathways [181].

The combination of synephrine and stachydrine, both alkaloids from the dried rind
of ripe Citrus reticulata Blancon fruits, has been reported to show significant spasmolytic
effects on acetylcholine chloride (ACh)-induced contractions in isolated guinea pig trachea
by activating β-2 adrenergic receptor signalling [182]. They also showed synergistic pro-
tection against histamine-induced experimental asthma by prolonging the latent period.
Stachydrine acts as the antitussive component and is capable of significantly reducing citric
acid-induced coughing; thus, the broncho-dilatory and antitussive effects of the combined
alkaloids might explain their use in traditional Chinese medicine as an anti-asthmatic
remedy [182]. The mechanisms of action of some plant-derived compounds implicated
against some common respiratory diseases are shown in Table 4.
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Table 4. Mechanisms of action of some plant-derived lead compounds against some common
respiratory diseases.

Natural Products Source Mode of Action/Biological Effect References

1,8-Cineol Eucalyptus globulus ssp. globulus
Labill.

Inhibits nuclear translocation of
NF-κB p65 and NF-κB-dependent

transcriptional activity.
Anti-asthmatic properties

[183,184]

3-Methoxycatalposide Platylobium rotundum I.Thomps.

Inhibits the expression of
cyclooxygenase (COX)-2, nitric oxide

synthase (iNOS), and
proinflammatory genes

(IL-6, IL-1β, and TNF-α).
Anti-asthmatic properties

[184]

3-O-α-L-rhamnopyranosyl-(1→2)-
β-D-xylopyranosyl-(1→2)-β-D-

xylopyranosyl-21-
cinnamoyloxyoleanolic acid

Burkea africana Hook

Inhibition of the viral surface
protein neuraminidase. In vitro

anti-influenza virus activity,
IC50 = 0.05 µM

[185]

3-O-α-L-rhamnopyranosyl-
(1→2)-β-D-xylopyranosyl-(1→2)-
[α-l-rhamnopyranosyl-(1→4)]-β-

D-xylopyranosyl-21-
cinnamoyloxyoleanolic acid

Burkea africana Hook

inhibition of the viral surface
protein neuraminidase. In vitro

anti-influenza virus activity,
IC50 = 0.17 µM

[185]

4-(α-L-rhamnopyranosyloxy)
benzyl isothiocyanate Moringa oleifera Lam.

Inhibits inflammatory responses
such as eosinophils, macrophages,

dendritic cells, T-helper type 2 (Th2)
cells, IgE-secreting B cells and mast
cells accumulation. Anti-asthmatic

activity. EC50 ≤ 50 mM in
histamine and

acetylcholine-exposed guinea
pig ileum

[186]

4-(β-D-glucopyranosyl-1→4-α-L-
rhamnopyranosyloxy)-benzyl

thiocarboxamide
Moringa oleifera Lam.

Inhibits inflammatory responses
such as eosinophils, macrophages,

dendritic cells, T-helper type 2 (Th2)
cells, IgE-secreting B cells and mast
cells accumulation. Anti-asthmatic

activity. EC50 ≤100 mM in
histamine and

acetylcholine-exposed guinea
pig ileum

[186]

Caffeic acid Echinacea purpurea (L.) Moench Inhibits in vitro SARS-CoV helicase
activity, IC50 = 0.1 µM [187]

Chlorogenic acid Echinacea purpurea (L.) Moench
Inhibits angiotensin converting
enzyme (ACE), IC50 = 0.1 µM.

In vitro anti-SARS-CoV
[187]

Cleistanthin A Cleistanthus collinus (Roxb.)
Benth. ex Hook. f.

Inhibits the endocytic machinery,
that is, by inhibiting V-type ATPase

and elevating endolysosomal pH
(EC of 0.1 µM). Anti-SARS-CoV

[188,189]

Cleistanthoside A tetraacetate Phyllanthus taxodiifolius Beille

Neutralizes endolysosomal acidity
and decreases the activity of V-type

ATPase with an EC50 of 50 nM.
Anti-SARS-CoV activity

[188]

Cryptotanshinone Salvia miltiorrhiza Bunge Inhibition of the in vitro SARS-CoV
PLpro, IC50 = 0.8 µM [190]
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Table 4. Cont.

Natural Products Source Mode of Action/Biological Effect References

Curcumin Curcuma longa L.

Inhibits SARS-CoV PLpro,
IC50 = 5.7 µM, in vitro

Ameliorates pneumonia-induced
lung injury through a reduction of

the activity and infiltration of
neutrophils and the inhibition of

inflammatory response in
pre-clinical pneumonia models.
Inhibits the production of MDA,

NO, MPO activity and TNF-alpha
levels. Prevents lung infections

[174,191,192]

(+)-Hopeaphenol Ampelopsis brevipedunculata var.
hancei (Planch.) Rehder & Li.

Inhibition of the SARS-CoV helicase
activity, IC50 = 1.6 µM [193]

Matteflavoside G Matteuccia struthiopteris (L.) Tod
Inhibits H1N1 influenza virus

neuraminidase with an EC50 of
6.8 µM and an SI value of 34.4

[9]

Methyl galbanate Ferula assa-foetida L.

Inhibits H1N1 influenza virus with
an in vitro IC50 of 0.26 µM and
significant in vitro cytotoxicity
against human liver and lungs

cancer cells

[194]

Scutellarein Scutellaria baicalensis Georgi Inhibition of the SARS-CoV helicase
activity, IC50 of 0.86 µM [195]

Silvestrol Aglaia odorata Lour.

Inhibits the replication of
MERS-CoV with an EC50 of 1.3 nM.

acting as an inhibitor of RNA
helicase eIF4A and protein

expression via blocking
replication/transcription complex

formation

[196]

Tetra-O-galloyl-D-glucose Rhus chinensis Mill.
Inhibition of the SARS-CoV S

protein-ACE2 interaction,
IC50 = 10.6 µM

[197]

(+)-Vitisin A Ampelopsis brevipedunculata var.
hancei (Planch.) Rehder & Li.

Inhibitory action against
angiotensin converting enzyme

(ACE), IC50 = 1.5 µM
[193]

Xanthoangelol E Angelica keiskei (Miq.) Koidz Inhibition of the SARS-CoV PLpro
activity, IC50 = 1.2 µM [177]

7. Conclusions and Future Prospects

Medicinal plants and other natural sources continue to provide man with scaffolds of
chemically unique and biologically active agents as drug candidates against common respi-
ratory diseases (RDs) [193]. These lead agents include colchicine, curcumin, turmerones,
gingerols, forsythiaside A, glycyrrhizin, mangiferin, zingerone and many other plant-
derived NPs that have been mentioned in this review [193]. However, despite their promis-
ing biological activities, extensive clinical and toxicological reports that validate their
clinical efficacy and safety are still lacking.

Therefore, future study should focus on the isolation and identification of non-/less
toxic and more effective natural compounds through bioassay-guided isolation, high-
throughput-screenings, metabolomics, molecular modelling, virtual screening, natural
product libraries, and database mining [198], while elucidation of the mechanisms of action
of bioactive compounds, lead optimization, toxicological considerations, product formu-
lation, evaluation of pharmacokinetic parameters, dosage regimens, and targeted drug
delivery will remain crucial in the discovery and development of respiratory drugs [77,199].
The development of new-age technologies such as the application of biogenetic metal-
based nanoparticles in medicine (nanomedicine) is another giant stride, which so far has
ensured successful drug delivery with the use of nebulizers that create a particle size
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capable of reaching the alveoli, for faster and more effective treatment at low therapeutic
doses [200,201].

Perhaps the next generation of lead compounds that would effectively manage many
of the respiratory problems of mankind lies under our very nose, demanding more intensive
scientific investigations. “Respiratory disease on the rise, natural products to the rescue”.
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