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A major challenge of obesity therapy is to sustain clinically relevant weight loss over time.
Achieving this goal likely requires both reducing daily caloric intake and increasing caloric
expenditure. Over the past decade, advances in pharmaceutical engineering of ligands
targeting G protein-coupled receptors have led to the development of highly effective
anorectic agents. These include mono-agonists of the GLP-1R and dual GIPR/GLP-1R
co-agonists that have demonstrated substantial weight loss in experimental models and in
humans. By contrast, currently, there are no medicines available that effectively augment
metabolic rate to promote weight loss. Here, we present evidence indicating that
activation of the GCGR may provide a solution to this unmet therapeutic need. In adult
humans, GCGR agonism increases energy expenditure to a magnitude sufficient for
inducing a negative energy balance. In preclinical studies, the glucagon-GCGR system
affects key metabolically relevant organs (including the liver and white and brown adipose
tissue) to boost whole-body thermogenic capacity and protect from obesity. Further,
activation of the GCGR has been shown to augment both the magnitude and duration of
weight loss that is achieved by either selective GLP-1R or dual GIPR/GLP-1R agonism in
rodents. Based on the accumulation of such findings, we propose that the thermogenic
activity of GCGR agonism will also complement other anti-obesity agents that lower body
weight by suppressing appetite.

Keywords: glucagon-receptor (GCGR), G protein-coupled receptor (GPCR), energy balance, obesity, weight loss
BACKGROUND

The metabolic actions of the hormone glucagon are transduced via the glucagon receptor (GCGR), a
477 amino acid, cell membrane-spanning protein (1, 2) belonging to the diverse superfamily of G
protein-coupled receptors (GPCRs). In addition to possessing a signature transmembrane region
consisting of seven membrane spanning alpha helices, the GCGR contains a large N-terminal
extracellular domain that aides in glucagon recognition for receptor binding. Phylogenetically, this
unique structural feature places the GCGR in the ‘Secretin’ sub-family of GPCRs (3), a small group
of 15 peptide hormone receptors named in recognition of the secretin receptor, as its sequence was
the first member determined (4). The GCGR is coupled to the GS heterotrimeric G protein, and
upon glucagon binding, the receptor catalyzes the exchange of GDP for GTP, leading to the
dissociation of GaS from Gbg and activation of adenylyl cyclase. This then catalyzes the conversion
n.org April 2022 | Volume 13 | Article 8680371

https://www.frontiersin.org/articles/10.3389/fendo.2022.868037/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.868037/full
https://www.frontiersin.org/articles/10.3389/fendo.2022.868037/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:samms_ricardo_j@lilly.com
mailto:sloop_kyle_w@lilly.com
https://doi.org/10.3389/fendo.2022.868037
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2022.868037
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2022.868037&domain=pdf&date_stamp=2022-04-25


Conceição-Furber et al. Glucagon Action in Metabolic Rate
of ATP to cAMP, the primary second messenger that mediates
glucagon signaling. The GCGR is abundantly expressed in
hepatocytes of the liver, but its mRNA is also detected in cell
types of the brain, pancreatic islets, adipose tissue, the kidney,
and intestinal smooth muscle (5).

Historically, the most widely studied function of the
glucagon-GCGR axis has been its role in maintaining
euglycemia in response to an overnight fast. This is largely a
protective function, where in response to a decrease in blood
glucose, glucagon is released from pancreatic alpha cells into the
hepatic portal vein, thereby quickly reaching hepatocytes and
stimulating endogenous glucose production. This occurs through
the binding of glucagon to the GCGR, stimulation of the adenylyl
cyclase-cAMP system (6), and a subsequent activation of the
protein kinase A pathway to stimulate glycogenolysis and
gluconeogenesis while simultaneously inhibiting glycogen
synthesis (7). Thus, due to its fundamental role in promoting
hepatic glucose production, therapeutic strategies aimed at both
activating the GCGR to acutely rescue from hypoglycemia and at
blocking glucagon-mediated hyperglycemia for the treatment of
type 2 diabetes (T2D) have been pursued (8).

Ground-breaking work from Roger Unger and colleagues
showed that the disruption of the glucagon-insulin bi-hormonal
relationship may contribute to hyperglycemia in the diabetic
condition (9). The concept was further supported by the
discovery that patients with T2D often have higher
concentrations of circulating glucagon compared with normo-
glycemic individuals (10). Work characterizing the phenotype of
Gcgr knockout mice (11, 12) and various therapeutic modalities
targeting the glucagon-GCGR system to lower glucose in an array
of preclinical rodent models (13–15) produced results that
supported discovering agents to block glucagon action as a way
to reduce hyperglycemia. However, although several GCGR
antagonists have entered clinical development for the treatment
of T2D, to date, none have advanced to regulatory approval (16).

Intriguingly, the glucagon-GCGR axis is also subject to
investigational efforts aimed at exploiting the long-term effects
of activating the GCGR. The potential therapeutic advantage of
GCGR agonism is supported by other foundational studies
showing that the infusion of glucagon can have beneficial
effects on lipid and bile acid metabolism, and most
importantly, on increasing energy expenditure in adult
humans. Thus, the GCGR agonist approach may have utility in
treating obesity and possibly other metabolic conditions such as
non-alcoholic steato-hepatitis (NASH). To reduce the risk of
inducing hyperglycemia by GCGR signaling, GCGR agonism has
been combined with other mechanisms, such as glucagon-like
peptide-1 receptor (GLP-1R) agonism (17–19) and glucose-
dependent insulinotropic polypeptide receptor (GIPR) agonism
(20), both of which stimulate insulin secretion upon the elevation
of blood glucose. In addition to controlling glycemia, since both
GLP-1R mono- and GIPR/GLP-1R dual agonism reduce body
weight largely by decreasing caloric intake, the combination with
an energy expenditure agent like a GCGR agonist should offer
complementary metabolic benefits. The article herein discusses
the key attributes of GCGR activation to promote and possibly
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maintain body weight loss, highlighting key mechanisms of
GCGR agonism that make it an attractive partner for pairing
with other therapeutic approaches in the complex treatment
of obesity.
CAVEATS OF WEIGHT LOSS INDUCED BY
REDUCING CALORIC INTAKE

The prevalence of obesity has dramatically increased in the past
50 years (21, 22), placing major economic and operational strains
on healthcare systems worldwide (23, 24). Driven by increased
caloric intake relative to expenditure [see Box 1 (25)], the
management of obesity is often stigmatized due to the notion
that excess body weight is caused by gluttony and sloth (26).
However, obesity is a chronic disease that occurs frequently in an
obesogenic environment, in genetically susceptible individuals,
likely due to a dysregulation of the neuronal circuits that regulate
body weight at a pre-defined healthy set-point (27–29). Yet,
although our understanding of the central and peripheral
pathways that regulate energy homeostasis and control
metabolic rate have substantially increased (29, 30), current
approaches employed to combat excess adiposity are focused
primarily on reducing daily caloric intake (31–34). However,
although effective in the short-term (35), inducing a negative
energy balance by reducing daily food intake faces a significant
challenge posed by a natural physiological defense system (see
Box 1) that has evolved to protect against major weight loss
(35–37). Specifically, reducing body weight by decreasing caloric
intake often leads to increased hunger, lowered sensitivity to
satiety factors (increasing meal frequency and/or meal size), and
a reduced resting metabolic rate (metabolic adaptation) that is
greater than expected for the amount of fat and fat-free mass that
is lost (38–41). Together, this increased drive to feed in a
situation of reduced caloric expenditure plays a key role in
driving the body weight regain that often occurs in response to
dietary intervention programs (36). Therefore, it is imperative to
identify agents that both suppress appetite and increase whole-
body metabolic rate, both in a state of energy surplus, and in the
face of a negative energy balance (see Box 1). Taking this
approach should not only maximize the magnitude of weight
loss, but more importantly the duration of reduced body weight.
GCGR AGONISM AS A WEIGHT LOSS
PARTNER OF GLP-1R BASED
THERAPEUTICS

Although GLP-1R agonist based technologies have expanded the
obesity medication toolbox over the past decade (43–45), it is
important to note that anorectic agents are governed by the same
laws of energy balance (see Box 1) as dietary intervention
induced weight loss, such that metabolic adaptation (reduced
resting metabolic rate) may still present a major barrier to
achieving prolonged weight loss (37, 46–48). Thus, although
April 2022 | Volume 13 | Article 868037

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Conceição-Furber et al. Glucagon Action in Metabolic Rate
there is some evidence that the activation of the GCGR can curb
appetite (49, 50), the predominant benefit of adding this
mechanism to either GLP-1R agonism or dual GIPR/GLP-1R
agonism likely lies in its ability to increase energy utilization (20,
51–54).

Over the past 60 years (see Figure 1), a considerable amount
of evidence has accumulated to suggest that glucagon is a highly
effective thermogenic agent (55), capable of inducing a negative
energy balance by rapidly activating energy wasting pathways
and enhancing thermogenic capacity to increase whole-body
caloric expenditure in both states of energy surplus and deficit.
Clinically, infusion of glucagon (45 min to 13 hours, 6-50 ng/kg/
min) increases energy expenditure in the fed state in lean,
overweight, and obese participants (56, 57), although it has
also been reported that sub-chronic administration of glucagon
(72-hours, 25 ng/kg/min) failed to impact energy utilization (58).
Frontiers in Endocrinology | www.frontiersin.org 3
Preclinically, the robustness of glucagon’s thermogenic activity is
exemplified by its ability to increase energy expenditure across
multiple species, including mice, rats, penguins, pigs, and dogs
[see Figure 1 (59–62)], and by findings showing that the
administration of glucagon reduces body weight in already
obese animals and protects from diet-induced obesity in mice
and rats (17, 20, 54, 63). Further, the therapeutic potential of the
thermogenic activity of glucagon is validated by studies showing
that GCGR activation boosts the magnitude of weight loss
achieved by both selective GLP-1R and dual GIPR/GLP-1R
agonism in obese animals due to an induction of whole-body
metabolic rate (20). Thus, glucagon is a highly effective
thermogenic agent that increases energy expenditure across
multiple species including adult humans.

In response to weight loss, resting energy expenditure is
reduced on average by 30 kcal/kg/day or 300 kcal/10 kg (10%
FIGURE 1 | Key Discoveries Highlighting the Thermogenic Activity of Glucagon Receptor Agonism Preclinical Models and Man. Glucagon (GCG), energy
expenditure (EE), brown adiose tissue (BAT, white adipose tissue (WAT), glucagon-like peptide 1 receptor (GLP-1R).
BOX 1 | ENERGY BALANCE

The first law in thermodynamics states that energy is neither created nor destroyed, but it can be converted into different forms. This applies to human physiology, energy
intake must equal energy expended for body weight to remain stable (42). The term ‘energy balance’ is used to describe this metabolic equilibrium (42), and since humans
have a low capacity to store adenosine triphosphate (ATP), regulatory systems have evolved to regulate body weight and control energy intake, and expenditure (29).
Following the consumption of a meal (postprandial state), ingested energy is stored as glycogen primarily in the liver and skeletal muscle and as triglyceride in
subcutaneous white adipose tissue (WAT). The oxidation of glucose and lipids occurs primarily in mitochondria, where upon entry of acetyl-CoA into the TCA cycle, energy
substrates (NADH and FADH) carry protons/electrons to the electron transport system for generating an electrochemical gradient that is utilized by ATP synthase in the
presence of oxygen to convert adenosine diphosphate (ADP, signals energetic need) into ATP (the energy currency of the cell). Total daily energy expenditure can vary
greatly between individuals, depending on differences in resting metabolic rate (amount of energy needed to fuel the body at rest), the thermic effect of food (energetic cost
of absorbing and metabolizing nutrients), and differences in levels of physical activity (42). Thus, if nutrient intake exceeds that of caloric expenditure, excess energy is
stored as fat, while prolonged periods of energy restriction result in weight loss. To maintain energy balance (body weight) within healthy limits, the brain senses, monitors,
and integrates circulating signals (metabolic, hormonal, and neuronal) of short- and long-term energy levels and adjusts energy intake and expenditure accordingly (42).
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weight loss in a 100 kg individual) (40, 41, 64), presenting a
major challenge to achieving prolonged weight loss. Importantly,
the administration of glucagon is still capable of augmenting
metabolic rate following an overnight fast (or state of energy
deficit) in adult humans and experimental models of obesity (51,
60, 65–67). In humans, acute infusion of glucagon (45 min to 210
min, 3-50 ng/kg/min) raises caloric expenditure on average by
200 kcal/day in lean and obese fasted subjects (51, 52, 68), and
administration of glucagon increases metabolic rate in fasted
preclinical models (60, 65, 66). Thus, with rodent studies
indicating that the effect of glucagon on energy utilization
progressively increases over time due to an enhancement of
thermogenic capacity (54, 69), it is hypothesized that chronic
GCGR agonism is sufficient to counter the reduced metabolic
rate that occurs following weight loss. Indeed, administration of
glucagon increases energy expenditure in the presence of GLP-
1R agonism in obese humans (57), and glucagon activation
augments metabolic rate and stimulates a right-shift in the
weight loss curve induced by selective GLP-1R and dual GIP
and GLP-1 receptor agonism in obese mice (17, 20). Further,
there is evidence supporting the translation of this pharmacology
in early clinical trials (70–72).

In summary, the studies presented above highlight the ability of
GCGR activation to raise metabolic rate in both fed and fasted
conditions, and further validate the glucagon-GCGR axis as an
attractive therapeutic mechanism to pair with obesity medications
that reduce body weight by suppressing caloric intake.
Importantly, GCGR agonism appears to stimulate weight loss by
rapidly activating pathways that function to waste energy and by
targeting key metabolically relevant organs to augment
thermogenic capacity. Together, these effects not only boost the
magnitude of weight loss achieved but also prolong the duration of
reduced body weight.
TARGETING THE GCGR TO INCREASE
THERMOGENESIS

A prerequisite for a therapeutic agent that effectively increases
whole-body metabolic rate is the ability to both activate existing
thermogenic machinery and increase thermogenic capacity (73).
In line with these criteria, glucagon targets several metabolically
relevant organs to both activate pathways that function to waste
energy and to stimulate the production of thermogenic
machinery (see Figure 2). Below we outline the proposed
target organs and mechanisms by which glucagon action
increases caloric expenditure.
GLUCAGON TARGETS THE LIVER TO
INCREASE METABOLIC RATE

The liver plays an essential role in the regulation of glycemic
control, lipid homeostasis, and energy balance (74). The
hepatocyte is the major metabolic cell type in the liver and is
characterized by high expression of enzymes associated with
Frontiers in Endocrinology | www.frontiersin.org 4
glucose, lipid and amino acid metabolism, the dense presence of
mitochondria, and the production of hormones (hepatokines)
that impact systemic energy homeostasis (74, 75). Due to its high
metabolic activity, the liver accounts for approximately 17% of
basal metabolic rate, and as highlighted by liver-specific
uncouplers, it has the capacity to further impact total energy
expenditure to induce a negative energy balance (76, 77). The
GCGR is expressed by hepatocytes (5), where in addition to
regulating hepatic glucose production, GCGR signaling reduces
liver fat content by inducing lipid oxidation, augmenting
metabolic enzyme activity, enhancing mitochondrial function,
and increasing liver-specific metabolic rate (54, 78–80). The
importance of the liver in mediating the anti-obesity action of
glucagon administration is exemplified by findings in liver-
specific knockout models, where the absence of the GCGR
ablates the ability of glucagon to induce weight loss (54, 81).
Together, these studies demonstrate that glucagon action
augments energy expenditure and drives weight loss by GCGR
activation in the liver; mechanistically, this is due to farnesoid X
receptor (FXR)-mediated hepatic futile cycling (see Box 2), the
secretion of the hepatokine fibroblast growth factor 21 (FGF21)
and an induction of plasma levels of bile acid (BA) species known
to impact energy homeostasis (54, 63). Treatment of obese mice
with a long-acting GCGR agonist increased systemic levels of
cholic acid, a BA species that elevates caloric expenditure
through brown-fat thermogenesis (54, 82). Further, BAs are
ligands for the FXR, a nuclear receptor known to regulate both
adipogenesis and adaptive thermogenesis in response to both
fasting and cold exposure in mice (83). Importantly, absence of
hepatic FXR nullifies the effect of GCGR agonism on metabolic
rate, fatty acid oxidation, and weight loss (54). In addition to its
effect on BAs/FXR, glucagon rapidly and dose-dependently
increases hepatic mRNA expression and circulating levels of
the thermogenic hormone FGF21 in mice and adult humans (63,
84). Notably, FGF21 and the FGF21 receptor complex (FGFR1c
and KLB) knockout mouse models indicate that glucagon
requires the FGF21 pathway to protect from obesity (54, 63,
81). Mechanistically, FGF21 acts via both central and peripheral
mechanisms to leverage the energy-burning power of white and
brown adipose tissue to augment metabolic rate in both a UCP1-
dependent and -independent manner [see Box 2 (85–88)].
ACTIVATION OF THE GCGR LEVERAGES
THE THERMOGENIC ACTIVITY OF BAT

Brown adipose tissue (BAT) is a highly metabolically active organ
characterized by an abundance of the thermogenic protein
uncoupling protein 1 (UCP1), which uncouples the
mitochondrial electrochemical proton gradient, thereby releasing
energy as heat (see Box 2), (92). To augment metabolic rate, BAT
combusts both stored and circulating energy substrates, including
glucose, lipids, and amino acids (97, 98). Therefore, with the re-
discovery of BAT in adult humans (73), and clinical studies
highlighting the importance of BAT to metabolic health (99),
harnessing the energy-wasting capacity of BAT has potential for
the treatment of obesity and its associated comorbidities in adult
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humans (100). In addition to utilizing the thermogenic activity of
BAT via the action of FGF21, studies performed since the late 1960s
have shown that glucagon has the potential to directly signal in
brown fat to augment metabolic rate (101–103). The GCGR is
expressed in BAT (104), and the thermogenic capacity of GCGR
activation is highlighted by some (105), but not other (104) loss of
functionmousemodels, where absence of glucagon activity impairs
adaptive thermogenesis (104, 105). Pharmacologically, the ability of
glucagon to utilize the thermogenic capacity of BAT is
demonstrated by studies showing that it promotes brown fat
respiration and heat production (101, 103, 104). Further, in BAT
explants, glucagon stimulates free fatty acid (FFA) release,
augments lipid oxidation, and increases oxygen consumption [see
Figures 1, 2 (101, 104)]. In vivo, in preclinical models, the
administration of glucagon augments BAT blood flow (helping
ensure optimal nutrient and oxygen delivery), stimulates BAT heat
production, increases core body temperature, and rapidly increases
energy expenditure in mice housed in thermal neutral (27-30°C)
conditions (103, 104, 106).Mechanistically, glucagon recruits BAT-
induced non-shivering thermogenesis via both the activation of
UCP1 in existing thermogenic adipocytes, and the generation of
new brown adipocytes and/or the production of new thermogenic
machinery (69, 104, 105). Under non-stimulated conditions, UCP1
is inhibitedbypurinenucleotides (92).However, in response to cold
exposure (or thermogenic stress), this inhibition is overcome and
Frontiers in Endocrinology | www.frontiersin.org 5
UCP1 isactivatedby long-chain fatty acids that are released through
norepinephrine induced lipolysis (92, 107). In accordance, the
administration of glucagon rapidly increases whole-body
metabolic rate in vivo, and stimulates lipid breakdown, fatty acid
oxidation, and oxygen consumption rates in brown-fat explants
(101, 102). Thus, glucagon may leverage the classical adrenergic
pathway toactivateUCP1activity and stimulatewhole-bodyenergy
expenditure. Further, glucagon appears to increase the thermogenic
capacity of BAT by promoting de novo adipogenesis, driving
mitochondrial biogenesis, and stimulating the expression of
metabolic and thermogenic genes [see Figure 2 (69, 104, 108)].
GLUCAGON INDUCES THE BROWNING
OF WAT

In addition to classical BAT, brown-like (or beige) adipocytes
can develop in WAT, via a process known as the browning of
WAT [see Box 2 (109)]. These thermogenically competent
adipocytes arise from beige adipocyte progenitor cells via de
novo adipogenesis and/or through the transdifferentiation of
exiting white adipocytes (109). Importantly, activation of beige
adipocytes expends energy by both UCP1 non-shivering
thermogenesis and the induction of metabolic futile cycling
[see Box 2 (89)]. Interestingly, glucagon has been reported to
FIGURE 2 | Schematic representation of the proposed mechanism(s) by which glucagon receptor (GCGR) activation augments metabolic rate and drive weight loss.
Glucagon (GCGR)-GCGR agonism contributes to anti-obesity strategies that employ low caloric intake (satiety agents) by augmenting of metabolic rate. Glucagon-
GCGR activation increases whole-body energy expenditure by the activation of hepatic futile cycling, and the secretion of thermogenic agents fibrolast growth factor
21 (FGF21) and bile acids (BA) from the liver. Further, GCG-GCGR agonism increases caloric expenditure to protect from obesity, by leveraging the energy wasting
activity of uncoupling protein 1 (UCP1) in brown adipose tissue and UCP1-dependent and-independent futile cycling in white adipose tissue. Beta-klotho(KLB),
fibroblast growth factor receptor 1 (FGFR1), farnesoid X receptor (FXR), sympahetic nervous system (SNS).
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induce metabolic rate in the absence of classical BAT recruitment
in preclinical models and man (52, 62, 66). Specifically, the
administration of glucagon increases metabolic rate in adult
humans without activating brown fat (52), and in experimental
models (pigs and dogs) without functional BAT (62, 66). In
addition, glucagon treatment increases energy expenditure in
UCP1 knockout mice and in BAT-specific glucagon receptor null
mice (104). These findings have led to the suggestion that
glucagon may not require brown fat to augment metabolic
rate. However, classical brown adipocytes derive from a
distinct progenitor cell [myogen factor 5 positive (Myf5-
positive)] from that of most beige adipocytes (Myf5-negative)
(110). Thus, although glucagon may not require brown fat per se,
it may still leverage the thermogenic capacity of beige adipose
tissue. Indeed, the GCGR is expressed in WAT, and it is
noteworthy that glucagon stimulates lipid breakdown, fatty
acid oxidation, and induces oxygen consumption rates in
WAT explants, and it promotes the expression of thermogenic
genes in WAT (108, 111). Together, these findings lead to the
intriguing hypothesis that glucagon augments metabolic rate by
promoting the browning of WAT and the induction of UCP1-
independent metabolic futile cycles (see Figure 2).
GCGR AGONISM FULFILLS AN UNMET
THERAPEUTIC NEED

The primary objective of an effective weight loss program is to
deliver clinically meaningful weight loss over the long-term
(112). To achieve this goal there is a need to target both sides
of the energy balance equation to reduce energy intake and
increase caloric expenditure (42). Over the past 20 years, the
impressive weight loss induced by bariatric surgery (113),
the effectiveness of the GLP-1R agonist drug class (43, 44), and
the emerging benefits of dual GIPR/GLP-1R agonism (114) have
helped fuel major interest in understanding how the periphery of
Frontiers in Endocrinology | www.frontiersin.org 6
the body communicates with the brain to suppress appetite
(113). Together, this has led to an increase in the number of
potential anorectic agents (e.g., analogues of PYY, GDF-15,
Amylin, Amylin/Calcitonin dual agonists, etc.) under
investigation for the treatment of obesity and T2D (44). By
contrast, despite seminal discoveries in the field of adipocyte
bioenergetics in particular (73, 89, 109), there are currently no
effective thermogenic-based medications approved for the
treatment of obesity. Here, we have presented GCGR
activation as a potential solution to this unmet therapeutic
need. Firstly, GCGR agonism rapidly activates energy
expenditure in adult humans, and it increases thermogenic
capacity and metabolic rate to drive weight loss in preclinical
models of obesity. Secondly, glucagon targets several key
metabolic organs to mediate its whole-body thermogenic
activity. And finally, activation of the GCGR both increases the
magnitude and duration of the weight loss achieved by selective
GLP-1R and dual GIPR/GLP-1R agonism in rodents. Thus, it is
anticipated that GCGR activation may become a trail blazer in
the field of thermogenic therapeutics, not only enhancing the
weight loss profile of current therapies, but also that of other
anti-obesity medications that function by reducing daily
caloric intake.
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BOX 2 | THE THERMOGENIC ADIPOCYTE

Beyond exercise, there are two primary ways of augmenting energetic demand (by increasing ADP availability) and increasing whole-body metabolic rate; 1) direct
induction of mitochondrial proton leak, and 2) stimulation of metabolic futile cycling (89, 90). Although exercise is effective in the short-term as a weight loss approach,
adherence is problematic, and therefore, exercise programs are often ineffective. In addition to the energy storage reservoir of WAT, there are two types of thermogenic
adipose tissue in mammals: classical brown and inducible beige fat (91). Brown adipocytes are highly metabolically active cells characterized by multi-locular lipid droplets,
high thermogenic capacity, the expression of uncoupling protein 1 (UCP1), an enriched number of mitochondria, and the presence of highly expressed metabolic and
thermogenic genes (92). The primary physiological role of brown adipose tissue (BAT) is to defend body temperature in response to cold exposure, where UCP1
uncouples the mitochondrial electrochemical protein gradient, bypassing ATP synthase and releasing energy as heat (92). In rodents and newborn humans, BAT is
located in defined anatomical regions, including the interscapular and perirenal BAT depots, while in adult humans, interscapular BAT is replaced by brown fat depots
located in the cervical, supraclavicular, axillary, and paravertebral regions (93). In addition to classic BAT, a second type of thermogenic adipocyte can emerge in
subcutaneous white adipose tissue (WAT); this has been demonstrated to occur in response to cold exposure, b3 adrenergic agonist treatment, and several metabolic
hormones (93). These so-called “inducible,” “beige,” or “brown-in-white” (BRITE) adipocytes arise from a unique developmental origin versus that of the classical brown fat
and are recruited via a process known as the browning of WAT (93). Here, beige preadipocyte/progenitor cells differentiate and/or mature white adipocytes trans-
differentiate into thermogenically competent fat cells (94). Like brown adipocytes, beige adipocytes are exemplified by a high oxidative/thermogenic capacity, the
expression of UCP1, a high mitochondrial density, and the presence of highly expressed metabolic/thermogenic genes (89). However, in addition to utilizing the
thermogenic activity of UCP1, beige adipocytes can bypass the mitochondrial electrochemical proton gradient and waste energy as heat through the induction of
metabolic futile cycles (when ATP consuming pathways run simultaneously in opposite directions, releasing energy as heat), including the creatine, succinate, and lipid
dependent substrate cycles (89). Importantly, leveraging the thermogenic action of brown and beige fat offers potential for the treatment of obesity and its associated
comorbidities. Indeed, a recent study demonstrated that the presence of BAT in adult humans is associated with protection from metabolic diseases (95). Of further note,
in both preclinical models and adult humans, cold-induced recruitment of BAT activity lowers body weight (96).
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