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Abstract: The ability to predict a cancer patient’s response to radiotherapy and risk of developing
adverse late health effects would greatly improve personalized treatment regimens and individual
outcomes. Telomeres represent a compelling biomarker of individual radiosensitivity and risk, as
exposure can result in dysfunctional telomere pathologies that coincidentally overlap with many
radiation-induced late effects, ranging from degenerative conditions like fibrosis and cardiovascular
disease to proliferative pathologies like cancer. Here, telomere length was longitudinally assessed
in a cohort of fifteen prostate cancer patients undergoing Intensity Modulated Radiation Therapy
(IMRT) utilizing Telomere Fluorescence in situ Hybridization (Telo-FISH). To evaluate genome
instability and enhance predictions for individual patient risk of secondary malignancy, chromosome
aberrations were assessed utilizing directional Genomic Hybridization (dGH) for high-resolution
inversion detection. We present the first implementation of individual telomere length data in a
machine learning model, XGBoost, trained on pre-radiotherapy (baseline) and in vitro exposed (4 Gy
γ-rays) telomere length measurements, to predict post radiotherapy telomeric outcomes, which
together with chromosomal instability provide insight into individual radiosensitivity and risk for
radiation-induced late effects.

Keywords: telomeres; chromosomal instability; inversions; prostate cancer; IMRT; machine learning;
individual radiosensitivity; late effects; personalized medicine

1. Introduction

Radiation late effects are a broad class of negative and often permanent health effects
experienced by cancer patients long after radiation therapy [1,2], which can include car-
diovascular disease (CVD) [3], pulmonary and arterial fibrosis [4], cognitive deficits [5],
bone fractures [6], and secondary cancers [7]. Such late effects are of particular concern
for pediatric patients [8], and risks for radiation late effects are highly dependent on
patient-intrinsic factors as well, including genetics, age, sex, and lifestyle [1,2,9]. There-
fore, identifying a patient’s specific risks for radiation late effects prior to radiotherapy is
important for improving individual treatment planning and overall patient outcome. A
number of strategies for predicting risk of developing radiation late effects have been em-
ployed, which tend to involve irradiating patient-derived samples in vitro and monitoring
of biomarker(s) to infer in vivo cellular and normal tissue responses to exposure [10]; e.g.,
evaluation of γ-H2AX foci kinetics [11,12], apoptosis in normal blood lymphocytes [13],
and chromosome aberration frequencies [14–16]. Additionally, Genome Wide Association
Studies (GWAS) [17,18], sequencing [19], and imaging studies (i.e., radiogenomics [20])
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have revealed promising putative indicators for predicting risks of late effects. However,
accurately predicting an individual patient’s response to radiotherapy and associated risk
of developing adverse late health effects remains challenging in terms of cost-effectiveness,
throughput, and predictive power, therefore new approaches are needed.

Telomeres have been proposed as sensitive biomarkers of radiation exposure and a
valuable parameter for predicting individual radiosensitivity of patients [21]. Telomeres
are protective features of chromosomal termini that guard genome integrity and prevent
inappropriate activation of DNA damage responses (DDRs) [22,23]. It is well established
that telomeres shorten with cell division, oxidative stress [24], and aging [25]. Telomeres
also shorten with a host of lifestyle factors (e.g., nutrition [26], exercise [27], stress [28])
and environmental exposures (e.g., air pollution [29], UV [30]). Telomere length is a highly
heritable trait, as is telomere length regulation [31–34], supportive of individual variation in
telomeric response to specific stressors. Interestingly, telomeres are regarded as hallmarks
of radiosensitivity [35], and ionizing radiation (IR) exposure has been shown to evoke
both shortening and lengthening of telomeres [36–38]. A large Mendelian randomization
study [39] and recent quantitative estimates have shown that both short and long telom-
eres are associated with increased disease risk—of approximately equal degree [40,41].
Short telomeres are robust biomarkers and even determinants for a range of aging-related
pathologies [42], including dementias, CVD and pulmonary fibrosis [43], and aplastic
anemia [44], degenerative conditions also regarded as radiation late effects [45–47]. On
the other hand, longer telomeres are associated with increased cancer risk, particularly
for leukemias [48], a common cancer following IR-exposure [49]. Thus, telomere length
could be used to identify radiosensitive individuals (i.e., those with shorter telomeres
before radiotherapy) to better inform personalized treatment regimens. Furthermore, eval-
uating telomere length dynamics associated with radiotherapy could serve to identify
individuals at risk for developing radiation-induced late effects; i.e., patients with shorter
telomeres would be at higher risk of degenerative pathologies (fibrosis, CVD), while those
with longer telomeres following radiotherapy would be at higher risk for developing
proliferative pathologies, namely secondary malignancy.

Given that telomere length is influenced by a variety of genetic factors [31–34], and
exposures including IR [36–38,50–52], we reasoned that a patient’s telomeric outcome
post-radiation therapy, rather than their pre-treatment (baseline) measures, would be most
informative for assessing individual risks for radiation late effects and long-term health
consequences. Furthermore, since patient-derived pre-radiation therapy samples irradiated
in vitro provide an informative proxy for individual patient radiosensitivity and response
in vivo [53–56], developing an effective means to accurately predict an individual patient’s
telomeric outcome post-radiation therapy would serve to improve personalized treatment
strategies and individual outcomes.

Chromosome aberrations (CAs) are well-established biomarkers of IR-exposure [57]
associated with virtually all cancers [58], and highly informative indicators of risk for
radiation late effects, in particular, secondary cancers [14–16]. Ionizing radiation is excep-
tional in its ability to induce prompt double-strand breaks (DSBs) [59], DNA damage that
necessitates a cellular response. Chromosome rearrangements result from the misrepair
of such damage, and so provide a quantitative measure of cellular capacity for DNA re-
pair [57]. In general, IR-induced CAs negatively impact cell survival and genome stability,
resulting in senescence, apoptosis, and cancer [57]. Notably, chromosomal inversions and
deletions have previously been proposed as signatures of radiation-induced secondary
cancers [60]. Cytogenetic analysis however, is both time and labor intensive, often requiring
that hundreds or even thousands of cells be scored, limiting its clinical utility [61]. We
speculated that for this pilot study, inclusion of an additional type of CA, specifically inver-
sions detected by the strand-specific methodology of directional Genome Hybridization
(dGH) [62], might serve to reduce the number of cells required, while also better informing
individual risk for secondary malignancy.
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Significant advancements have also been made in the application of machine learning
(ML) to a variety of scenarios, including predictions related to acute radiation toxicity [63],
treatment planning [64], and secondary cancer risk post radiation therapy [65]. Extreme
Gradient Boosting (XGBoost) is a powerful ML model that uses a gradient boosted ensemble
of decision trees to learn complex relationships (linear and nonlinear) within datasets [66].
XGBoost has many translational applications, such as predicting future gastric cancer
risk [67], lung cancer detection [68], and radiation-related fibrosis [69]. One potentially
limiting caveat to ML is the requirement for extraordinarily large amounts of data to create
robust, generalizable models. Telomere Fluorescence in situ Hybridization (Telo-FISH) is a
cell-by-cell imaging-based approach for measuring telomere length capable of generating
sufficient volumes of data for developing ML models; average experiments generate
200,000–1,000,000 individual telomere length measurements [70]. To date, individual
telomere length measurements (Telo-FISH, Q-FISH, flow-FISH, etc.) have not been utilized
in ML models for risk predictions, despite the informative nature of such an approach.

Here we provide a proof-of-principle demonstration utilizing longitudinal analysis
of telomere length and chromosomal instability in fifteen (15) prostate cancer patients
undergoing Intensity Modulated Radiation Therapy (IMRT). We present the first imple-
mentation of individual telomere length (Telo-FISH) data in a ML model—XGBoost—and
evaluate its ability to predict post-IMRT telomeric outcomes using individual patient’s
pre-IMRT (baseline) and in vitro irradiated telomere lengths. Overall, our results support
use of telomere length dynamics and chromosomal instability for improved prediction of
individual radiosensitivity and risk for developing radiation-induced late effects post RT.

2. Materials and Methods
2.1. Patient Consent, IMRT Therapy Information

With informed consent as per the institutional review board, 16 consecutive patients
receiving pelvic and prostate or prostate fossa radiation therapy were asked to partici-
pate in the study. No patient had received androgen ablation or chemotherapy to avoid
confounding factors. One patient was found to have metastatic disease after consent and
was removed from further study. A total of 15 patients provided consent and blood was
collected pre-IMRT (baseline), immediately post-IMRT (the last week), and 3-months post-
IMRT (prior to returning to personal medical oncologist). Blood was subject to complete
blood counts, and telomere length and chromosome aberration analyses. Each patient re-
ceived a radiation regime consisting of 54 Gy to the pelvic lymphatics, with a total of 70 Gy
(n = 11) or 78 Gy (n = 3) to the prostate fossa. One patient underwent brachytherapy boost.

2.2. Sample Collection and Processing for Telo-FISH and dGH

Peripheral blood was drawn and shipped in 10 mL sodium heparin tubes (Becton,
Dickinson and Co, Franklin Lakes, NJ, USA; #367874) under ambient conditions to Colorado
State University and received within 24 h of blood draw. All heparinized blood samples
were cultured in T-25 tissue culture flasks, at 1 parts blood per 9 parts Gibco PB-Max
Karyotyping Medium (Thermo Fisher, Waltham, MA, USA; #12557013), with 5.0 mM
5-bromo-deoxyuridine (BrdU) and 1.0 mM 5-bromo-deoxycytidine (BrdC) added to the
medium as previously described [62]. Pre-IMRT blood samples were split into two fractions
(non-irradiated and in vitro irradiated) with identical culturing conditions as other time
point samples; irradiated fraction was exposed in vitro at a dose rate of 2.5 Gy/min for a
total dose of 4 Gy (137Cs gamma-ray Mark I irradiator; J.L. Shepherd & Associates, San
Fernando, CA USA). Forty-eight hours after stimulation, KaryoMax Colcemid (Thermo
Fisher, Waltham, MA, USA; #15210040) was added (0.1 µg per mL of medium) for four
hours of incubation, then metaphase chromosome spreads were harvested with standard
cytogenetic protocols [71]. Prior to Telo-FISH and dGH, slides with metaphase chromosome
spreads were subject to CO-FISH protocol for removal of BrdU/BrdC incorporated DNA
as previously described [72].
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2.3. Telomere Fluorescence In Situ Hybridization (Telo-FISH), Imaging, Quantifications

Protocol: Slides with metaphase chromosome spreads were prepared and hybridized
with a fluorescently labeled telomere probe as previously described [70]. Briefly, slides
were washed in 1× PBS for 5 min, dehydrated through an ice-cold ethanol series (75%, 85%
and 100%) for 2 min each, air dried, and denatured in 70% formamide in 2× saline sodium
citrate (SSC) at 75 ◦C for 2 min, followed by a second ice-cold ethanol series, and air dried
again. Probe hybridization mixture consisted of G-rich (TTAGGG-′3) peptide nucleic acid
(PNA) telomere probe labeled with Cyanine-3 (Cy3; Bio-synthesis, Inc., Lewisville, TX
USA) at 5 nM concentration in 36 µL of formamide, 12 µL of 0.5 M Tris-HCl, 2.5 µL of
0.1 M KCl, and 0.6 µL of 0.1 M MgCl2. Hybridization mixture was incubated at 75 ◦C for
5 min and cooled on ice for 10 min, then 50 µL of mix was applied to each slide. Slides
were coverslipped and hybridized at 37 ◦C for 4 h. After hybridization, slides were washed
five times at 43.5 ◦C for three min each: washes one and two: 50% formamide in 2× SSC;
washes three and four: 100% 2× SSC; and washes five and six: 2× SSC plus 0.1% Nonidet
P-40. After washing, slides were counterstained with DAPI in Prolong Gold Antifade
(Thermo Fisher, Waltham, MA, USA; #P36931), coverslipped, and stored at 4 ◦C for 24 h
prior to imaging.

Image acquisition: Metaphase spreads (50 per patient/time point) were imaged at
100×mag on a Zeiss Axio Imager.Z2, Cool SNAP ES2 camera, and X-cite 120 LED lamp
light source.

Individual telomere quantifications: Relative fluorescence intensity of individual
telomeres was quantified using the ImageJ plugin Telometer [73]. Variation in Telo-FISH
was controlled by assigning each patient a pair of slides made from BJ1 and BJ-hTERT
fibroblast cell lines (ATCC, Manassas, VA USA). For each patient, slide preparation, Telo-
FISH protocol, image acquisition and telomere quantifications were performed on the full
time-course of samples and pair of BJ1/BJ-hTERT controls (50 metaphases per control) at
the same time and on the same respective days. Mean telomere length was quantified for
each pair of control samples yielding a ratio for standardizing patients’ telomere values as
previously described [74].

2.4. Telo-FISH Data Processing, Feature Engineering of Short and Long Telomeres

Processing individual telomere length data: For each patient, outliers were removed
from individual telomere length data per sample by omitting measurements three standard
deviations from the mean; between all samples and patients, less than 1% of individual
telomere measurements were considered outliers per this approach. For samples with
fewer individual telomere length measurements than the theoretical number (human cells,
50 metaphase spreads), missing telomere values were imputed by randomly sampling
measurements from the observed distribution of individual telomeres; randomly sampled
telomeres were added up to the theoretical number of telomeres per sample.

Feature engineering short and long telomeres: Individual telomeres from the pre-
IMRT non-irradiated time point were split into quartiles, designating telomeres in the
bottom 25% in yellow, the middle 50% in blue, and top 25% in red. Quartile cut-off values,
established by the pre-IMRT non-irradiated sample’s distribution (values that separate
quartiles), were applied to subsequent time points to feature engineer the relative shortest
(yellow), mid-length (blue), and longest (red) individual telomeres per time point.

2.5. Statistical and Clustering Analyses of Telo-FISH Data

Statistical and clustering analyses were conducted with Python in Jupyter notebooks
(see Code availability). With the statsmodels library [75], mean telomere length and
numbers of short and long telomeres were analyzed with a repeated measures ANOVA
and post hoc Tukey’s HSD test (two-tailed p values for both tests). Analyses were performed
on all patients (n = 14, less patient ID 13; 3-month post-IMRT sample failed to culture) and
all four time points. A square root transformation was performed on numbers of short and
long telomeres prior to statistical analysis. Ordinary least squares linear regression was
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performed with the scikit-learn LinearRegression tool. Hierarchical clustering analyses
were performed on z-score normalized data using the scipy library [76] with a single
linkage method and Pearson correlation metric. Pearson correlations between patients’
longitudinal measurements of telomere length and complete blood count data was done
with Python.

2.6. XGBoost Models with Individual Telomere Length Data, Randomized Hyperparameter Search,
Cross Validation

XGBoost models, model hyperparameter tuning, and cross validation tools were
performed in Python through the scikit-learn API [77]. XGboost model features were
individual telomere length values and sample labels denoted pre-IMRT sample origin (non-
irradiated, in vitro irradiated), which were encoded as 0/1. Model hyperparameters were
tuned using a randomized search with RandomizedSearchCV. For models predicting mean
telomere length at late post-IMRT, final model hyperparameters were modified as follows:
n_estimators = 200, max_depth = 7, learning_rate = 0.2, objective = ‘reg:squarederror’,
random_state = 1. For models predicting short and long telomeres at late post-IMRT, final
model hyperparameters were similar as for mean telomere length, with max depth = 6.
Five-fold cross validation was performed with cross_val_score and a negative mean abso-
lute error metric.

2.7. Directional Genomic Hybridization (dGH), Image Acquisition, Data Processing

High-resolution detection of chromosome aberrations (inversions, translocations)
was performed utilizing dGH whole chromosome (Cy3) and sub-telomere (Cy5) paints
specific to chromosomes 1, 2, and 3 (KromaTiD Inc., Longmont, CO USA) as previously
described [62]. Briefly, slides were stained with Hoechst 33,258 (MilliporeSigma, Burlington,
MA USA; #B1155) for 15 min, photolyzed for 35 min using a SpectroLinker UV Crosslinker
(365 nm UV), and digested with exonuclease III (New England Biolabs, Ipswich, NA, USA;
#M0206L) for 30 min. Paint hybridization mixture was applied to slides, which were then
coverslipped, sealed with rubber cement, and denatured at 70 ◦C for three min. Slides were
hybridized for 24 h at 37 ◦C, followed by five washes in 2× SSC at 43.5 ◦C. After washing,
slides were counterstained with one drop of DAPI in Prolong Gold Antifade (Thermo
Fisher, Waltham, MA, USA; #P36931), coverslipped, and stored at 4 ◦C for 24 h prior to
imaging. Metaphase spreads (30 per patient/time point) were imaged/scored at 63×mag
on a Zeiss Axio Imager.Z2, Cool SNAP ES2 camera, and X-cite 120 LED lamp light source.
Counts of chromosome aberrations were corrected for clonality, where identical aberrations
between cells for a patient’s given time point were noted but scored only once.

2.8. Statistical and Clustering Analyses of Chromosome Aberrations (dGH)

Statistical and clustering analyses were conducted with Python in Jupyter notebooks
(see Code availability). With the statsmodels library, average chromosome aberration
frequencies were analyzed with a repeated measures ANOVA and post hoc Tukey’s HSD
test (two-tailed p values for both tests). Analyses were performed on all patients (n = 14,
less patient ID 13; 3-month post-IMRT sample failed to culture) and all-time course samples
(4). Ordinary least squares linear regression was performed with the scikit-learn Linear-
Regression tool. Hierarchical clustering analyses were performed on z-score normalized
data using the scipy library with a single linkage method and Pearson correlation metric.
Pearson correlations between patients’ longitudinal measurements of average chromosome
aberration frequencies and complete blood count data was done with Python.

2.9. XGBoost Model Design with Chromosome Aberrations

XGBoost models, model hyperparameter tuning, and cross validation were accessed
in Python via the same manner as described for Telo-FISH data above. XGboost model
features were counts of scored chromosome aberrations per cell, with sample labels denot-
ing pre-IMRT sample origin (non-irradiated, in vitro irradiated; encoded as 0/1). Model
hyperparameters were tuned using a randomized search with RandomizedSearchCV;
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models were ultimately non-performant. Final model hyperparameters (used with all
chromosome aberrations) were: n_estimators = 200, max_depth = 15, learning_rate = 0.1,
objective = ‘reg:squarederror’, random_state = 0. Five-fold cross validation was performed
with a negative mean absolute error metric.

3. Results
3.1. Longitudinal Analyses of Telomere Length Associated with Radiation Therapy

Blood was collected from 15 prostate cancer patients undergoing IMRT at baseline
(pre-IMRT), immediately post-IMRT (conclusion of treatment regimen), and 3-months post-
IMRT. Baseline blood samples were split, half serving as the non-irradiated control (0 Gy),
and the other half irradiated in vitro (4 Gy, Cs137 γ-rays) as a proxy for individual radiation
response [55].The lengths of thousands of individual telomeres (n = 50 cells/patient/time
point) were measured on metaphase chromosomes (lymphocytes stimulated from whole
blood) by Telo-FISH at all time points [pre-therapy non-irradiated (0 Gy); pre-therapy
in vitro irradiated (4 Gy); immediately post-IMRT; and 3-months post-IMRT] (Figure 1A).
For the overall cohort, differences in mean telomere length (MTL) between samples ap-
proached but did not reach statistical significance (p = 0.059, repeated measures ANOVA).
Relative to the pre-IMRT non-irradiated samples (0 Gy), overall MTL modestly increased
after 4 Gy in vitro irradiation, and showed an even greater increase immediately after
completion of the IMRT regimen, suggesting that increased MTL is an overall response to
radiation exposure in this cohort. At 3-months post-IMRT, MTL for the cohort approached
pre-IMRT levels.
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Figure 1. Telomere length dynamics (Telo-FISH). Mean telomere length expressed as relative fluorescence intensity.
(A) Time-course of blood sample collection for all prostate cancer patients (n = 15; 50 cells/patient/time point scored):
1 non irrad = pre-IMRT non-irradiated (0 Gy); 2 irrad @ 4 Gy: pre-IMRT in vitro irradiated; 3B: immediate post-IMRT; and
4C: 3-months post-IMRT. Boxes denote quantiles, horizontal grey lines denote medians. Telomere length values were
standardized using BJ1/BJ-hTERT controls. (B) Hierarchical clustering of patients by longitudinal changes in mean telomere
length (z-score normalized). (C) Time-course for clustered groups of patients (n = 3, purple; n = 11, blue); center lines denote
medians, lighter bands denote confidence intervals. Patient ID 13 not clustered (sample failed to culture). Significance was
assessed using a repeated measures ANOVA and post hoc Tukey’s HSD test.

Complete blood counts (CBC) were evaluated in the same samples, and longitudinal
changes in patients’ MTL negatively correlated (R2 = −0.126) with total peripheral white
blood cell (WBC) counts (Figure S1A). Longitudinal correlations between numbers of
WBC types and MTL (all time points, for each patient) revealed a positive relationship
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with basophils (R2 = 0.278) and a negative relationship with lymphocytes (R2 = −0.294)
(Figure S1B). Furthermore, longitudinal correlations between MTL and the proportions of
lymphocyte sub-groups (all time points, for each patient) revealed positive relationships
with natural killer (NK) and CD4 cells (R2 = 0.408, 0.282), and negative relationships with
CD8 and CD19 cells (R2 = −0.251, −0.288) (Figure S1C). These results support the notion
that the overall changes in MTL associated with radiation exposure, specifically apparent
telomere elongation, could be at least partially due to cell killing and shifts in lymphocyte
populations, as previously proposed [78,79].

3.2. Telomere Length Dynamics Revealed Individual Differences in Radiation Response

We hypothesized that groups of patients would cluster based on differential telomeric
responses to radiation therapy, with sub-groups displaying either shorter or longer MTL
post-IMRT. Clustering patients by longitudinal changes in MTL revealed two broad trends
over time (Figure 1B). Patients that clustered in group 1 (n = 3) had relatively longer MTL
at baseline (pre-IMRT), and showed a dramatic, persistent decrease in MTL post-IMRT
(Figure 1C). Those patients that clustered in group 2 (n = 11) had relatively shorter MTL
at baseline, and showed a dramatic, sustained increase in MTL post-IMRT (Figure 1C).
Reduced MTL 3-months post-IMRT suggests increased risks for degenerative radiation
late effects [43], while increased MTL suggests increased risks for proliferative secondary
cancers [48].

In addition to MTL, Telo-FISH provides measures for many hundreds of individual
telomeres, enabling generation of telomere length distributions and longitudinal analysis
of shifts in populations of short and long telomeres [70]. For the overall cohort, numbers of
short telomeres decreased and numbers of long telomeres dramatically increased 3-months
post-IMRT (Figure 2A). When individual telomeres from patients in the MTL clustered
group 1 (n = 3) were combined, dramatic and persistent increases in the numbers of short
telomeres post-IMRT were observed (Figure 2B), while MTL clustered group 2 patients
(n = 11) showed dramatic and persistent increases in numbers of long telomeres post-IMRT
(Figure 2C). Again, patients with increased numbers of short telomeres are presumed to
have increased risks for degenerative radiation late effects [43], while those with increased
numbers of long telomeres are at increased risk of secondary cancers [48]. Numbers of
short and long telomeres were feature engineered (see Materials and Methods) from each
patient’s individual telomere length data for further analysis.

Differences in the average number of short and long telomeres between samples
approached but did not reach statistical significance for the overall cohort (p < 0.1; repeated
measures ANOVA) (Figure 3A). We speculated that clustering patients by numbers of
short or long telomeres would reveal longitudinal trends similar to those observed when
clustering patients by MTL (Figure 1B,C). Clustering patients by longitudinal changes in
numbers of short or long telomeres (Figure 3B,D) revealed two broad trends over time
(Figure 3C,E). Clustered group 1 (n = 3) showed a dramatic, sustained increase in numbers
of short telomeres post-IMRT, with a corresponding decrease in numbers of long telomeres
(Figure 3C,E). Clustered group 2 (n = 11) showed a dramatic, nearly uniform decrease in
numbers of short telomeres post-IMRT, with a corresponding increase in long telomeres
(Figure 3C,E). Importantly, clustering patients either by MTL or by numbers of short or
long telomeres post-IMRT identified the same three patients with shorter telomeres, and
eleven with longer telomeres (Figures 1B and 3B,D).
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post-IMRT (Figure 2C). Again, patients with increased numbers of short telomeres are 
presumed to have increased risks for degenerative radiation late effects [43], while those 
with increased numbers of long telomeres are at increased risk of secondary cancers [48]. 
Numbers of short and long telomeres were feature engineered (see Materials and Meth-
ods) from each patient’s individual telomere length data for further analysis. 

 
Figure 2. Telomere length distributions (Telo-FISH). Individual telomere length distributions of prostate cancer patients 
(n = 15): 1 non irrad = pre-IMRT non-irradiated (0 Gy); 2 irrad @ 4 Gy = pre-IMRT in vitro irradiated; 3B = immediate post-
IMRT; and 4C = 3-months post-IMRT. RFI: Relative Fluorescence Intensity. Individual telomeres from the pre-therapy 
non-irradiated time point were split into quartiles, designating telomeres in the bottom 25% (yellow), middle 50% (blue), 
and top 25% (red). Quartile cut-off values, established by the distribution of the pre-therapy non-irradiated time point, 
were applied to subsequent time points to feature engineer the relative shortest, mid-length, and longest individual telo-
meres per time point. (A) Individual telomere length distributions for all patients (averaged) per time point. (B) Individual 
telomere length distributions for patients in mean telomere length clustered group 1 (n = 3) and (C) group 2 (n = 11). 

Differences in the average number of short and long telomeres between samples ap-
proached but did not reach statistical significance for the overall cohort (p < 0.1; repeated 
measures ANOVA) (Figure 3A). We speculated that clustering patients by numbers of 
short or long telomeres would reveal longitudinal trends similar to those observed when 
clustering patients by MTL (Figure 1B,C). Clustering patients by longitudinal changes in 
numbers of short or long telomeres (Figure 3B,D) revealed two broad trends over time 
(Figure 3C,E). Clustered group 1 (n = 3) showed a dramatic, sustained increase in numbers 

Figure 2. Telomere length distributions (Telo-FISH). Individual telomere length distributions of prostate cancer patients
(n = 15): 1 non irrad = pre-IMRT non-irradiated (0 Gy); 2 irrad @ 4 Gy = pre-IMRT in vitro irradiated; 3B = immediate
post-IMRT; and 4C = 3-months post-IMRT. RFI: Relative Fluorescence Intensity. Individual telomeres from the pre-therapy
non-irradiated time point were split into quartiles, designating telomeres in the bottom 25% (yellow), middle 50% (blue),
and top 25% (red). Quartile cut-off values, established by the distribution of the pre-therapy non-irradiated time point, were
applied to subsequent time points to feature engineer the relative shortest, mid-length, and longest individual telomeres per
time point. (A) Individual telomere length distributions for all patients (averaged) per time point. (B) Individual telomere
length distributions for patients in mean telomere length clustered group 1 (n = 3) and (C) group 2 (n = 11).

3.3. Linear Regression Failed to Predict Post-IMRT Telomeric Outcomes

Based on the two distinct groups identified by MTL and numbers of short and long
telomeres 3-months post-IMRT (Figures 1 and 3), we hypothesized that pre-IMRT mea-
surements of MTL and numbers of short and long telomeres could predict their respective
post-IMRT outcomes using linear regression. For MTL, two linear regression models were
created. The first used only MTL from pre-IMRT (baseline) non-irradiated samples as
the independent variable, and the second used MTL from both the non-irradiated and
in vitro irradiated pre-IMRT samples as independent variables for predicting post-IMRT
MTL (Figure 4A). The R2 values for the two models were 0.161 and 0.165, respectively
(Figure 4A), evidence that linear regression poorly captured the relationship between pre-
and post-IMRT MTL. For numbers of short and long telomeres, two linear regression mod-
els were similarly created. The models for short telomeres yielded R2 values of 0.433 and
0.554, and the models for long telomeres yielded R2 values of 0.046 and 0.208 (Figure 4B,C).
While the models for numbers of short telomeres had modestly higher R2 values than those
for MTL or long telomeres, all linear regression models performed too poorly to confidently
predict telomeric outcomes.
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of short telomeres post-IMRT, with a corresponding decrease in numbers of long telo-
meres (Figure 3C,E). Clustered group 2 (n = 11) showed a dramatic, nearly uniform de-
crease in numbers of short telomeres post-IMRT, with a corresponding increase in long 
telomeres (Figure 3C,E). Importantly, clustering patients either by MTL or by numbers of 
short or long telomeres post-IMRT identified the same three patients with shorter telo-
meres, and eleven with longer telomeres (Figures 1B and 3B,D). 

 
Figure 3. Longitudinal shifts in numbers of short and long telomeres (Telo-FISH). Numbers of short and long telomeres 
from individual telomere length distributions: 1 non irrad = pre-IMRT non-irradiated (0 Gy); 2 irrad @ 4 Gy = pre-IMRT in 
vitro irradiated; 3B = immediate post-IMRT; and 4C = 3-months post-IMRT. Shortest (yellow), mid-length (blue), and long-
est (red) telomeres were feature engineered per patient (n = 15). (A) Counts of short, medium, and long telomeres; 4600 
individual telomeres per patient per time point. Significance was assessed using a square-root transformation and a re-
peated measures ANOVA with post hoc Tukey’s HSD test. Hierarchical clustering of patients by longitudinal changes in 
numbers of short (B) and long telomeres (D) (z-score normalized). Time-courses of patient groups (n = 3, purple; n = 11, 
blue) clustered by numbers of short (C) and long (E) telomeres; center lines denote medians and lighter bands denote 
confidence intervals. Patient ID 13 not clustered (sample failed to culture). 
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urements of MTL and numbers of short and long telomeres could predict their respective 
post-IMRT outcomes using linear regression. For MTL, two linear regression models were 
created. The first used only MTL from pre-IMRT (baseline) non-irradiated samples as the 
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irradiated pre-IMRT samples as independent variables for predicting post-IMRT MTL 
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Figure 3. Longitudinal shifts in numbers of short and long telomeres (Telo-FISH). Numbers of short and long telomeres
from individual telomere length distributions: 1 non irrad = pre-IMRT non-irradiated (0 Gy); 2 irrad @ 4 Gy = pre-IMRT
in vitro irradiated; 3B = immediate post-IMRT; and 4C = 3-months post-IMRT. Shortest (yellow), mid-length (blue), and
longest (red) telomeres were feature engineered per patient (n = 15). (A) Counts of short, medium, and long telomeres;
4600 individual telomeres per patient per time point. Significance was assessed using a square-root transformation and a
repeated measures ANOVA with post hoc Tukey’s HSD test. Hierarchical clustering of patients by longitudinal changes in
numbers of short (B) and long telomeres (D) (z-score normalized). Time-courses of patient groups (n = 3, purple; n = 11,
blue) clustered by numbers of short (C) and long (E) telomeres; center lines denote medians and lighter bands denote
confidence intervals. Patient ID 13 not clustered (sample failed to culture).
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The fact that linear regression poorly predicted post-IMRT telomeric outcomes could 
be due to the low number of observations (n = 14), and/or the nonlinearity of telomere 
length dynamics (changes over time) in response to radiation exposure (Figures 1–4). We 
sought an alternative approach that could effectively utilize our vast dataset of pre-IMRT 
individual telomere length measurements (n = 128,800), and also capture the nonlinearity 
of telomeric responses. Considering that XGBoost had recently been used to predict cancer 
risk and radiation-induced fibrosis using patient data [66–69], we hypothesized that 
XGBoost models could be trained with pre-IMRT individual telomere length measure-
ments to accurately predict post-IMRT telomeric outcomes. 

Pre-IMRT (baseline) telomere length data required extensive processing prior to 
training the XGBoost model for predicting three-month post-IMRT MTL (Figure 5). Data 
was reshaped into a matrix consisting of 128,800 rows (one for each individual telomere 
measurement) and four columns: patient ID, individual telomere length value, label de-
noting pre-IMRT sample of origin (non-irradiated or in vitro irradiated), and three-month 
post-IMRT MTL (Table S1A). Reshaped data was randomly shuffled and stratified by pa-
tient ID and sample of origin, then split into training (80% of total) and test (20% of total) 
datasets. Shuffling guarded against order of measurement bias (Telo-FISH image acquisi-
tion), while stratifying ensured equivalent numbers of individual telomeres from each pa-
tients’ pre-IMRT samples (non-irradiated vs. in vitro irradiated) in the training and test 
datasets. Patient IDs were stripped from the training and test datasets, and individual 
telomeres from the non-irradiated and in vitro irradiated samples were encoded as 0 and 
1 to denote sample origin (Table S1B). XGBoost model hyperparameters were optimized 
using a randomized hyperparameter search [80]. 

Figure 4. Linear regression models failed to predict post-IMRT telomeric outcomes. Ordinary least squares linear regression
models were employed using pre-IMRT telomeric data (Telo-FISH) from the pre-IMRT non-irradiated (0 Gy) or the
pre-IMRT in vitro irradiated (4 Gy) samples to predict 3-month post-IMRT telomeric outcomes. Models were made
using (A) mean telomere length (R2 = 0.161, 0.165), (B) numbers of short (R2 = 0.433, 0.554), and (C) numbers of long
(R2 = 0.046, 0.208) telomeres.
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3.4. Development of XGBoost Machine Learning Models for Accurate Prediction of Post-IMRT
Telomeric Outcomes

The fact that linear regression poorly predicted post-IMRT telomeric outcomes could
be due to the low number of observations (n = 14), and/or the nonlinearity of telomere
length dynamics (changes over time) in response to radiation exposure (Figures 1–4). We
sought an alternative approach that could effectively utilize our vast dataset of pre-IMRT
individual telomere length measurements (n = 128,800), and also capture the nonlinearity
of telomeric responses. Considering that XGBoost had recently been used to predict
cancer risk and radiation-induced fibrosis using patient data [66–69], we hypothesized that
XGBoost models could be trained with pre-IMRT individual telomere length measurements
to accurately predict post-IMRT telomeric outcomes.

Pre-IMRT (baseline) telomere length data required extensive processing prior to train-
ing the XGBoost model for predicting three-month post-IMRT MTL (Figure 5). Data was
reshaped into a matrix consisting of 128,800 rows (one for each individual telomere mea-
surement) and four columns: patient ID, individual telomere length value, label denoting
pre-IMRT sample of origin (non-irradiated or in vitro irradiated), and three-month post-
IMRT MTL (Table S1A). Reshaped data was randomly shuffled and stratified by patient
ID and sample of origin, then split into training (80% of total) and test (20% of total)
datasets. Shuffling guarded against order of measurement bias (Telo-FISH image acqui-
sition), while stratifying ensured equivalent numbers of individual telomeres from each
patients’ pre-IMRT samples (non-irradiated vs. in vitro irradiated) in the training and test
datasets. Patient IDs were stripped from the training and test datasets, and individual
telomeres from the non-irradiated and in vitro irradiated samples were encoded as 0 and
1 to denote sample origin (Table S1B). XGBoost model hyperparameters were optimized
using a randomized hyperparameter search [80].
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used for individual telomere length data (Telo-FISH). Preprocessed data: Feature 1: pre-IMRT individual telomere length 
measurements (n = 128,800); Feature 2: pre-IMRT sample labels (non-irradiated, in vitro irradiated, encoded as 0/1); Target: 
3 months post-IMRT telomeric outcomes (mean telomere length or numbers of short and long telomeres). Data is ran-
domly shuffled and stratified (by patient ID and pre-therapy sample origin) and split into training (80%) and test (20%) 
datasets; patient IDs are stripped after splitting. Five-fold cross validation was used, and models were evaluated with 
Mean Absolute Error (MAE) and R2 scores between predicted and true values in the test set. 

XGBoost model performance was evaluated across the training dataset using five-
fold cross validation [81]. Mean absolute error (MAE), the mean of all differences between 
predicted and actual values of mean telomere length, was used to assess the model’s per-
formance and ability to generalize to new data (Table S2A). Five-fold cross validation on 
the full training dataset yielded an average MAE of 3.233 with a standard deviation of 
0.052 (Table S2A), suggesting that the model was not overfitting to portions (folds) of the 
training data and that it could generalize to new data. Model performance was also eval-
uated when training across variable numbers of individual telomere measurements (n = 
100 to 103,040) (Table S2A). After training the XGBoost model on the full training dataset, 
the model was challenged to predict three-month post-IMRT MTL using new data—the 
test dataset. The XGBoost model predictions for MTLs in the test set matched the true 
values with an R2 value of 0.882 (Figure 6A; Table S2A). Averaging predictions per patient 
for three-month post-IMRT MTL in the test set increased the R2 value to 0.931 (Figure 6D). 

Figure 5. Processing of Telo-FISH data for training and testing XGBoost models. Schematic for machine learning pipeline
used for individual telomere length data (Telo-FISH). Preprocessed data: Feature 1: pre-IMRT individual telomere length
measurements (n = 128,800); Feature 2: pre-IMRT sample labels (non-irradiated, in vitro irradiated, encoded as 0/1); Target:
3 months post-IMRT telomeric outcomes (mean telomere length or numbers of short and long telomeres). Data is randomly
shuffled and stratified (by patient ID and pre-therapy sample origin) and split into training (80%) and test (20%) datasets;
patient IDs are stripped after splitting. Five-fold cross validation was used, and models were evaluated with Mean Absolute
Error (MAE) and R2 scores between predicted and true values in the test set.

XGBoost model performance was evaluated across the training dataset using five-fold
cross validation [81]. Mean absolute error (MAE), the mean of all differences between
predicted and actual values of mean telomere length, was used to assess the model’s
performance and ability to generalize to new data (Table S2A). Five-fold cross validation on
the full training dataset yielded an average MAE of 3.233 with a standard deviation of 0.052
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(Table S2A), suggesting that the model was not overfitting to portions (folds) of the training
data and that it could generalize to new data. Model performance was also evaluated when
training across variable numbers of individual telomere measurements (n = 100 to 103,040)
(Table S2A). After training the XGBoost model on the full training dataset, the model was
challenged to predict three-month post-IMRT MTL using new data—the test dataset. The
XGBoost model predictions for MTLs in the test set matched the true values with an R2

value of 0.882 (Figure 6A; Table S2A). Averaging predictions per patient for three-month
post-IMRT MTL in the test set increased the R2 value to 0.931 (Figure 6D).
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post-IMRT telomeric outcomes. Trained XGBoost models were challenged with the test set (new data, n = 25,760 individual 
telomeres) to predict 3-month post-IMRT telomeric outcomes for (A) mean telomere length, (B) numbers of short, and (C) 
numbers of long telomeres. XGBoost predictions were averaged on a per patient basis for (D) mean telomere length, (E) 
numbers of short, and (F) numbers of long telomeres; blue line represents a simple regression line (X/Y), lighter bands the 
95% confidence interval, R2 values (coefficient of determination) are noted in bold. 

XGBoost models were then challenged to predict post-IMRT telomere length of pa-
tients whose pre-IMRT individual telomeres they were not trained on. We iteratively 
trained 14 XGBoost models, where in each model one patient’s individual telomeres were 
“left out” of the training (i.e., round robin approach), but were included during model 
testing. Generally speaking, the XGboost models were extremely performant in predicting 
post-IMRT telomere length on entirely new patients (Figure 7A–N). Some deviations in 
performance were observed—we attribute these deviations in performance to low sample 
size. We also attempted a “leave two” and “leave three” patients out training and testing 
approach to understand the limits of generalizability for our XGBoost models (Figures 
S2A–M and S3A–L). We again found evidence of strong generalizability of the models to 
new patients. Together, these results demonstrate that the XGBoost model learned the 
nonlinear relationships between pre-IMRT individual telomere length data and three-
month post-IMRT MTLs (training dataset), and also generalized to new data (test dataset) 
and new patients with highly accurate predictions. 

Figure 6. High performance of XGBoost models for predicting post-IMRT telomeric outcomes. Three separate XGBoost
models were trained on pre-IMRT individual telomere length measurements (n = 103,040, Telo-FISH) to predict 3-month
post-IMRT telomeric outcomes. Trained XGBoost models were challenged with the test set (new data, n = 25,760 individual
telomeres) to predict 3-month post-IMRT telomeric outcomes for (A) mean telomere length, (B) numbers of short, and
(C) numbers of long telomeres. XGBoost predictions were averaged on a per patient basis for (D) mean telomere length,
(E) numbers of short, and (F) numbers of long telomeres; blue line represents a simple regression line (X/Y), lighter bands
the 95% confidence interval, R2 values (coefficient of determination) are noted in bold.

XGBoost models were then challenged to predict post-IMRT telomere length of pa-
tients whose pre-IMRT individual telomeres they were not trained on. We iteratively
trained 14 XGBoost models, where in each model one patient’s individual telomeres were
“left out” of the training (i.e., round robin approach), but were included during model
testing. Generally speaking, the XGboost models were extremely performant in predicting
post-IMRT telomere length on entirely new patients (Figure 7A–N). Some deviations in
performance were observed—we attribute these deviations in performance to low sam-
ple size. We also attempted a “leave two” and “leave three” patients out training and
testing approach to understand the limits of generalizability for our XGBoost models
(Figures S2A–M and S3A–L). We again found evidence of strong generalizability of the
models to new patients. Together, these results demonstrate that the XGBoost model
learned the nonlinear relationships between pre-IMRT individual telomere length data and
three-month post-IMRT MTLs (training dataset), and also generalized to new data (test
dataset) and new patients with highly accurate predictions.
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Figure 7. Strong generalizability of XGBoost models to new patient data (leave one out approach). (A–N) Fourteen sepa-
rate XGBoost models were iteratively trained on pre-IMRT individual telomere length measurements (n = 93,840, Telo-
FISH) excluding one patient, and tested to predict 3-month post-IMRT mean telomere length, with inclusion of the patient 
excluded during training. Each panel is one model; patients excluded during training for that model are noted in the panel 
headers and plotted in black. Lines represent a simple regression line (X/Y), lighter bands the 95% confidence interval, R2 
values (coefficient of determination) are noted in bold. 

Pre-IMRT individual telomere length data was also processed and reshaped for train-
ing separate XGBoost models to predict numbers of short or long telomeres 3-months 
post-IMRT (Figure 5, Table S1C,E). Reshaped data was split into training (80%) and test 
(20%) datasets and shuffled and stratified in an identical manner as described for MTL 
(Table S1D,F). Hyperparameters of the XGBoost models were optimized using a random-
ized search [80], and the models performance and generalizability were analyzed using 
five-fold cross validation [81] with a MAE error metric. For XGBoost models of short telo-
meres, five-fold cross validation on the full training dataset yielded an average MAE of 
236.283 with a standard deviation of 2.059 (Table S2B), while XGBoost models of long 
telomeres yielded an average MAE of 330.352 and standard deviation of 2.086, suggesting 
that both models were reasonably good at fitting the data and likely to generalize to new 
data (Table S2C). Model performance was also evaluated using variable numbers of train-
ing data (n = 100 to 103,040). Fully trained XGBoost models were challenged with predict-
ing three-month post-IMRT numbers of short or long telomeres in the test set, and predic-
tions matched the true values with an R2 value of 0.811 and 0.819, respectively (Figure 
6B,C; Table S2B,C). Averaging predictions per patient for post-IMRT numbers of short or 
long telomeres increased the R2 value to 0.877 and 0.890, respectively (Figure 6E,F). These 
results demonstrate that the XGBoost models learned the relationships between pre-IMRT 
individual telomere length data and three-month post-IMRT numbers of short or long 
telomeres (training dataset), and effectively generalized to new data (test dataset). 

  

Figure 7. Strong generalizability of XGBoost models to new patient data (leave one out approach). (A–N) Fourteen separate
XGBoost models were iteratively trained on pre-IMRT individual telomere length measurements (n = 93,840, Telo-FISH)
excluding one patient, and tested to predict 3-month post-IMRT mean telomere length, with inclusion of the patient excluded
during training. Each panel is one model; patients excluded during training for that model are noted in the panel headers
and plotted in black. Lines represent a simple regression line (X/Y), lighter bands the 95% confidence interval, R2 values
(coefficient of determination) are noted in bold.

Pre-IMRT individual telomere length data was also processed and reshaped for train-
ing separate XGBoost models to predict numbers of short or long telomeres 3-months
post-IMRT (Figure 5, Table S1C,E). Reshaped data was split into training (80%) and test
(20%) datasets and shuffled and stratified in an identical manner as described for MTL
(Table S1D,F). Hyperparameters of the XGBoost models were optimized using a random-
ized search [80], and the models performance and generalizability were analyzed using
five-fold cross validation [81] with a MAE error metric. For XGBoost models of short
telomeres, five-fold cross validation on the full training dataset yielded an average MAE
of 236.283 with a standard deviation of 2.059 (Table S2B), while XGBoost models of long
telomeres yielded an average MAE of 330.352 and standard deviation of 2.086, suggest-
ing that both models were reasonably good at fitting the data and likely to generalize to
new data (Table S2C). Model performance was also evaluated using variable numbers of
training data (n = 100 to 103,040). Fully trained XGBoost models were challenged with
predicting three-month post-IMRT numbers of short or long telomeres in the test set, and
predictions matched the true values with an R2 value of 0.811 and 0.819, respectively
(Figure 6B,C; Table S2B,C). Averaging predictions per patient for post-IMRT numbers of
short or long telomeres increased the R2 value to 0.877 and 0.890, respectively (Figure 6E,F).
These results demonstrate that the XGBoost models learned the relationships between
pre-IMRT individual telomere length data and three-month post-IMRT numbers of short
or long telomeres (training dataset), and effectively generalized to new data (test dataset).

3.5. Longitudinal Analyses of Chromosomal Instability Associated with Radiation Therapy

Directional Genomic Hybridization (dGH) is a cytogenomics-based methodology
for high-resolution detection of chromosome aberrations (CAs), including structural vari-
ants missed even by sequencing [82], particularly inversions [62,78]. We hypothesized
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that including inversions would facilitate scoring fewer metaphase spreads (n = 30/time
point/patient) [61], while also improving evaluation of individual chromosomal instability,
and thus the ability to infer patients at higher risks for secondary cancers. Many significant
differences in frequencies of IR-induced rearrangements were observed (Figure 8A–D), with
inversions occurring at the highest frequencies, consistent with expectations [62,78]. Inter-
estingly, overall average frequencies of inversions at 3-months post-IMRT were comparable
to the in vitro irradiated samples (Figure 8A). Frequencies of translocations, dicentrics, and
excess chromosome fragments (deletions) were highest after in vitro irradiation, and were
also significantly elevated immediately post-IMRT (Figure 8B–D). Significantly elevated
frequencies of translocations, dicentrics, and chromosome fragments persisted 3-months
post-IMRT (Figure 8B–D). Frequencies of sister chromatid exchanges (SCE) did not signif-
icantly change over time (Figure 8E), consistent with expectation and low linear energy
transfer (LET) radiation exposure [83,84]. Taken together, significantly elevated frequencies
of CAs 3-months post-IMRT confirmed genomic instability in the cohort [57,58,60].
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Figure 8. Longitudinal analyses of chromosomal instability. Whole blood was collected from prostate cancer patients un-
dergoing IMRT (n = 15) and chromosome aberrations assessed using directional Genomic Hybridization (dGH) on meta-
phase spreads (n = 30/patient/timepoint scored): 1 non irrad = pre-IMRT non-irradiated (0 Gy); 2 irrad @ 4 Gy = pre-IMRT 
in vitro irradiated; 3B = immediate post-IMRT; and 4C = 3-month post-IMRT. Frequencies of (A) inversions, (B) transloca-
tions, (C) dicentrics, (D) excess chromosome fragments (deletions), and (E) sister chromatid exchanges (SCE). Significance 
was assessed for average aberration frequencies using a repeated measures ANOVA and post hoc Tukey’s HSD test. p < 
0.05 *, p < 0.01 **, p < 0.001 ***. 

Figure 8. Longitudinal analyses of chromosomal instability. Whole blood was collected from prostate cancer patients under-
going IMRT (n = 15) and chromosome aberrations assessed using directional Genomic Hybridization (dGH) on metaphase
spreads (n = 30/patient/timepoint scored): 1 non irrad = pre-IMRT non-irradiated (0 Gy); 2 irrad @ 4 Gy = pre-IMRT in vitro
irradiated; 3B = immediate post-IMRT; and 4C = 3-month post-IMRT. Frequencies of (A) inversions, (B) translocations,
(C) dicentrics, (D) excess chromosome fragments (deletions), and (E) sister chromatid exchanges (SCE). Significance was
assessed for average aberration frequencies using a repeated measures ANOVA and post hoc Tukey’s HSD test. p < 0.05 *,
p < 0.01 **, p < 0.001 ***.

Significant changes in frequencies of IR-induced rearrangements also correlated with
numbers of peripheral blood lymphocytes. Longitudinal correlations between patients’
average frequencies of CAs and numbers of peripheral blood lymphocytes (all time points)
revealed strongly negative correlations (Figure S4A–D). Frequencies of inversions and
dicentrics had the highest negative correlations (R2 = −0.752, −0.751), indicating they
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were highly informative—and similar—markers for cell death. These results suggest
that patients demonstrating chromosomal instability (specifically, elevated frequencies
of inversions and/or dicentrics), also experience higher levels of cell killing (i.e., greater
radiosensitivity) consistent with previous reports [85,86].

Next, we hypothesized that clustering patients by longitudinal changes in CA fre-
quencies (all samples) would reveal groups of patients with lower or higher frequencies of
CAs, which would be indicative of individual chromosomal instability and radiosensitivity.
When clustering patients by CA type, we observed groups of patients with differential
responses only for inversions and excess chromosome fragments (deletions), which dis-
played increased frequencies immediately post-IMRT (Figure 9A,D, Figure S5A,B). We
note that the two patients with the highest post-IMRT frequencies of inversions (ID #16)
and chromosome fragments (ID #6), also had very high post-IMRT MTLs, supportive of
correlation between these informative biomarkers, and suggestive of increased risks for
secondary cancers [14–16,48] (Figures 1C and 9A,D, Figure S5A,B).
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Figure 9. Clustering of patients by chromosome aberration frequencies. Time-courses for groups of patients hierarchically
clustered into discrete groups (blue, purple) per aberration type: 1 non irrad = pre-IMRT non-irradiated (0 Gy); 2 irrad @
4 Gy = pre-IMRT in vitro irradiated; 3B = immediate post-IMRT; and 4C = 3-month post-IMRT. Clustered groups of patients
for frequencies of (A) inversions, (B) translocations, (C) dicentrics, (D) excess chromosome fragments (deletions), and
(E) aberration index, which was created by summing all aberration types. Center lines denote medians and lighter bands
denote confidence intervals.

Other CA types presented longitudinal responses that were relatively similar between
patients and did not cluster patients (Figure 9B,C and Figure S6A,B). We hypothesized that
while individual types of CAs failed to cluster patients into groups, individual patients
may show lower or higher frequencies of CAs. To determine if some patients showed a
general susceptibility to chromosomal instability, we feature engineered an ‘aberration
index’ by summing all types of CAs (less sister chromatid exchanges) (Figure 9A–D) per
cell for all time points. As indicated by the aberration index, groups of patients with lower
or higher total CA frequencies were not observed (Figure 9E and Figure S6C). These results,
together with the telomere length data, identified two patients (ID #s 6, 16) at potentially
increased risks for secondary cancers [14–16,48], and are supportive of inversions and
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deletions being more informative than other CA types for predicting IR-induced secondary
cancers, consistent with previous report [60]. While results indicate that the numbers of
cells scored were too low (n = 30) to detect significant differences in individual patient
susceptibility to chromosomal instability in general, including inversions improves power
on an individual basis.

3.6. Linear Regression Poorly Predicted Radiation-Induced Chromosomal Instability

We speculated that pre-IMRT CA frequencies could be predictive of post-IMRT fre-
quencies. Two linear regression models were made for each CA type to predict post-IMRT
frequencies; the first used only the pre-IMRT (baseline) non-irradiated sample CA fre-
quency, and the second used CA frequencies from both pre-IMRT non-irradiated and
in vitro irradiated samples. The models showed poor predictive power overall, and al-
though inclusion of the in vitro irradiated sample data improved performance overall,
both models were insufficient for predicting post-IMRT CA frequencies with confidence
(Figure 10A–E). The model for dicentrics performed best, with an R2 score of 0.514 when
using data from both irradiated and non-irradiated baseline samples. These results sug-
gest that while in vitro irradiated sample data added predictive power, the number of
cells scored per time point/patient (n = 30) was too low to enable accurate predictions of
individual patient outcomes regarding CAs frequencies post-IMRT using linear regression.

3.7. XGBoost Machine Learning Models Poorly Predicted Radiation-Induced
Chromosomal Instability

We attempted training XGBoost models using pre-IMRT (baseline) CA data to predict
post-IMRT CA frequencies. Rather than using CA data per patient, which would be
insufficient for model training (n = 15), we used pre-IMRT CA frequencies on a per cell
basis (n = 840) to predict three-month post-IMRT average CA frequencies. Pre-IMRT CA
frequency data was extensively processed prior to XGBoost model training (Figure S7;
Table S3A–D), in a nearly identical manner as described for pre-IMRT telomere length data.
The key difference was that CA data was reshaped to train XGBoost models with pre-IMRT
CA count data per cell (n = 672 cells) in order to predict three-month post-IMRT average
CA frequencies. Separate datasets and XGBoost models were created for each type of CA
(see Materials and Methods).

XGBoost models for each CA type were evaluated across their respective training
sets using five-fold cross validation [81] with a MAE metric. The cross-validation metrics
for all XGBoost models with CA data suggested a failure of the models to learn relation-
ships between pre-IMRT CA count data per cell and three-month post-IMRT average CA
frequencies (Table S4A). Furthermore, dramatic fluctuations in model performance were
noted when running multiple iterations of cross-validation, again suggesting that the
models failed to learn the relationships between the pre- and post-IMRT CA frequencies
(Table S4A–C). We attempted to improve model performance with many types of feature
engineering (e.g., Boolean features), numerical transformations, and adjustments to model
hyperparameters, none of which yielded meaningful improvements in any combination
(data not shown). Regardless of poor model performance in cross-validation, we challenged
the XGBoost models to predict post-IMRT average CA frequencies using pre-IMRT CA
count data per cell in the test set (n = 168 cells). In XGBoost model predictions for 3-month
post-IMRT CA frequencies in the test set, none of the predictions matched the true values,
with an R2 above 0.1 (Figure 10F–J, Table S4A–C). These results indicate that either the
amount of data was insufficient for training XGBoost models (n = 840 cells at pre-IMRT), or
the strategy of predicting post-IMRT average CA frequencies using pre-IMRT CA count
data per cell was inherently faulty.
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Figure 10. Neither linear regression nor XGBoost models successfully predicted post-IMRT chromosome aberration (CA)
frequencies. Ordinary least squares linear regression models were made using pre-IMRT average CA frequencies from
the non-irradiated (0 Gy) or in vitro irradiated (4 Gy) samples to predict 3-month post-IMRT average CA frequencies.
Models were made for (A) inversions, (B) translocations, (C) dicentrics, (D) excess chromosome fragments (deletions), and
(E) aberration index, which was created by summing all CA per cell. The model for dicentrics performed best, with an
R2 = 0.514. XGBoost models were trained on pre-IMRT counts of different CA types per cell (n = 672) to predict 3-month
post-IMRT average CA frequencies. Trained XGBoost models were challenged with the test set (new data, n = 168 cells)
to predict 3-month post-IMRT average CA frequencies. XGBoost predictions were averaged on a per patient basis for
(F) inversions, (G) translocations, (H) dicentrics, (I) excess chromosome fragments (deletions), and (J) aberration index. For
all models, R2 values between averaged predictions and actual values did not exceed 0.100.

4. Discussion

The response of patients to radiotherapy varies considerably. Thus, it is important
to identify radiosensitive individuals, as well as those most at risk of developing adverse
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late effects. Better prediction of a cancer patient’s individual response to radiation therapy
and risk for developing adverse late health effects remains a prime objective for the
treatment modality in general [1–7], and particularly in regard to pediatric patients [8].
Over recent years, a variety of approaches for predicting radiation late effects have been
developed [10–20], albeit with varying degrees of compromise between cost-effectiveness,
throughput, and predictive power. One particularly promising exception is the use of ML
models, which can leverage extensive amounts of patient data to make accurate predictions
of treatment outcomes [63–65,67–69].

Predicting a patient’s telomeric response to radiation therapy is of clinical interest for
predicting risks of radiation late effects, as shorter telomeres confer radiosensitivity [35]
and increase the risk of degenerative late effects (CVD and pulmonary fibrosis (Martínez
and Blasco, 2018), aplastic anemia [44]), while longer telomeres increase risk for secondary
cancers, particularly leukemias [48]. Given that telomeric responses to radiation expo-
sure can be highly dynamic [36–38,50–52] and vary between individuals (Figures 1–3), a
framework for predicting a patient’s particular telomeric responses to radiation therapy is
essential for utilizing telomere length as an informative biomarker of radiation late effects
and secondary cancers. Here, we demonstrate the feasibility of using ML to accurately
predict an individual patient’s telomeric response to radiation therapy. We successfully
implemented individual telomere length data in a machine learning model, XGBoost, for
highly accurate predictions of post-IMRT telomeric outcomes (Figures 5 and 6; Table S3).
The ML models and Telo-FISH methods used are fully available, providing a valuable
resource for continued research into telomere length as a biomarker for radiation late effects
associated with any manner of exposure.

The possibility of improving assessment of chromosomal instability and associated risk
for development of secondary cancers following radiation therapy [14–16] was explored
utilizing dGH, which facilitated inversion detection at higher resolution than traditional
cytogenetic assays [62,78]. Indeed, inversions were observed at higher frequencies than
other types of CAs both before and after radiation therapy (Figure 8A), consistent with prior
reports [62,78]. Groups of patients with increased frequencies of chromosomal inversions
and excess fragments (deletions), previously proposed signatures of radiation-induced
cancers [60], were also observed 3-months post-IMRT (Figure 9A,D). Two patients from
these groups had very high MTLs 3-months post-IMRT as well, also supportive of increased
risks for secondary cancers [14–16,48]. We attempted to derive some predictive value from
CA data with linear regression and XGBoost implementations, however, neither approach
was successful. Even with the inclusion of inversions, the low numbers of cells scored per
patient likely subverted successful predictions from the data.

Although we were unable to predict post-IMRT CA frequencies, the strong correlations
between patients’ average frequencies of CAs and changes in peripheral blood lymphocyte
counts associated with IMRT supported the value of inversions for evaluating chromosomal
instability. Inversions and dicentrics in particular had strong, negative correlations with
lymphocyte cell counts (R2 = −0.752, −0.751) (Figure S1A,B). Thus, patients with higher
levels of radiation therapy-induced chromosomal instability also experienced increased
levels of cell death, i.e., they exhibited individual radiosensitivity [85,86].

Relationships between peripheral blood cell count data and MTL were also observed.
Counts of peripheral WBCs were negatively correlated with MTL associated with IMRT
(R2 = −0.126), supportive of shorter telomeres contributing to cell killing and individual
radiosensitivity (Figure S1A). When parsing WBCs by sub-type, a stronger negative re-
lationship between MTL and lymphocyte counts was seen (R2 = −0.294). When parsing
lymphocytes by sub-type and correlating MTL with the proportions of cell-types, positive
correlations with NK and CD4 cells (R2 = 0.408, 0.282), and negative correlations with CD8
and CD19 cells (R2 = −0.251, −0.288) were observed. These results support our previously
proposed supposition that the observed changes in MTL associated with radiation exposure
could be at least partially due to cell killing and associated changes in peripheral blood
lymphocyte cell populations [78,79].
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Longitudinal assessment of individual telomere lengths by Telo-FISH in cancer pa-
tients undergoing IMRT facilitated demonstration of XGBoost as the ML model of choice
for predicting telomeric outcomes post-IMRT. Given the notion that risks for radiation
late effects occur on a spectrum [1–8], and the differential telomeric responses between
individuals and radiation modalities, we posit that the true range of telomeric responses
for radiation therapy patients in general is much broader than those observed here in this
prostate cancer cohort (Figures 1–3). Thus, while our XGBoost models effectively general-
ized to new data within our experimental design (similar patient sex, radiation modality,
cancer type, etc.), it is unlikely that our trained models, in their current iteration, would
generalize to data collected under different experimental or clinical parameters. Moreover,
with regard to measurement of individual telomere lengths for training XGBoost models,
Telo-FISH could readily be interchanged with comparable assays (Q-FISH, flow-FISH),
which would provide higher throughput. Additionally, the ML approaches described here
were not strictly dependent upon XGBoost, and could be conducted using other machine
learning models and frameworks (e.g., random forests, kNN). Our paradigm of training
ML models with individual telomere length data for prediction of post-IMRT telomeric
outcomes provides improved predictive power and novel insight into individual radiosen-
sitivity and risk of radiation-late effects, as well as a general framework that could be
implemented for radiation therapy patients regardless of cancer type, radiation modality,
or individual patient sex or genetic susceptibilities.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-4
426/11/3/188/s1, Figure S1. Correlations between telomere length, peripheral white blood cells,
and lymphocytes, Figure S2. Strong generalizability of XGBoost models to new patient data (leave
one out), Figure S3. Strong generalizability of XGBoost models to new patient data (leave two out),
Figure S4. Correlations between chromosome aberrations and lymphocyte cell counts, Figure S5.
Clustering of patients by inversions and excess chromosome fragments (deletions), Figure S6. Chro-
mosome aberration frequencies generally failed to cluster patients, Figure S7. Processing of chro-
mosome aberration data for XGBoost models, Table S1. Examples of individual telomere length
data matrices used to train XGBoost models, Table S2. Metrics of XGBoost models for predicting
post-IMRT telomeric outcomes, Table S3. Examples of chromosome aberration data matrices used
to train XGBoost models, Table S4. Metrics of trained XGBoost models for predicting post-IMRT
chromosome aberration frequencies.
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