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Candida albicans is a pathogenic opportunistic yeast found in the human gut flora. It may
also live outside of the human body, causing diseases ranging from minor to deadly.
Candida albicans begins as a budding yeast that can become hyphae in response to a
variety of environmental or biological triggers. The hyphae form is responsible for the
development of multidrug resistant biofilms, despite the fact that both forms have been
associated to virulence Here, we have proposed a linear and SPA-linear quantitative
structure activity relationship (QSAR) modeling and prediction of Candida albicans
inhibitors. A data set that consisted of 60 derivatives of benzoxazoles, benzimidazoles,
oxazolo (4, 5-b) pyridines have been used. In this study, that after applying the leverage
analysis method to detect outliers’ molecules, the total number of these compounds
reached 55. SPA-MLR model shows superiority over the multiple linear regressions (MLR)
by accounting 90% of the Q2 of anti-fungus derivatives ‘activity. This paper focuses on
investigating the role of SPA-MLR in developing model. The accuracy of SPA-MLR model
was illustrated using leave-one-out (LOO). The mean effect of descriptors and sensitivity
analysis show that RDF090u is the most important parameter affecting the as behavior of
the inhibitors of Candida albicans.
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INTRODUCTION

Despite significant advances in medicinal chemistry, infectious illnesses caused by fungi continue
to be a major danger to public health. Patients with serious diseases, such as neoplasia, and those
receiving long-term full parenteral nutrition, should be extra careful. Despite the discovery of
several successful antifungal medications over the last 3 decades, there are still unknown molecules
with the properties needed to treat systemic yeast infections. As a result, finding new and more
effective antimicrobial (Gheidari et al., 2020) medicines is critical, and most of the research
program’s efforts are focused on developing new compounds. Miconazole and clotrimazole
(Brincker, 1976; Smith, 1976; Rippon, 1982) are imidazole compounds that have demonstrated
good clinical efficacy in dermatophytoses and nonsystemic candidiasis. Unfortunately, systemic
miconazole usage has been linked to reversible thrombocytosis and anemia, whereas clotrimazole
use has been linked to severe gastrointestinal problems. 2-(4-thiazolyl) benzimidazole (I)
(thiabendazole)is another imidazole derivative with high clinical effectiveness in the treatment
of dermatophytic infections in tropical areas. Since thiabendazole was shown to be useful in the
treatment of a number of helmintic illnesses, a number of benzimidazole compounds have been
tested for anti-infective properties. kThe most thoroughly investigated of these chemicals is 2-
(a-hydroxybenzyl) benzimidazole (II) (HBB), which is a specific inhibitor of RNA-containing
Enteroviruses.
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HBB has no effect on viral adsorption, penetration, or un-coating,
according to mechanism of action studies. Although the specific
mechanism of this suppression is yet unknown, the major site of
action of this antiviral drug appears to be inhibition of viral RNA
synthesis. On the other hand, these drugs’ antiviral efficacy in vivo has
been accompanied with symptoms of toxicity. One approach for
modifying harmful effects and achieving the required selective activity
is to apply structural changes to the basic molecule and create new
derivatives or analogues. As a result, a novel series of benzoxazole and
oxazolo(4,5-b) pyridine derivatives that are analogues of
benzimidazole were investigated for antifungal activity against
Candida albicans in this work, and their structures were revealed
using instrumental analytical methods. One of the most important
methods for predicting the biological activity of unknown
compounds based on their molecular structures is quantitative
structure-activity relationships (QSAR) (Konovalov et al., 2008). In
QSAR/QSPR studies three considerations are very important, thefirst
is the descriptors to ensure that they carry enough information of
molecular structure for the interpretation of the activity property, the
second is the modeling method employed and most importantly, the
validation of QSAR models (Tetko et al., 2008). The use of internal
and external validation has recently become a source of heated
discussion (Roy et al., 2007). Internal validation is supported by
one set of QSAR workers, whereas the other believes that internal
validation is insufficient for testing model robustness and that
external validation is required. Hawkins et al., the most vocal
proponents of internal validation, believe that cross-validation may
test model fit and examine whether predictions would hold true with
new data not utilized in the model fitting process. They claim that
when the sample size is small, keeping a portion of it back for testing
is inefficient, and that it is far preferable to employ “computationally
more burdensome” leave-one-out cross-validation instead. (Hawkins,
2003; Hawkins et al., 2003). For feature selection in this study, we

utilized SPA (successive projections algorithm), which is a forward
selection method that starts with one variable and adds a new one at
each iteration untilN variables are achieved (Hawkins, 2003). SPA is a
strategy for selecting minimal collinearity subsets of variables and
improving the conditioning of multiple linear regression (MLR)
models. This technique was first presented for wavelength
selection in spectroscopic data sets, particularly in cases when
there is a lot of spectrum overlap (Araújo et al., 2001). It has been
shown that MLR models obtained using SPA are superior to PLS
models (Partial Least Squares) in various applications such as UV-
VIS (Araújo et al., 2001; DantasFilho et al., 2005; Di Nezio et al., 2007;
Grünhut et al., 2008), ICP-OES (Kawakami HarropGalvão et al.,
2001), FT-IR (Honorato et al., 2005), and NIR spectroscopy
(Breitkreitz et al., 2003; Filho et al., 2004). SPA has also been used
in a number of classification studies (Pontes et al., 2005;
Gambarraneto et al., 2009). The objective of this technique is to
pick variables with the least amount of duplicate information content
in order to overcome collinearity problems. The following are the
SPA stages for the provided initial variable k(0) and the number N:

Step 0. xg � gth column of data matrix Xtrain; g � 1, . . . , nc (prior to
the initial iteration (n � 1)).

Step 1. S � {g such that 1 � g � nc and g ∈{k(0), . . . , k(n-1)}}, or, S
stands for the set of variables that have yet to be chosen.

Step 2. The projection of xg on the subspace orthogonal to xk(n-1):

Pxg � xg − (xT
gXk(n−1))xk(n−1)(xT

k(n−1)xk(n−1))
−1

(1)

For all g ∈ S, where P is the projection operator.

Step 3. k(n) � arg (max ‖Pxg‖, g ∈ S).

Step 4. Pxg, g ∈ S.

Step 5. n � n +1, and if n < N go back to Step 1.
End: The resulting variables are {k(n); n � 0, . . . , N-1}.

Figure 1 depicts the aforementioned processes for the initial
iteration of SPA. The approach was originally designed to create
multivariate calibrationmodels (Araújo et al., 2001), but it was later
broadened to address classification difficulties (Pontes et al., 2005).

FIGURE 1 | Example of SPA with nc � 4 and k (0) � 3. Result of the first
iteration: k (Gheidari et al., 2020) � 1.

FIGURE 2 | Structures of the benzoxazole, benzimidazoles and pyridine
derivatives.
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TABLE 1 | Chemical structure, experimental activity and predicted activities of the Candida albicans inhibitors.

NO Compound
name

X Y Z R R1 R2 pIC50
exp

pIC50
pre

1 2-phenylbenzo[d]oxazole CH O — H H H −1.2511 −0.9429

2 2−(4−tert−butylphenyl)benzo[d]oxazole CH O — C(CH3)3 H H −0.7824 −0.7398

3 4−(benzo[d]oxazol−2−yl)benzenamine CH O — NH2 H H −1.1135 −1.2878

4 4−(benzo[d]oxazol−2−yl)−N−methylbenzenamine CH O — NHCH3 H H −0.9931 −0.7232

5 5−chloro−2−(4−ethylphenyl)benzo[d]oxazole CH O — C2H5 Cl H −0.7308 −0.2049

6 N−(4−(5−chlorobenzo[d]oxazol−2−yl)phenyl)acetamide CH O — NHCOCH3 Cl H −0.5330 −0.2210

7 4−(5−chlorobenzo[d]oxazol−2−yl)−N−methylbenzenamine CH O — NHCH3 Cl H −0.7027 outlier

8 5−chloro−2−(4−chlorophenyl)benzo[d]oxazole CH O — Cl Cl H −0.6630 outlier

9 5−chloro−2−(4−nitrophenyl)benzo[d]oxazole CH O — NO2 Cl H −0.5926 outlier

10 5−nitro−2−phenylbenzo[d]oxazole CH O — H NO2 H 0.4257 0.5189

11 5−nitro−2−p−phenylbenzo[d]oxazole CH O — CH3 NO2 H 0.5375 0.6246

12 2−(4−tert−butylphenyl)−5−nitrobenzo[d]oxazole CH O — C(CH3)3 NO2 H 0.8256 0.2413

13 4−(5−nitrobenzo[d]oxazol−2−yl)benzenamine CH O — NH2 NO2 H 0.5461 −0.0056

14 2−(4−chlorophenyl)−5−nitrobenzo[d]oxazole CH O — Cl NO2 H 0.6837 0.7435

15 2−(4−bromophenyl)−5−nitrobenzo[d]oxazole CH O — Br NO2 H 0.9589 1.1683

16 2−(4−ethylphenyl)benzo[d]oxazol−5−amine CH O — C2H5 NH2 H −0.8770 −1.4654

17 2−(4−fluorophenyl)benzo[d]oxazol−5−amine CH O — F NH2 H −0.9587 −1.1124

18 5−methyl−2−p−tolylbenzo[d]oxazole CH O — CH3 CH3 H −1.001 −0.9365

19 2−(4−ethylphenyl)−5−methylbenzo[d]oxazole CH O — C2H5 CH3 H −0.8856 −1.2869

20 2−(4−methoxyphenyl)−5−methylbenzo[d]oxazole CH O — OCH3 CH3 H −0.8727 −0.5214

21 4−(5−nitrobenzo[d]oxazol−2−yl)benzenamine CH O — F CH3 H −0.9673 −0.3499

22 N−(4−(5−methylbenzo[d]oxazol−2−yl)phenyl)acetamide CH O — NHCOCH3 CH3 H −0.6706 −0.8745

23 N−methyl−4−(5−methylbenzo[d]oxazol−2−yl)benzenamine CH O — NHCH3 CH3 H −0.8770 −0.6418

24 N,N−dimethyl−4−(5−methylbenzo[d]oxazol−2−yl)benzenamine CH O — N(CH3)2 CH3 H −0.7695 −0.4968

25 2−p−tolyloxazolo[4,5−b]pyridine N O — CH3 H H 0.1806 −0.0856

26 2−(4−ethylphenyl)oxazolo[4,5−b]pyridine N O — C2H5 H H 0.3010 1.1657

27 2−(4−methoxyphenyl)oxazolo[4,5−b]pyridine N O — OCH3 H H 0.3182 0.2267

28 2−(4−ethoxyphenyl)oxazolo[4,5−b]pyridin N O — OC2H5 H H 0.4300 1.1248

29 4−(oxazolo[4,5−b]pyridin−2−yl)benzenamine N O — NH2 H H 0.1892 0.4186

30 2−(4−nitrophenyl)oxazolo[4,5−b]pyridine N O — NO2 H H 0.4386 0.0819

31 2−(4−chlorophenyl)−5−nitrobenzo[d]oxazole CH O CH2 H H H 0.1720 −0.3748

32 2−(4−methoxybenzyl)benzo[d]oxazole CH O CH2 OCH3 H H 0.4257 0.3954

33 2−(4−chlorobenzyl)benzo[d]oxazole CH O CH2 Cl H H 0.4601 0.1951

34 2−(4−nitrobenzyl)benzo[d]oxazole CH O CH2 NO2 H H 0.5375 −0.0171

35 2−benzyl−5−chlorobenzo[d]oxazole CH O CH2 H Cl H 0.4601 0.1356

36 2−(4−methoxybenzyl)−5−chlorobenzo[d]oxazole CH O CH2 OCH3 Cl H 0.6751 0.8628

37 2−(4−bromobenzyl)−5−chlorobenzo[d]oxazole CH O CH2 Br Cl H 0.9761 1.2167

38 2−(4−nitrobenzyl)−5−chlorobenzo[d]oxazole CH O CH2 NO2 Cl H 0.7740 0.6188

39 2−benzyl−5−nitrobenzo[d]oxazole CH O CH2 H NO2 H 1.8317 1.5786

40 2−(4−methoxybenzyl)−5−nitrobenzo[d]oxazole CH O CH2 OCH3 NO2 H 2.0381 1.5331

41 2−(4−bromobenzyl)−5−nitrobenzo[d]oxazole CH O CH2 Br NO2 H 2.3305 2.1263

42 2−(4−chlorobenzyl)−5−nitrobenzo[d]oxazole CH O CH2 Cl NO2 H 2.0682 1.8156

(Continued on following page)

Frontiers in Chemistry | www.frontiersin.org November 2021 | Volume 9 | Article 7744163

Gheidari et al. Biological Activity

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


MATERIALS AND METHODS

Data Set
Three classes of compounds investigated in this study are 2,5,6-
trisubstituted benzoxazole (III), benzimidazoles(IV) 2-

substituted oxazolo (4, 5-b) pyridine (V) derivatives (Yalçin
et al., 2000). Figure 2 and Table 1 depicted the chemical
structures and logarithmic experimental activity of these
compounds. The IC50 activity parameter is a measure of
antifungal potency that relates to the molar concentration of

TABLE 2 | List of molecular descriptors that created by Dragon program.

Group name Dimensionality No. of descriptors No. of descriptors in
model

Constitutional descriptors 0 47 31
Functional groups 1 121 16
Atom−centered fragments 1 120 14
Empirical descriptors 1 3 2
Properties 1 3 2
Topological descriptors 2 266 42
Molecular walk counts 2 21 4
BCUT descriptors 2 64 7
Galvez topological charge indices 2 21 3
2D autocorrelation descriptors 2 96 18
Charge descriptors 3 14 9
Aromaticity indices 3 4 2
Randic molecular profiles 3 41 11
Geometrical descriptors 3 70 10
RDF descriptors 3 150 21
3D−MoRSE descriptors 3 160 23
WHIM descriptors 3 99 17
GETAWAY descriptors 3 197 25
Sum 1,497 257

TABLE 1 | (Continued) Chemical structure, experimental activity and predicted activities of the Candida albicans inhibitors.

NO Compound
name

X Y Z R R1 R2 pIC50
exp

pIC50
pre

43 2−(4−nitrobenzyl)−5−nitrobenzo[d]oxazole CH O CH2 NO2 NO2 H 2.1370 1.8988

44 5−methyl−2−(phenoxymethyl)benzo[d]oxazole CH O CH2O H CH3 H −0.8727 −0.9144

45 6−nitro−2−(phenoxymethyl)benzo[d]oxazole CH O CH2O H CH3 H −1.9391 −0.2366

46 5−chloro−6−nitro−2−(phenoxymethyl)benzo[d]oxazole CH O CH2O H CH3 H −1.7112 −1.3976

47 2−((4−chlorophenoxy)methyl)−5−chloro−6−nitrobenzo[d]oxazole CH O CH2O Cl Cl NO2 −1.5134 −1.9055

48 5−nitro−2−((phenylthio)methyl)benzo[d]oxazole CH O CH2S H NO2 H 0.7568 0.5983

49 5−methyl−2−((phenylthio)methyl)benzo[d]oxazole CH O CH2S H CH3 H −0.7480 −0.1654

50 2−(phenoxymethyl)oxazolo[4,5−b]pyridine N O CH2O H H H 0.3311 0.0363

51 2−((p−tolyloxy)methyl)oxazolo[4,5−b]pyridine N O CH2O H H H 0.5848 0.3516

52 2−((4−chlorophenoxy)methyl)−5−methyl−1H−benzo[d]imidazole CH NH CH2O Cl CH3 H −0.6276 −1.2245

53 5−nitro−2−((phenylthio)methyl)−1H−benzo[d]imidazole CH NH CH2S H NO2 H 0.7525 1.4148

54 5−methyl−2−((phenylthio)methyl)−1H−benzo[d]imidazole CH NH CH2S H CH3 H −0.7480 −0.9096

55 methyl 2−(phenoxymethyl)benzo[d]oxazole−5−carboxylate CH O CH2O H COOCH3 H −0.5545 −0.4934

56 methyl 2−((4−chlorophenoxy)methyl)benzo[d]oxazole−5−carboxylate CH O CH2S Cl COOCH3 H −0.3396 −0.6923

57 methyl 2−((4−chlorophenoxy)methyl)−1H−benzo[d]imidazole−5−carboxylate CH NH CH2O Cl COOCH3 H −0.3482 −0.2209

58 methyl 2−((phenylthio)methyl)−1H−benzo[d]imidazole−5−carboxylate CH NH CH2S H COOCH3 H −0.4600 −0.2282

59 5−nitro−2−phenethylbenzo[d]oxazole CH O C2H4 H NO2 H 0.6885 outlier

60 2−phenethyloxazolo[4,5−b]pyridine N O C2H4 H H H 0.3671 outlier
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each chemical necessary to lower Candida albicans concentration
by 50% when compared to the concentration measured in an
infected culture. The 3D structures of the investigated
compounds were optimized by means of semi-empirical
quantum-chemical techniques of AM1 applied in the
HyperChem computer software before computing the
molecular descriptors (Hyperchem, 1993).

Molecular Descriptor
The most essential stage in any QSAR research is the
identification and computation of structural descriptors as
numerical encoded parameters defining chemical structures.
The molecular descriptors in this study were created with
Dragon program, version web 3.0 (Todeschini et al., 2003).
Several QSAR studies have used the Dragon program to
construct chemical descriptors. (Garkani-Nejad et al., 2004;
González et al., 2004; González et al., 2005; Khalafi-Nezhad
et al., 2005; Liu et al., 2006). Table 2 shows how the computed
descriptors were split into 18 categories. It’s worth noting that
calculating these descriptors is simple and quick. The average
time to compute each structure was about 1 minute. This
program has been used to produce a total of 1,497
descriptors for each molecule. For all molecules, descriptors
with constant or very constant values were removed.
Furthermore, pairs of variables with a correlation coefficient
larger than 0.90 were identified as intercorrelated, and only
one of them was used in the model development. After
eliminating the descriptors with constant and
intercorrelated values, a total of 327 descriptors were
chosen for further research (Table 3).

TABLE 3 | Selected descriptors of multiple linear regression.

Descriptor Type of descriptor Notation Coefficient

Information Content index (neighborhood symmetry of 2−order) Information IC2 0.214
highest eigenvalue n. 8 of Burden matrix/weighted by atomic masses BCUT BEHm8 −0.295
quadrupole x−component value Geometrical Qxxe 0.27
Radial Distribution Function − 105 RDF RDF105m 0.22
Radial Distribution Function − 050/weighted by van der Waals volume RDF RDF050v 0.285
signal 16/unweighted 3D−MoRSE Mor16u −0.673
signal 22/unweighted 3D−MoRSE Mor22u 0.193
signal 32/unweighted 3D−MoRSE Mor32u 0.41
signal 16/unweighted 3D−MoRSE Mor16m 0.32
signal 13/unweighted 3D−MoRSE Mor31m 0.416
2nd component accessibility directional WHIM index/weighted by van der Waals volume WHIM E2V 0.149
signal 30/weighted by van der Waals volume 3D−MoRSE Mor30V 0.281

R2
Cal � 0.96, R2

Pre � 0.60, SE Cal � 0.17, SE Pre � 0.73, F � 6.675, REP % � 2.2.

FIGURE 3 | The Leverage graph based on the number of samples.

FIGURE 4 | The effect of the number of descriptors on the value of R2 in
the Stepwise-MRL model.
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Regression Analysis
To choose a variable, a Stepwise-MLR technique is utilized. In
biological systems, this technique has been utilized for variable
selection and model building (Gupta et al., 2005; Leonard and
Roy, 2006). The data set has been subdivided in two groups for
regression analysis: training and prediction sets, and then a model
is produced. In the present study, MLR model has been built by
using 60 molecules. the results of statistical parameters: number
of descriptors, correlation coefficient (R2), standard error (SE)
and F statistic indicated that a series of molecules are very
different from model, therefore, in the next stage, we identified
outlier molecules. This is, in our view, the first QSAR research to
identify outliers using a powerful and scientific method. The
leverage analysis approach was utilized to detect outlier data. In
order to identify outlier data, Leverage analysis method has been
used (Despagne et al.,). In the first step, by making use of PCA,
the pCs which had the highest data variance were selected. Since
the first two pCs had the above-mentioned condition, they were
selected as the main and most important PCs. After this step,
Leverage graph was drawn based on the number of samples. As
illustrated in Figure 3, samples of 7, 8, 9, 59, and 60 have more
Leverage respectively compared to the rest of molecules and they
were identified as outlier and omitted.

A trustworthy MLR model has strong R2 and F values, a low
SE, and the fewest descriptors. Also, a high level of predictability
should be present in the model. In addition, the model should
have a high level of predictability. As a result, among the many
models, the best model was picked, the characteristics of which
are listed in Table 3. It is self-evident that as the number of
descriptors grows, so does the R2. As illustrates in Figure 4,
increasing the number of descriptors has an impact on R2 values.

From this figure one can see that the increase in the number of
parameters up to twelve has a strong influence on the
improvement of the correlation. As a consequence, we decided
that twelve descriptors would be the best number of parameters to
use. The descriptors IC2, BEHm8, Qxxe, RDF105m, RDF050v,
Mor16u, Mor22u, Mor32u, Mor16m, Mor31m, E2V, and
Mor30V exist in this model, and their meanings have been
presented in Table 3. These descriptors’ formulas are not
presented here for brevity’s sake; however, Dragon software
can easily compute them (Todeschini and Consonni, 2000).

The correlation matrix (Table 4) shows that the selected
descriptors have a significant degree of correlation, which is a
problem for this model. In fact, Low-correlation descriptors
should be utilized while creating a model, such that molecular
descriptors reflect independent variables.

TABLE 4 | Correlation matrix for the twelve chosen descriptors by means of Stepwise−MRL.

IC2 BEHm8 QXXe RDF105m RDF050v Mor16u Mor22u Mor32u Mor16m Mor31m Mor30v E2v

IC2 1 — — — — — — — — — — —

BEHm8 0.71289 1 — — — — — — — — — —

QXXe 0.291867 0.449767 1 — — — — — — — — —

RDF105m 0.324553 0.366036 −0.21287 1 — — — — — — — —

RDF050v 0.046017 0.325575 0.887022 −0.18233 1 — — — — — — —

Mor16u −0.52103 −0.47151 −0.14793 −0.5522 0.151878 1 — — — — — —

Mor22u −0.04642 −0.10047 0.569542 −0.05905 0.558575 0.115754 1 — — — — —

Mor32u 0.339555 0.123565 0.448986 −0.50284 0.085389 −0.25631 0.324334 1 — — — —

Mor16m −0.26427 −0.3979 −0.51787 −0.17431 −0.35125 0.599117 −0.27855 −0.36023 1 — — —

Mor31m −0.24366 −0.16379 0.339254 −0.49366 0.411267 0.179403 0.229171 0.227343 −0.35411 1 — —

Mor30v 0.056618 −0.09594 −0.6632 0.325611 −0.47839 0.35268 −0.27186 −0.54116 0.522641 −0.52574 1 —

E2v 0.23577 0.498444 0.836901 −0.32191 0.658324 −0.18101 0.36587 0.600501 −0.58302 0.238531 −0.65492 1

TABLE 5 | Statistical parameters and the name of descriptors in SPA−MLR model.

Descriptor Type of descriptor Notation Coefficient

Moran autocorrelation of lag 8 weighted by van der Waals volume 2D autocorrelations MATS8v 0.166586
Geary autocorrelation of lag 5 weighted by Sanderson electronegativity 2D autocorrelations GATS5e −0.23697
Geary autocorrelation of lag 7 weighted by Sanderson electronegativity 2D autocorrelations GATS7e −0.17958
Harmonic Oscillator Model of Aromaticity index Geometrical HOMA −0.172
Radial Distribution Function − 090/unweighted RDF RDF090u 0.331935
Radial Distribution Function − 030/weighted by mass RDF RDF030m −0.61428
signal 13/unweighted 3D−MoRSE Mor13u 0.42232
signal 14/unweighted 3D−MoRSE Mor14u 0.16831
signal 32/unweighted 3D−MoRSE Mor32u 0.497132
signal 07/weighted by van der Waals volume 3D−MoRSE Mor07v −0.29036
signal 25/weighted by van der Waals volume 3D−MoRSE Mor25v −0.36172
leverage−weighted autocorrelation of lag 1/unweighted GETAWAY HATS1u 0.131395
H autocorrelation of lag 7/weighted by mass GETAWAY H7m 0.085106

SEc � 0.30, R2 � 0.89.
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RESULTS AND DISCUSSION

The major purpose of this study was to use SPA to select variables
for MLR modeling by developing a QSAR model to estimate the
activity parameter (pIC50) of compounds depicted in Figure 1 as
Candida albicans inhibitors. It can be seen from this figure and
Table 1 that the inhibitors of Candida albicans consisted of three
different classes with very diverse substituents. As a result, the
creation of a robust and interpretable QSAR model capable of
properly predicting the pIC50 is required. As a first step, we
created a linear MLR model, the parameters of which are listed in
Table 3. This model was created with two objectives in mind. To
begin, the appropriate variables were chosen using a Stepwise-
MLR technique. Table 3 shows that out of 257 parameters, twelve
descriptors of IC2, BEHm8, Qxxe, RDF105m, RDF050v, Mor16u,
Mor22u, Mor32u, Mor16m, Mor31m, E2V, and Mor30V were
chosen. These descriptors are classed as Information, BCUT,
Geometrical, RDF, 3D-MoRSE, and WHIM descriptors. The
Detailed descriptions of these descriptors are given in the
literature (Todeschini and Consonni, 2000). The model’s
second goal was to assess the linear connection between these
characteristics and Candida albicans inhibitors’ biological
activity. A value of 0.60 for R2Pre of this model reveals that it is
able to account 60% of the variances of the pIC50. In reality, the
Stepwise-MRL model is ineffective in predicting these
compounds’ biological actions. Therefore, these results made
us choose a more powerful method for selecting variables. In
order to do this, successive projection algorithm was used final
selection of descriptors. This study investigates the role of SPA-
MLR, which has received little attention from scholars. In this
method, at the first the descriptors which have the minimum
correlation are selected and then, for final selection of the best
model, the MLR method used. In the present study, by making
use of this method, a model with thirteen descriptors as the final
descriptors was selected whose statistical parameters and the
name of its descriptors have been presented in Table 5.

There is no significant association between the selected
descriptors, as seen in the correlation matrix (Table 6).

The leave-one-out methodology was also utilized to
demonstrate the stability of the model produced using the
SPA-MLR method. The dataset (n � 55) was split into a
training set of 41 compounds and a test (external assessment)
set of 14 compounds using the process randomization approach.
From the internal validation technique, the value ofQ2 � 0.30 and
RMSE � 0.74 was determined. The good results for the SPA-MLR
model are not attributable to chance correlation or structural
dependency of the training set, according toQ2 and RMSE values.
Table 1 shows the observed and SPA-MLR predicted pIC50
values for all inhibitors of Candida albicans investigated in
this study. The plot of the SPA-MLR predicted vs
experimental pIC50 values for the data set is shown in
Figure 5. A correlation coefficient of this plot indicates the
reliability of the model.

The experimental values are plotted against the residuals of the
SPA-MLR calculated values of pIC50 in Figure 6. The
propagation of residuals on both sides of the line reveals zero
error, indicating that the proposed model has no symmetric error.T
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In addition, the value of R2
pred, REP and SEP was determined

using the external validation approach, and these parameters
were then utilized to determine the model predictivity. In this
study, 25% of the data was chosen for external assessment.
Table 7 displays the MLR result for comparing the SPA-MLR
model. It can be seen from this Table that the statistical
parameters of SEp, REP and Q2

LOO have changed
considerably. In fact, the SPA-MLR model beats the MLR
model, making it ideal for predicting the pIC50 of Candida
albicans inhibitors.

Figure 7 shows the residuals of the SPA-MLR computed
pIC50 values in the external assessment technique
displayed against the experimental values. The fact that
the residuals propagate on both sides of the zero line

suggests that the SPA-MLR model was developed without
systematic error.

Finally, we employed the suggested linear models to deduce
the inhibitors of Candida albicans’ mechanism of action. This

FIGURE 5 | Experimental pIC50 versus calculated pIC50 plot in internal validation.

FIGURE 6 | Experimental pIC50 versus residual plot in internal validation.

TABLE 7 | Statistical results of SPA−MLR model compared to Stepwise−MRL
model in external validation method.

Q2 SEP REP %

Stepwise−MRL 0.60 0.73 2.2
SPA−MLR 0.90 0.36 1.1

FIGURE 7 | Experimental pIC50 versus residual plot in external
validation.

FIGURE 8 | Relative mean effects for SPA-MLR model.
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implies we should look at the variables that are the most
important predictors among the MLR model’s thirteen
descriptors. Figure 8 shows the relative mean effect and
sensitivity of each variable for the SPA-MLR models. The
model show that RDF090u has a significant influence on
biological activities of the Candida albicans inhibitors.

CONCLUSION

The use of QSAR methods has been effective in establishing a
mathematical link between inhibitors of Candida albicans and 2D
autocorrelations, Geometrical, RDF, 3D-MoRSE, and GETAWAY.
The results show that the SPA–MLR model outperforms the
Stepwise-MRL models. This is because, unlike regression analysis,
SPA–MLR allows for flexible mapping of the chosen characteristics
by changing their functional dependency implicitly. This approach
enabled us to develop a precise and relatively quick method for
determining the IC50 of various antifungal derivative series, as well
as to accurately estimate the IC50 of novel antifungal compounds.
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