
| INVESTIGATION

Support for the Dominance Theory in
Drosophila Transcriptomes

Ana Llopart,*,†,1 Evgeny Brud,*,2 Nikale Pettie,*,† and Josep M. Comeron*,†

*Interdisciplinary Graduate Program in Genetics and †Department of Biology, University of Iowa, Iowa 52242

ABSTRACT Interactions among divergent elements of transcriptional networks from different species can lead to misexpression in
hybrids through regulatory incompatibilities, some with the potential to generate sterility. While the possible contribution of faster-
male evolution to this misexpression has been explored, the role of the hemizygous X chromosome (i.e., the dominance theory for
transcriptomes) remains yet to be determined. Here, we study genome-wide patterns of gene expression in females and males of
Drosophila yakuba, Drosophila santomea and their hybrids. We used attached-X stocks to specifically test the dominance theory, and
we uncovered a significant contribution of recessive alleles on the X chromosome to hybrid misexpression. Our analyses also suggest a
contribution of weakly deleterious regulatory mutations to gene expression divergence in genes with sex-biased expression, but only in
the sex toward which the expression is biased (e.g., genes with female-biased expression when analyzed in females). In the opposite
sex, we found stronger selective constraints on gene expression divergence. Although genes with a high degree of male-biased
expression show a clear signal of faster-X evolution of gene expression, we also detected slower-X evolution in other gene classes
(e.g., female-biased genes). This slower-X effect is mediated by significant decreases in cis- and trans-regulatory divergence. The
distinct behavior of X-linked genes with a high degree of male-biased expression is consistent with these genes experiencing a higher
incidence of positively selected regulatory mutations than their autosomal counterparts.
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POPULATION genetics models predict that, under certain
conditions, X-linked loci will show accelerated diver-

gence relative to autosomal loci (i.e., faster-X evolution)
(Charlesworth et al. 1987; Orr and Betancourt 2001;
Betancourt et al. 2002; Vicoso and Charlesworth 2006,
2009a; Mank et al. 2010b). Faster-X evolution can, in princi-
ple, result from the contributions of either beneficial or
weakly deleterious mutations to the rates of evolution. On
the one hand, the fitness effects of new X-linked recessive
beneficial mutations are fully exposed in hemizygous males,
which significantly increases their chances of spreading and
contributing to the rate of evolution. On the other, weakly
deleterious mutations that are partially dominant can also

produce faster-X because the efficacy of purifying selection
can be slightly reduced on the X chromosome. This is because
the effective population size of the X chromosome (NeX) is
often reduced relative to that of autosomes (NeA) due to
its hemizygosity in males. Theoretical models also show
that the chances of observing faster-X evolution are very
sensitive to the ratio NeX/NeA (Vicoso and Charlesworth
2009a; Mank et al. 2010b) and any parameter that im-
pacts this ratio, including demographic changes and dif-
ferences in recombination rates between the X chromosome
and autosomes (Langley et al. 1988; Connallon 2007; Pool
and Nielsen 2007; Vicoso and Charlesworth 2009b;
Charlesworth 2012; Comeron et al. 2012; Ávila et al.
2015). For certain NeX/NeA values, faster-X evolution can
even occur independently of the coefficient of dominance.
For instance, beneficial mutations will generate faster-X evo-
lution for any coefficient of dominance when NeX/NeA $ 1;
equivalently, weakly deleteriousmutationswill produce faster-X
when NeX/NeA # 0.65 (Vicoso and Charlesworth 2009a; Mank
et al. 2010b).

Today, there is ample evidence supporting faster-X evolu-
tion of protein-coding sequences in a variety of organisms,
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including XY and ZW systems (Thornton and Long 2002,
2005; Torgerson and Singh 2003, 2006; Counterman et al.
2004; Khaitovich et al. 2005; Lu and Wu 2005; Nielsen
et al. 2005; Musters et al. 2006; Baines and Harr 2007;
Begun et al. 2007; Mank et al. 2007, 2010a; Baines et al.
2008; Singh et al. 2008; Ellegren 2009; Grath and Parsch
2012; Meisel and Connallon 2013; Vicoso et al. 2013; Ávila
et al. 2014, 2015; Garrigan et al. 2014; Kousathanas et al.
2014; Sackton et al. 2014; Veeramah et al. 2014; Coolon et al.
2015; Llopart 2015; Larson et al. 2016). Faster-X evolution
has also been reported for gene expression divergence
(Khaitovich et al. 2005; Brawand et al. 2011; Kayserili et al.
2012; Llopart 2012; Meisel et al. 2012; Coolon et al. 2015;
Dean et al. 2015) and intergenic DNA sequences (Hu et al.
2013; Coolon et al. 2015; Llopart 2018), likely reflecting the
effects of natural selection on the evolution of regulatory ele-
ments. In species where males are the heterogametic sex,
faster-X is expected to be strongest in genes with male-
specific fitness effects because these genes are always hemi-
zygous when they are X-linked. A similar rationale applies
to genes with female-specific fitness effects in ZW systems
(Betancourt et al. 2002; Vicoso and Charlesworth 2009a;
Mank et al. 2010b).

Regardless of the evolutionary forces driving faster-X (Z)
evolution (positive selection or relaxed negative selection),
its implications for the genetic basis of hybrid dysfunction
are clear: the X chromosome will disproportionally contrib-
ute to between-species Dobzhansky-Muller incompati-
bilities (Dobzhansky 1937; Muller 1942; Coyne and Orr
1989). Even a slightly elevated substitution rate on the X
chromosome will be amplified in hybrids, as the number of
incompatibilities increases exponentially with divergence
time (Orr 1995; Turelli and Orr 2000; Matute et al. 2010;
Moyle and Nakazato 2010; Guerrero et al. 2017). Mapping
studies in a variety of species including mice, Lepidoptera,
andDrosophila have shown that the factors having the largest
effects on hybrid dysfunction, particularly hybrid male
sterility, are X-linked (Coyne and Orr 1989, 2004; Coyne
et al. 1991; Coyne 1992). Orr’s (1987) seminal study of
the genetic basis of sterility in Drosophila pseudoobscura–
Drosophila persimilis hybrids constitutes a classic example
of this pattern known as the large X-effect. The large
X-effect, together with Haldane’s rule (i.e., the preferential
inviability or sterility of the heterogametic over the homo-
gametic sex; Haldane 1922), underline the importance of
sex chromosomes in speciation (Coyne and Orr 1989; Masly
and Presgraves 2007, 2008; Moyle et al. 2010; Johnson and
Lachance 2012).

The large X-effect can also be explained by the dominance
theory (Turelli and Orr 1995, 2000; Orr and Turelli 1996),
which posits that alleles causing hybrid dysfunction tend to
act recessively in hybrids (Muller 1940, 1942). As a result,
hemizygous X chromosomes will express all incompatibilities
(dominant and recessive) while heterozygous autosomes will
express only the fairly dominant ones. In the context of gene
regulation, the dominance theory, if confirmed, opens the

possibility that a large fraction of the abundantmisexpression
observed in hybrid males, but not in hybrid females, may be
due to regulatory incompatibilities involving X-linked reces-
sive mutations. Disruption of gene expression in hybrids has
been extensively documented in Drosophila, and it is often
the case that rapidly evolving genes tend to be over-represented
among misexpressed genes (Reiland and Noor 2002;
Michalak and Noor 2003, 2004; Ranz et al. 2004; Landry
et al. 2005; Noor 2005; Haerty and Singh 2006; Artieri
et al. 2007; Barbash and Lorigan 2007; Moehring et al.
2007; Catron and Noor 2008; Sundararajan and Civetta
2011; Llopart 2012; Maheshwari and Barbash 2012; Satyaki
et al. 2014; Wei et al. 2014; Gomes and Civetta 2015). While
the potential link between faster-male evolution (Wu and
Davis 1993; Wu et al. 1996) and hybrid misexpression has
been explored (Noor 2005; Haerty and Singh 2006; Ortíz-
Barrientos et al. 2007; Civetta 2016; Mack and Nachman
2017), the dominance theory for hybrid transcriptomes
remains untested.

Here, we examine genome-wide patterns of transcript
abundance for 11,949 genes with variable degrees of sex-
biased expression in females andmales ofDrosophila yakuba,
Drosophila santomea and their interspecific hybrids us-
ing RNAseq technology. Our experimental design includes
females with standard karyotypes and females carrying
attached-X chromosomes, which allowed us to test the
dominance theory for transcriptomes. The comparative anal-
ysis of female and male transcriptomes reveals consistent dif-
ferences in gene expression divergence between the two
sexes for genes with sex-biased expression, in agreement
with different selective regimes. Genes with a high degree
of male-biased expression show a strong and significant sig-
nal of faster-X evolution of gene expression in a slower-X
evolution background. We also detect that recessive alleles
on the X chromosome play a significant role in hybrid mis-
expression, hence confirming predictions of the dominance
theory.

Materials and Methods

Fly stocks

We used the D. yakuba Taï18E2 and the D. santomea STO.4
stocks to obtain an overall view of gene expression variation
between species and in F1 hybrid females and males. The D.
yakuba Taï18E2 was part of the 12 Drosophila Genomes proj-
ect, originated in the Taï rainforest (Taï National Park, Ivory
Coast), and was inbred for at least 10 generations of single-
pair brother/sister mating before whole-genome sequencing
(Drosophila 12 Genomes Consortium et al. 2007). The STO.4
stock of D. santomea was established from a single fertilized
female collected in the Obo Natural Reserve on São Tomé
(Lachaise et al. 2000), and was inbred for 10 generations. To
generate “unbalanced” F1 hybrid females with two D. yakuba
X chromosomes, D. yakuba females of the attached-X stock
[C(1)RM y,wor females, +males] were crossed toD. santomea
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males of the attached-X stock [C(1)RM g females, + males]
(Coyne et al. 2004); F1 hybrid females with two D. santomea
X chromosomes were also generated from the reciprocal
cross. Attached-X hybrid females carry two X chromosomes
from the same (maternal) species, a haploid set of autosomes
from each parental species, and a Y chromosome from the
paternal species. Figure 1 shows the specific karyotypes ana-
lyzed in this study. All flies were raised on standard cornmeal-
yeast-agar medium at 24� with a 12 hr dark-light cycle.

RNA isolation, library preparation, and sequencing

Females and males were collected under CO2 anesthesia
0–5 hr post eclosion, aged for 19 hr at 24�, snap-frozen in
liquid nitrogen, and stored at 280�. For each genotype ana-
lyzed, total RNA was isolated from a pool of 15 females or
30males using TRIzol reagent (Invitrogen) and following the
manufacturer’s recommendations. Up to 15 mg of nucleic
acid were treated with RNase-free DNase I (�7 Kunitz units)
in solution (“RNase-free DNase set”; Qiagen) and cleaned-up
using the RNeasy Mini Kit (Qiagen). We used �1 mg of to-
tal RNA to prepare libraries suitable for high throughput
sequencing following the Illumina protocol (“mRNA
Sample Preparation Guide”; Cat. # RS-930-1001, Part #
1004898 Rev. D; Illumina). Briefly, poly-A containing RNA
molecules were purified using poly-T oligo-attached mag-
netic beads. Following this purification, the mRNA was frag-
mented into small pieces using divalent cations under
elevated temperature. The first-strand cDNA was copied us-
ing reverse transcriptase and random hexamers while the
second cDNA strand was synthesized using DNA polymerase
I and RNAse H. The fragmented cDNAwent through the end
repair process, addition of a single “A” base, and ligation
to custom-designed adapters. These include unique seven-
nucleotide tags that allowed multiplexing of several samples
prior to sequencing. The sequences and a detailed description
of these custom-designed adapters can be found elsewhere
(Comeron et al. 2012).

We ran the ligation products on a 2% agarose gel, selected
for �250 bp size, and recovered cDNA templates using the
QIAquick Gel Extraction Kit (Qiagen). These cDNA templates
were enriched with PCR to create the final cDNA libraries,
which were validated using a 2100 Bioanalyzer (Agilent
Technologies). For each genotype analyzed, we obtained
two replicates using the same total RNA. Cluster generation
and sequencing were carried out on HiSeq 2000/2500 instru-
ments at the Iowa Institute of Human Genetics (IIHG; Uni-
versity of Iowa) or at the Iowa State DNA facility (Iowa
State University) using a combination of multiple lanes per
sample (single-end 100 cycles/read or 125 cycles/read).
Sequence reads were sorted out according to individual
tags, 39 trimmed (-t 12 -l 30) and filtered based on quality
(-q 12 and -p 75) using the FASTX-toolkit (0.0.14) (http://
hannonlab.cshl.edu/fastx_toolkit/commandline.html). The av-
erage number of trimmed reads that passed quality filtering
across samples was 51.5 million and 31.3 million for repli-
cates 1 and 2, respectively. Supplemental Material, Table S1

shows the number of sequence reads and the median number
of mapped fragments per kilobase of transcript for each of the
12 genotypes analyzed (two replicates per genotype).

Gene expression analyses

To examine genome-wide transcript abundance, we first
generated the D. yakuba reference gene set (14,687 genes)
based on the genome sequence and annotation of coding
sequences (CDS) available in FlyBase (dyak_r1.3_FB2011_08;
http://flybase.org/) (Gramates et al. 2017). Genes on Arm U
and random sequence scaffolds were not included. To allow
reads covering 59 and 39 UTRs, we expanded the CDS def-
initions by 75 bp upstream and downstream of starting
and stop codons, respectively. Exon and UTR sequences
were extracted using tools available in Galaxy (https://
usegalaxy.org/) (Afgan et al. 2016) and assembled with
custom scripts.

Figure 1 Diagram of the karyotypes analyzed in this study. Horizontal
short bars represent sex chromosomes (the Y chromosome is shown with
a hook) while long bars represent autosomes. Gray, D. yakuba chromo-
somes; white, D. santomea chromosomes. Att-X, attached-X females; T3
S, hybrids of first generation from the cross between D. yakuba Taï18E2
females and D. santomea STO.4 males; S 3 T, hybrids of first generation
from the cross between D. santomea STO.4 females and D. yakuba
Taï18E2 males; Cy 3 Cs, hybrids of first generation from the cross be-
tween D. yakuba C(1)RM females and D. santomea C(1)RM males; Cs 3
Cy, hybrids of first generation from the cross between D. santomea C(1)
RM females and D. yakuba C(1)RM males. RNAseq detailed information
for each of the 12 karyotypes/genotypes is shown in Table S1.
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Trimmed and quality filtered reads were mapped to the
D. yakuba reference gene set with Bowtie 2 (version 2.1.0)
us-ing default parameters (Langmead and Salzberg 2012).
Bam files were sorted and indexed with SAMtools [version
0.1.18 (r982:295)] (Li et al. 2009), and the number of reads
aligned to each of the genes was calculated using RSEM
(version 1.3.0) (Li and Dewey 2011). We only considered
for further analyses genes with at least 10 mapped reads
and . 1 FPKM (fragments per kilobase of transcript per
million mapped reads) in both species and in at least one
sex.

All gene expression analyses were carried out combining
sequence reads from both replicates. To classify genes into
different sex-biased expression categories that were consis-
tent across species, we took advantage of a DESeq2 (version
1.16.1) multifactor design with two variables (�species +
sex) and used the absolute effect size estimate [abs(Log2-
FoldChange)] as a measure of the degree of sex-biased
expression (Love et al. 2014). Quantitative estimates of dif-
ferences in gene expression between species, between paren-
tal species and hybrids (degree of misexpression), and
between reciprocal interspecific hybrids, were also based
on size factors from DESeq2. DESeq2 implements the Benja-
mini-Hochberg probability adjustment (padj) to correct for
multiple testing (Benjamini and Hochberg 1995). Genes
were considered to show statistically significant differences
in expression if padj , 0.05 [false discovery rate (FDR) =
0.05]. We excluded genes showing switches across spe-
cies between sex-biased expression categories (e.g., genes
with male-biased expression in D. yakuba but female-biased
expression in D. santomea). We analyzed gene expression for
a total of 11,959 genes.

Analyses of cis- and trans-regulatory variation

The detection of cis- and/or trans-regulatory variation is usu-
ally based on comparing the ratio of allelic expression in
hybrids (i.e., allelic ratio) with the ratio of expression be-
tween species (i.e., species ratio) (Wittkopp et al. 2004;
McManus et al. 2010; Coolon et al. 2014). With mRNAseq
data, this requires the identification of stock-specific reads
based on whole-genome consensus sequences for the
D. yakuba Taï18E2, the D. santomea STO.4, the D. yakuba
C(1)RM, and the D. santomea C(1)RM stocks. The initial
mapping steps for generating these new genome sequences
were the same as those used for the analysis of transcript
abundance (see above) except that, in this case, we used
the D. yakuba reference genome sequence to align D. yakuba
reads and a draft of the D. santomea genome sequence
(Llopart 2015) to align D. santomea reads. SAMtools was
used to (1) sort/index BAM files, (2) filter sites with map-
ping quality , 40, and (3) generate mpileup files with a
maximum depth of 100,000 reads and a minimum base align-
ment quality of 30 (Li et al. 2009). To filter out sites covered
by fewer than five reads and to obtain fastq files of consensus
sequences, we used the utility BCFtools (1.3.1) (Li et al.
2009). Fastq files for each of the four consensus sequences

were converted into fasta format and heterozygous sites were
randomly phased using Heng Li’s seqtk (https://github.com/
lh3/seqtk). To minimize mapping biases across comparisons,
regions containing ambiguous bases or missing base calls in
at least one of the consensus sequences were masked in all
the other consensus sequences.

Based on comparisons between allelic and species ratios,
we classified genes into six different regulatory evolution
classes (cis only, trans only, cis + trans, cis 3 trans, compen-
satory, and conserved) following McManus et al. (2010). For
each type of hybrid analyzed, we identified stock-specific
reads as those mapping with 0 mismatches to only one of
the parental consensus sequences. For a given gene, the rel-
ative numbers of the two types of stock-specific reads in
hybrids provide an estimate of the allelic ratio of gene
expression, which was calculated as log2(read count allele
1/ read count allele 2). For example, in hybrid females of
the cross between D. yakuba Taï18E2 females and D. santo-
mea STO.4 males, allele 1 and allele 2 refer to the reads
obtained from the sample of hybrid females that map specif-
ically to the sequences of the D. yakuba Taï18E2 and the
D. santomea STO.4 stocks, respectively. The allelic ratio con-
stitutes a quantitative measure of cis-regulatory divergence
for every gene analyzed. To obtain an estimate of the species
ratio of expression, we first constructed an in silico parental
mixture by combining equal numbers of stock-specific reads
from each of the two parental stocks used to generate the
different hybrid types, as in Coolon et al. (2014). For a given
gene, the species ratio was then calculated as log2(read count
genotype 1/ read count genotype 2) where genotype 1 and
genotype 2 refer to the stock-specific reads in the in silico
parental mixture (Coolon et al. 2014, 2015). The difference
between species and allelic ratios [log2(read count genotype
1/read count genotype 2)2log2(read count allele 1/read
count allele 2)] provides a quantitative measure of trans-
regulatory divergence for each gene analyzed. Binomial
exact tests were used to detect differences between read
counts of allele 1 and allele 2, and also between read
counts of genotype 1 and genotype 2. A x2 test was applied
to detect differences between allelic and species ratios. Se-
quential Bonferroni correction for multiple testing was used
(FDR = 0.05). Only genes with at least 20 stock-specific
mapped reads for the two types of alleles and genotypes
were included in the analyses.

Estimates of selection on gene expression variation

Selection acting on gene expression variants for genes with
female-biased expression was estimated as the scaled selec-
tion coefficient g (2 Ne s, where Ne is the effective population
size and s the selection coefficient) for an arbitrary coeffi-
cient of dominance (h; 0 # h #1). Based on predictions of the
infinitely many sites model (Kimura 1964; Crow and Kimura
1970), rates of evolution and levels of divergence depend
on Ne, s, h, and the mutation rate. In particular, g can be esti-
mated solely as a function of h conditional to knowing esti-
mates of divergence at regions with differences in Ne if
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mutation rates are assumed to be equivalent. We took advan-
tage of the estimated difference in Ne between the dot chro-
mosome and other autosomes based on D. yakuba intron
polymorphism data (Llopart 2018), with the Ne of the dot
chromosome being 11.1% that of the other autosomes.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the manuscript are represented
fully within the manuscript. All sequence reads have been
archived at NCBI SRA BioProject PRJNA470895. Supplemen-
tal material available at Figshare: https://doi.org/10.25386/
genetics.6981560.

Results

To understand the role of the X chromosome in hybrid gene
expression, we examined transcript abundance in 1-day old
virgin females and males of Drosophila yakuba, D. santomea
and their interspecific hybrids. Our experimental design in-
cludes not only flies with standard karyotypes but also fe-
males bearing attached-X chromosomes (Coyne et al. 2004)
(Figure 1). Attached-X hybrid females show the same degree
of autosome-sex chromosome mismatch as that of hybrid
males, and constitute an ideal genetic tool to study the effects
of X-linked recessive factors. We obtained profiles of tran-
script abundance for 10,128 and 11,663 genes expressed in
adult females and males, respectively. To investigate the ef-
fects of sexually dimorphic gene expression, we classified all
genes into seven distinct categories based on degree of sex-
biased expression (Figure 2 and Table S2). Importantly, this
gradual classification allows for comparisons across studies
regardless of statistical power. Additionally, to capture ex-
treme sex-biased effects, we also identified female- and ma-
le-specific genes (FSGs andMSGs). FSGs (orMSGs) are defined
as those showing, 1 FPKM in males (or females) and statisti-
cally significant differences in expression between the two sexes
that are consistent across the two species. They are a subset of
the most extreme sex-biased category (fold change between
sexes. 3). Genes showing an expression fold change between
the two sexes , 1.1 were considered nonsex-biased.

To investigate the relationshipbetweensexuallydimorphic
expression and chromosome location in the D. yakuba–
D. santomea system, we examined the genome-wide distribu-
tion of genes with variable degrees of sex-biased expression
(Figure 2). The autosomal dot (fourth) chromosome reveals
the most striking pattern, with 86% (68/79) of its genes
being female-biased in expression. This represents a signifi-
cant enrichment relative to the other autosomes [68/79 vs.
3978/9919; Fisher’s exact test (FET), P = 5.08 3 10217],
which we interpret as evidence of ancient feminization of the
dot chromosome (Vicoso and Bachtrog 2013, 2015). The X
chromosome shows a significant overrepresentation of FSGs
relative to autosomes (40/1951 vs. 116/9919; FET P = 0.003)
and a trend toward underrepresentation of MSGs (246/1951
vs. 1413/9919; FET P = 0.058).

Gene expression divergence is a sexually dimorphic trait

To understand the molecular causes underlying hybrid mis-
expression, we first examined gene expression divergence
(absolute log2 fold change of transcript abundance between
species; see Methods). These analyses uncovered three main
patterns. First, gene expression divergence is positively cor-
related with degree of sex-biased expression {Spearman’s
r = 0.10 [95% confidence intervals (CI): 0.07–0.13] (P =
1.04 3 10211) for genes with increasingly female-biased
expression in females and r = 0.30 (95% CI: 0.27–0.32)
(P = 3.47 3 102111) for genes with increasingly male-
biased expression in males} (Figure 3). Second, female tran-
scriptomes show smaller gene expression divergence relative
to male transcriptomes [0.28 vs. 0.30; Mann-Whitney Test
(MWT) P = 6.75 3 10212 for all genes; 0.26 vs. 0.28;
MWT P = 1.89 3 1024 for X-linked genes; 0.28 vs. 0.31;
MWT P = 1.193 10210 for autosomal genes], which is con-
sistent with faster-male evolution (Wu and Davis 1993; Wu
et al. 1996) for gene expression (Meiklejohn et al. 2003;
Parisi et al. 2003; Ranz et al. 2003; Haerty et al. 2007). Gene
expression also evolves more rapidly in MSGs than in FSGs
(0.58 vs. 0.41; MWT P = 0.007). Third, the comparative
analysis of the same subset of genes in the female and male
transcriptomes reveals that genes with sex-biased expression
show high gene expression divergence in the sex toward
which the expression is biased while transcript abundance
tends to be conserved between species in the opposite sex;
the trend is consistently observed across genes with different
degrees of either female- ormale-biased expression (Figure 3).

Figure 2 Distribution of genes with different degrees of sex-biased ex-
pression across the genome. The number of genes in each class is shown
on the right column. See Table S2 for the number of genes in each
category.
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As a result, some gene categories can show greater gene
expression divergence in females than in males. This sug-
gests that, in addition to the pervasive trend of faster-male
evolution, there is a signal for rapid evolution in the female
transcriptome as well. We suggest that gene expression di-
vergence for genes with sex-biased expression should be
studied in the context of a sexually dimorphic trait (see
“Discussion”).

Weakly deleterious regulatory mutations contribute to
gene expression divergence

To gain insight into the evolutionary forces driving gene
expressiondivergence,weanalyzed transcript abundanceon
the dot chromosome. Because of the highly biased gene
composition of this chromosome, we focused on genes with
female-biased expression. In Drosophila, the dot chromo-
some is a unique autosome because it does not experience
meiotic recombination. As a consequence, the effective pop-
ulation size and the effectiveness of natural selection on the
dot chromosome are severely reduced due to linked selec-
tion (Hill and Robertson 1966; Maynard Smith and Haigh
1974; Berry et al. 1991; Charlesworth et al. 1993; Hudson

and Kaplan 1995; Charlesworth 1996; Betancourt and Pre-
sgraves 2002; Comeron and Kreitman 2002; Jensen et al.
2002; Wang et al. 2002, 2004; Haddrill et al. 2007;
Comeron et al. 2008; Betancourt et al. 2009; Arguello
et al. 2010).

If weakly deleterious mutations are major contributors
to gene expression divergence, we anticipate that gene
expression on the dot chromosome will evolve faster than
on other autosomes. For female-biased genes this pre-
diction is observed in female transcriptomes (0.62 vs.
0.29; MWT P = 9.65 3 10213). Based on this 2.14-fold
(0.62/0.29) difference in gene expression divergence, we
estimated the scaled selection coefficient g (2 NeA s) acting
on gene expression variation to range between 22.4
(h = 1) and 23.9 (h = 0), in agreement with weak
selection.

Inmale transcriptomes, by contrast, there is no evidence of
increasedgeneexpressiondivergence for female-biasedgenes
on the dot chromosome (0.21 vs. 0.27; MWT P = 0.06),
which indicates minimal effects of differences in effective
population size and thus suggests selectively strong func-
tional constraints. The presence of only eight genes with

Figure 3 Gene expression divergence as a sexually di-
morphic trait in the female and male transcriptomes.
The horizontal line inside each box indicates the median.
The length of the box and the whiskers represent 50%
and 90% CI, respectively. The numbers of genes analyzed
in each sex-biased category are shown under the female
and male symbols. Note that only genes expressed in both
sexes were included in the analysis. Probabilities are based
on Mann-Whitney tests, where NS indicates not signifi-
cant, * P , 0.05, ** P , 0.001, *** P , 1 3 1024. Gene
expression divergence data are based on the comparison
of D. yakuba Taï18E2 and D. santomea STO.4 stocks.
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male-biased expression on the dot chromosome precludes us
from formally testing whether genes with male-biased ex-
pression, when expressed in males, show any evidence of
weak selection. Overall, the comparison of female and male
transcriptomes reveals that variation in gene expression is
heavily influenced by weakly deleterious mutations but only
in the sex toward which the expression is biased.

Faster-X evolution for gene expression divergence in
highly male-biased genes

We also examined gene expression divergence in the context
of the comparison between X-linked and autosomal genes.
The female transcriptomeshowsanoverall signal in support of
slower-X evolution of gene expression (0.25 vs. 0.28; MWT
P = 4.81 3 1025), although for some gene categories the
signal is weak or not significant (Figure 4A). The male tran-
scriptome also shows slower-X evolution for gene expression
divergence when all genes are considered as a single class
(0.28 vs. 0.31; MWT P = 0.002). Despite this overall trend,
we found significant evidence for faster-X evolution of gene

expression in genes with a high degree of male-biased expres-
sion (Figure 4B). Faster-X is particularly pronounced inMSGs
(0.81 vs. 0.54; MWT P = 4.13 3 10213). X-linked MSGs
show the greatest gene expression divergence of all gene
classes, including the fast-evolving female-biased genes on
the dot chromosome when expressed in females (0.81 vs.
0.68; MWT P = 0.017).

Togain insight into thegeneticbasis (cis- or trans-regulatory)
of gene expression divergence, we examined stock-specific
expression following Coolon et al. (2015) (Wittkopp et al.
2004; McManus et al. 2010; Coolon et al. 2014) (see also
“Materials and Methods”). We found strong positive correla-
tions between gene expression divergence and the magni-
tude of both cis- and trans-regulatory divergence (Table 1
for hybrids from the cross between D. yakuba Taï18E2 fe-
males andD. santomea STO.4males, and Table S3 for hybrids
from the reciprocal cross). These correlations imply that any
increase in gene expression divergence is likely to be the re-
sult of contributions from both cis- and trans-regulatory var-
iation. For example, the overall trend of slower-X evolution

Figure 4 Tests of faster-X evolution for gene expression divergence in the female transcriptome (A) and the male transcriptome (B). Gene expression
divergence data are based on the comparison of D. yakuba Taï18E2 and D. santomea STO.4 stocks. X, X chromosome; A, Autosomes. Probabilities are
based on Mann-Whitney tests, where NS indicates not significant, * P, 0.05, ** P, 0.001, *** P, 13 1024. Black and red asterisks indicate slower-X
and faster-X, respectively (see Figure 3 legend for boxplot explanation).
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for gene expression divergence in females is accompanied
by significantly lower cis- and trans-regulatory divergence
for X-linked genes than for autosomal genes (MWT
P # 0.005 for all cases; see Table S4). Likewise autosomal
genes in the male transcriptome show increased cis- and
trans-regulatory divergence relative to the same genes
when analyzed in the female transcriptome, as expected
from faster-male evolution (MWT P # 0.0012 for all cases;
see Table S5). As a result, when we examined the different
categories of genes with sex-biased expression, we detected
that the fraction of genes with significant cis-regulatory di-
vergence increases with degree of sex-biased expression,
and, hence, expression divergence; the same was observed
for trans-regulatory divergence (Figure S1 for hybrids from
the cross between D. yakuba Taï18E2 females and D. santo-
mea STO.4 males, and Tables S6 and S7 for hybrids from the
reciprocal cross).

Recessive regulatory incompatibilities involving the
X chromosome contribute to hybrid misexpression

To test the dominance theory for hybrid transcriptomes, we
compared gene expression profiles of hybrids and parental
species (see Methods). It is important to emphasize that
the degree of misexpression of each hybrid genotype was
assessed by comparison with the corresponding paren-
tal stocks. For example, the degree of misexpression of
attached-X hybrid females was determined based on the
comparison with females of the D. yakuba and D. santomea
attached-X parental stocks combined. To make the female
and male transcriptomes comparable, we examined misex-
pression of autosomal genes only, and limited our analysis
to the same subset of genes in females as in males. We
found that the hybrid female transcriptome shows a signifi-
cantly lower degree of misexpression than the hybrid male
transcriptome (0.21 vs. 0.32; MWT P = 1.7 3 102158 for
hybrids from the cross between D. yakuba Taï18E2 fe-
males and D. santomea STO.4 males; 0.20 vs. 0.34; MWT
P , 13102308 for hybrids from the reciprocal cross). This
observation can potentially be attributed to the hemizygosity
of the X chromosome in males, to faster-male evolution, or a
combination of both.

To evaluate the contribution of recessive factors on the X
chromosome to hybrid misexpression, we examined tran-
script abundance for autosomal genes in attached-X hybrid
females. Reminiscent of males, attached-X hybrid females
show a significantly greater degree of misexpression than

standard hybrid females [0.29 vs. 0. 21; MWT P = 8.7 3
10271 for hybrids from the crosses between D. yakuba fe-
males [Taï18E2 or C(1)RM] and D. santomea males [STO.4
or C(1)RM]; Table S8 shows equivalent results for hybrids
from the reciprocal crosses]. Figure 5 shows the results for
the different categories of genes with sex-biased expression.
The increased misexpression in attached-X relative to stan-
dard hybrid females is also observed in genes with nonsex-
biased expression and sex-specific expression, with FSGs
showing a particularly extreme pattern (Figure 6). These
results suggest that there is a significant fraction of recessive
regulatory incompatibilities involving the X chromosome that
are masked in standard hybrid females but are fully uncov-
ered in attached-X hybrid females and in hybrid males. The
overall degree of misexpression in attached-X hybrid females,
however, is not as high as in hybrid males, which suggests
that additional factors like faster-male evolution are neces-
sary to fully explain misexpression in hybrid males [0.29 vs.
0. 32; MWT P = 4.0 3 10223 for hybrids from the crosses
between D. yakuba females [C(1)RM or Taï18E2] and
D. santomea males [C(1)RM or STO.4]; see Table S8 for
hybrids from the reciprocal crosses].

To investigate the impact that genetic variation linked to
sex chromosomes or cytoplasmic factors may have on gene
expression patterns of autosomes,we examineddifferences in
expression between interspecific hybrids from reciprocal
crosses [e.g., F1 hybrids (T 3 S) vs. F1 hybrids (S 3 T) in
Figure 1]. Autosomal genes are less differentially expressed
between the two reciprocal attached-X hybrid females than
between the two reciprocal hybridmales (0.15 vs. 0.20;MWT
P = 3.28 3 10280) but more differentially expressed than
between the two reciprocal standard hybrid females (0.15
vs. 0.10; MWT P = 7.7 3 102166). Remarkably, the median
difference in expression between reciprocal hybrid males
for autosomal MSGs is increased almost eightfold relative
to the median difference observed for FSGs between re-
ciprocal attached-X hybrid females (1.55 vs. 0.20; MWT
P = 1.353 10242). Altogether, our results highlight the im-
portance that recessive variation and rapidly evolving factors
linked to sex chromosomes or cytoplasm have on autosomal
gene expression.

Discussion

Our study provides a comprehensive view of transcriptome
evolution in adult females and males of the D. yakuba–D.

Table 1 Spearman’s correlations (r) between gene expression divergence and the magnitude of cis- and trans-regulatory divergence

Transcriptome-Chromosome Cis- 95% CI P Trans- 95% CI P Number of genes

Female-X 0.48 0.43–0.52 2.1 3 10285 0.63 0.59–0.66 2.3 3 102167 1504
Female-auto 0.50 0.48–0.52 ,1 3 102308 0.60 0.58–0.61 ,1 3 102308 7087
Male-auto 0.51 0.49–0.53 ,1 3 102308 0.61 0.60–0.63 ,1 3 102308 7085

Gene expression divergence was estimated using stock-specific reads from the in silico parental mixture; cis- and trans-regulatory divergence was estimated based on F1
hybrids from the cross between D. yakuba Taï18E2 females and D. santomea STO.4 males; CI, Confidence intervals based on bootstrapping (10,000 replicates); X, X
chromosome; Auto, autosomes (2 and 3).
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santomea system, its molecular mechanisms, and its conse-
quences on patterns of gene expression in interspecific hy-
brids. Our emphasis lies on the effects of the X chromosome.
We found that both female and male transcriptomes show
some evidence of accelerated gene expression divergence
driven by genes with sex-biased expression. Similar trends
have been reported in other systems and have been attrib-
uted to (1) relaxed selective constraints due to reduced pleio-
tropic effects associated with increased tissue specificity or
low levels of expression, and/or (2) a considerable fraction of
positive selection, especially in genes with male-biased ex-
pression (Meiklejohn et al. 2003; Parisi et al. 2003; Ranz
et al. 2003; Zhang et al. 2004, 2007; Khaitovich et al. 2005;
Proschel et al. 2006; Ellegren and Parsch 2007; Haerty et al.
2007; Voolstra et al. 2007; Jiang and Machado 2009; Meisel
2011; Assis et al. 2012; Grath and Parsch 2012, 2016; Parsch
and Ellegren 2013; Harrison et al. 2015).

Our results also reveal the dual (or sexually dimorphic)
nature of transcriptome evolution and emphasize the impor-
tance of studying both sexes. While gene expression diver-
gence for geneswith sex-biasedexpression is consistentlyhigh
in the sex toward which the expression is biased, in the
opposite sex transcript abundance appears to be more con-
served (Figure 3). This low divergence, we propose, reflects
strong functional constraints on gene expression in tissues
and/or pathways shared by both sexes. The higher expres-
sion divergence observed in the sex toward which the expres-
sion is biased may be the result of additional sex-specific
regulatory components evolving by either positive selection

or relaxed negative selection. Our expression analysis of the
dot chromosome gives support to the latter, at least for genes
with female-biased expression. Similar to the proposal that
selection on transcript levels for a given gene can vary across
developmental stages (Artieri and Singh 2010; Kalinka et al.
2010), our data show that it also varies between sexes for a
large fraction of the genome. Our results are also consistent
with sexes adopting different expression strategies for their
specialized function (Gibilisco et al. 2016). One way to attain
this is through sexually dimorphic trans-regulatory envi-
ronments that often interact with cis-regulatory variation
differently in females than in males (Coolon et al. 2013;
Meiklejohn et al. 2014).

When we analyzed all the genes expressed in adults as a
single class, we found evidence of overall slower-X evolution
of gene expression in both female and male transcriptomes
(Figure 4). The molecular mechanism underlying this de-
creased gene expression divergence in X-linked genes in-
volves contributions from both cis- and trans-regulatory
variation, as proposed for species of the D. melanogaster sub-
group to explain faster-X evolution of gene expression
(Coolon et al. 2015). The observations of slower-X evolution
can be explained by a significant contribution of weakly del-
eterious mutations to gene expression divergence, with more
effective purifying selection on the X chromosome. This may
be because either NeX/NeA . 0.75 (but see below) or because
there is a large fraction of recessive deleterious mutations influ-
encing gene expression variation (Vicoso and Charlesworth
2009a; Mank et al. 2010b). Alternatively, our findings of

Figure 5 Misexpression of autosomal genes with different degrees of sex-biased expression in standard hybrid females, attached-X (att-X) hybrid
females, and hybrid males. The numbers of genes analyzed in each sex-biased category are shown on top of the panels (chromosomes 2 and 3). Note
that only genes expressed in both sexes were included in the analysis. Misexpression data are based on first generation hybrids from the crosses
between D. yakuba females [Taï18E2 or C(1)RM] and D. santomea males [STO.4 or C(1)RM]. Probabilities are based on Mann-Whitney tests, where NS
indicates not significant, * P , 0.05, ** P , 0.001, *** P , 1 3 1024. (See Figure 3 legend for boxplot explanation.).
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slower-X could be the result of differences in mutation rates
between the X chromosome and autosomes. In D. melanogaster,
the mutation rate in the male germline is slightly higher than
that in the female germline—a difference that can potentially
lead to slower-X evolution (Miyata et al. 1987; Bachtrog 2008;
Keightley et al. 2009). There is also a third explanation: in very
closely related species ancestral polymorphism represents a non-
negligible fraction of divergence, and, therefore, slower-X evo-
lution may just reflect the difference in ancestral NeX and NeA,
with NeX , NeA. This may indeed be the case in the D. yakuba–
D. santomea system, as a genome-wide analysis of putatively neu-
tral sites [bases 8–30 of small introns (,65 bp); Llopart 2018]
indicates that the median nucleotide heterozygosity per base
pair (Watterson 1975) is significantly smaller on the X chromo-
some than on autosomes for a D. yakuba population from Nai-
robi, Kenya, (0.015 vs. 0.019; MWT P = 0.02) (Rogers et al.
2014, 2015). Similarly, a multilocus study of D. yakuba and
D. santomea populations from the island of São Tomé reported
that the NeX/NeA was close to the theoretical expectation of 0.75
(Llopart et al. 2005). As such, a tendency toward slower-X is

expected to be the default observation in many closely related
species.

Studies of gene expression divergence in several
Drosophila species show that the chances of observing faster-X
(or slower-X) evolution in transcriptome data depend on spe-
cies, sex, developmental stage, and tissue under study
(Khaitovich et al. 2005; Brawand et al. 2011; Kayserili et al.
2012; Llopart 2012; Meisel et al. 2012; Meisel and Connallon
2013; Coolon et al. 2015; Dean et al. 2015). We suggest that
this variation may be the result of a combination of biological
and experimental factors. Among the biological factors, the
NeX/NeA has been shown by population genetics models
to have a critical impact on whether faster-X evolution is
expected (Vicoso and Charlesworth 2009a; Mank et al.
2010b). The number of breeding females and males, differ-
ences between the two sexes in the variance in reproductive
success (i.e., mating system), demographic events, or differ-
ences in recombination rates between the X chromosome and
autosomes (Langley et al. 1988; Connallon 2007; Pool and
Nielsen 2007; Vicoso and Charlesworth 2009b; Charlesworth
2012; Comeron et al. 2012; Ávila et al. 2015; Comeron 2017)
are some of the additional biological factors that can be spe-
cies specific and also considerably affect NeX/NeA (Vicoso and
Charlesworth 2009a). It is also important to recognize that
factors associated with experimental design, like the specific
stocks used in comparisons of closely related species, the sub-
set of genes under study, or statistical cutoffs may as well play
a critical role in our ability to detect faster-X evolution of gene
expression.

Of all the genes with sexually dimorphic expression ana-
lyzed in this study, X-linked MSGs are the most distinct class.
They show transcriptional faster-X and their high gene ex-
pression divergence is even greater than that of the rapidly
evolving female-biased genes on the dot chromosome. Based
on previously reported surveys of neutral polymorphism in
several Drosophila species, there is a 3- to 10-fold reduction
in effective population size and, therefore, in the scaled-
population selection coefficient on the dot chromosome rel-
ative to the X and autosomes (Berry et al. 1991; Jensen et al.
2002; Wang et al. 2002, 2004; Betancourt et al. 2009;
Arguello et al. 2010)—a result also observed in D. yakuba
(Llopart 2018). As a result, we suggest that it is unlikely that
the faster-X gene expression evolution of MSGs is due to re-
laxed selection against deleterious mutations on the X chro-
mosome. The overall finding of slower-X evolution for gene
expression divergence in male transcriptomes also militates
against this possibility. Instead, we propose that the faster-X
observed for these genes in the D. yakuba–D. santomea sys-
tem is the result of a higher incidence of beneficial regulatory
mutations, possibly associated with sexual selection and/or
sexual conflict (Parsch and Ellegren 2013).

Our examination of gene expression in attached-X hybrid
females shows that autosomal misexpression increases when
the two X chromosomes are inherited from the same species
(Figure 5 and Figure 6). It is important to emphasize that this
is not necessarily an inevitable result because, by carrying

Figure 6 Misexpression of autosomal genes with sex-specific and non-
sex-biased expression in standard hybrid females, attached-X (att-X)
hybrid females, and hybrid males. The numbers of genes analyzed in
each category are shown on top of the panels (chromosomes 2 and 3).
FSGs, genes with female-specific expression; MSGs, genes with male-
specific expression. Misexpression data based on first generation hy-
brids from the crosses between D. yakuba females [Taï18E2 or C(1)
RM] and D. santomea males [STO.4 or C(1)RM]. Probabilities are based
on Mann-Whitney tests, where NS indicates not significant, * P , 0.05,
** P , 0.001, *** P , 1 3 1024 (see Figure 3 legend for boxplot
explanation).
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two different X chromosomes, standard hybrid females are
predicted to suffer twice as many possible hybrid incompat-
ibilities involving the X chromosome as hybrid males (Orr
1993; Turelli and Orr 1995; Orr and Turelli 1996). A poten-
tial caveat of our analyses of misexpression in attached-X
hybrid females is the presence of the Y chromosome wherein
variation has been shown to impact transcriptome profiles
(Lemos et al. 2008b; Jiang et al. 2010; Sackton et al. 2011;
Yee et al. 2015; Branco et al. 2017; Wang et al. 2018). We
argue, however, that we control for the effects of the Y chro-
mosome because the degree of misexpression in attached-X
hybrid females was estimated using parental attached-X
females who also carry a Y chromosome (see Results).
Moreover, we found no evidence that the presence of a Y
chromosome in females increases overall gene expression di-
vergence in interspecific comparisons of our parental stocks
of D. yakuba and D. santomea (MWT P . 0.05), even
though incompatibilities involving the Y chromosome are
expected to be expressed in females because they have never
been tested by natural selection. As a result, our findings
suggest that the Y chromosome does not play a major role
in the increased misexpression detected in attached-X hybrid
females, althoughwe cannot formally rule out a contribution.

It is also important to point out that none of the misex-
pression observed in attached-X hybrid females in the D.
yakuba–D. santomea system is associated with sterility be-
cause these females are fertile. Our results suggest that there
is a substantial fraction of recessive mutations that have the
potential to generate regulatory incompatibilities involving
the X chromosome. They also open the possibility that the
hemizygosity of the X chromosome inmales may significantly
contribute to hybrid misexpression and ultimately lead to
male sterility. Our findings align well with previous reports
showing that trans-regulatory differences in expression are
more likely to deviate from additivity than cis-regulatory var-
iation (Wayne et al. 2004; Hughes et al. 2006; Lemos et al.
2008a; Gruber et al. 2012). Thus, regulatory incompatibili-
ties in hybrid transcriptomes appear to conform to the X:A
imbalance hypothesis, or its successor, the dominance theory
(Muller 1940, 1942), in the D. yakuba–D. santomea system.
The comparison of the two types of interspecific hybrid males
also indicates that genetic variation linked to sex chromo-
somes substantially impacts the expression levels of autoso-
mal genes with a high degree of male-biased expression,
in agreement with previous observations (Lu et al. 2010;
Llopart 2012). Although we have not formally evaluated reg-
ulatory interactions, these findings open the possibility that
regulatory incompatibilities between X-linked and autosomal
factors may be facilitating the large X-effect.

Both dominance theory and faster-X evolution have been
proposed as forces that canexplain thedisproportionally large
contribution of the X chromosome to hybrid dysfunction, par-
ticularly hybrid male sterility (i.e., the large X-effect; Coyne
and Orr 1989) (Turelli and Orr 1995, 2000; Orr and Turelli
1996; Masly and Presgraves 2007; Presgraves 2008; Moyle
et al. 2010). As the rate of evolution of X-linked loci exceeds

that of autosomal loci, the large X-effect becomes more likely
(Coyne and Orr 1989; Naveira 2003). Similarly, if alleles de-
creasing fitness in hybrids tend to act recessively (i.e., dom-
inance theory), it is easier to explain the large X-effect, even
when the rates of evolution for the X chromosome and auto-
somes are not different (Turelli and Orr 1995, 2000; Orr and
Turelli 1996). While either force alone can generate the large
X-effect, in species like D. yakuba and D. santomea, the two
forces pull together in the same direction for genes with a
high degree of male-biased expression to easily yield the ob-
served large X-effect (Coyne et al. 2004; Moehring et al.
2006). These arguments echo those put forward by Coyne
and Orr (2004) to explain the relative contributions of dom-
inance (i.e., recessive X-linked alleles) and faster-male evo-
lution to Haldane’s rule. In the context of gene expression,
our results also support the notion that recessive X-linked
mutations and faster-X evolution of genes with a high degree
of male-biased expression can potentially play a major role in
hybrid male misexpression and the large X-effect.
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