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Abstract

Background and Aims: Hepatopulmonary syndrome (HPS) 
is characterized by arterial oxygenation defects due to pul-
monary vascular dilation in liver disease. To date, liver trans-
plantation remains the only effective treatment for HPS. This 
study aimed to explore the preventative role of baicalein in 
HPS development. Methods: Sixty male rats were randomly 
assigned to three groups: sham, common bile duct ligation 
(CBDL), and baicalein, receiving intraperitoneal injections of 
baicalein (40 mg·kg−1·d−1, diluted in saline) for 21 days. Sur-
vival rate, liver and kidney function, and bile acid metabolism 
levels were evaluated. Liver and lung angiogenesis and he-
patic glycogen staining were assessed, and the expression of 
relevant proteins was evaluated by immunohistochemistry. 
Results: Baicalein improved survival rates and hypoxemia 
in rats post-CBDL, reducing angiogenic protein levels and 
enhancing glucose homeostasis. Compared to the untreated 
group, baicalein suppressed the expression of vascular en-
dothelial growth factor, placental growth factors, matrix met-
alloprotease 9 and C-X-C motif chemokine 2, and it increased 
the expression of glycemic regulatory proteins, including 
dipeptidyl peptidase-4, sirtuin 1, peroxisome proliferator-
activated receptor gamma co-activator 1α, and 6-phospho-

fructo-2-kinase/fructose-2,6-biphosphatase 3. Conclusion: 
Baicalein significantly improves hepatic function and hypoxia 
in HPS rats by attenuating pathological angiogenesis in the 
liver and lungs, showing promise as a treatment for HPS.
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Introduction
Chronic liver disease (CLD) is responsible for approximately 
2 million deaths annually worldwide, with 1 million of these 
deaths attributed to complications arising from cirrhosis. This 
contributes to a significant disability burden and an increase 
in healthcare utilization.1 Hepatopulmonary syndrome (HPS) 
manifests in 5% to 30% of adults with liver disease,2 sig-
nificantly impacting the median survival rate of patients with 
CLD compared to those without HPS: (10.6% vs. 40.8%, 
p<0.05).3 HPS is characterized by a clinical trial of CLD, in-
trapulmonary vasodilation, and abnormal arterial oxygena-
tion.4 Presently, liver transplantation is the only effective 
treatment for HPS.5

In recent years, research has focused on the role of vas-
cular tone, monocyte infiltration, and extra-hepatic angio-
genesis in developing HPS.6,7 Treatments targeting these 
mechanisms, such as pentoxifylline, methylene blue, and 
sorafenib, have been validated in experimental models but 
have shown limited benefit in clinical settings.5,8 Methylene 
blue, a vasoconstrictor inhibiting the cyclic di-GMP pathway 
has been explored as a treatment option.9 However, its ad-
ministration has not increased PaO2 levels in HPS patients.10 
Sorafenib, which targets PLGF, has been reported to effec-
tively reduce pathological pulmonary angiogenesis in HPS 
experimental models.6,11 However, it has shown inefficacy 
in HPS patients.12 Pentoxifylline, through the inactivation of 
protein kinase B (AKT), inhibits pulmonary angiogenesis, but 
its non-selective nature may restrict clinical use. Insights 
from translational research in HPS highlight the urgent need 
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for treatments that address both liver fibrosis and pulmonary 
injury while minimizing side effects.5,13

Scutellaria baicalensis Georgi, known for its hepatoprotec-
tive properties, has been utilized in traditional Chinese medi-
cine for thousands of years to treat liver diseases. Baicalein 
(BAL, 5,6,7-trihydroxy-2-phenyl-4H-chromen-4-one), a fla-
vonoid compound derived from the roots of Scutellaria bai-
calensis Georgi (Fig. 1A), offers a broad spectrum of health 
benefits, including antioxidant, anti-inflammatory, antimi-
crobial, and hepatoprotective effects.14 Baicalein accelerates 
liver recovery post-injury by reducing levels of inflammatory 
cytokines such as Interleukin-6 (IL-6) and tumor necrosis 
factor-alpha (TNF-α) and activating signal transducer and 
activator of transcription-3 for liver regeneration.15,16 More-
over, baicalein has been found to bind directly to Toll-like 
receptor 4 (TLR4), inhibiting the TLR4/Hypoxia-inducible fac-
tors (HIF-1α)/VEGF signaling pathway,17 thereby attenuat-
ing lung injury by reducing TNF-α production and modulating 
anti-apoptotic signals.18,19 Baicalein also improves glucose 
metabolism by inhibiting hepatocyte gluconeogenesis via the 
InsR/IRS-1/PI3K/AKT pathway.20 Notably, high oral doses of 
baicalein (100–2,800 mg) have been deemed safe and well-
tolerated in healthy subjects, suggesting its potential as a 
viable natural product for clinical applications.21 This study 

explores baicalein’s liver-protecting mechanisms and its 
therapeutic effect on HPS models induced by CBDL.

Methods

Animal experimentation
Specific-pathogen-free Sprague-Dawley male rats weigh-
ing 230 to 330 g were acquired from the Laboratory Ani-
mal Center of the Third Military University. The experimental 
protocols were approved by the Animal Research Commit-
tee of the Chongqing Traditional Chinese Medicine Hospital 
(2021-DWSY-ZZY). The establishment of HPS in rats was 
achieved through CBDL, as previously described.22 Baicalein, 
verified by HPLC to be greater than 98% pure (CAS#491-
67-8), was sourced from Yuanye Bio-Technology, China, and 
subsequently diluted in saline. According to Figure 1B, rats 
were systematically assigned to one of three groups: a sh-
am-operation group (wherein the abdomen was opened and 
the common bile duct was exposed but not ligated, n=10), a 
CBDL group (rats were sacrificed five weeks following CBDL, 
n=30), and a baicalein group (rats received intraperitoneal 
injections of baicalein at a dose of 40 mg·kg−1·d−1 for three 
weeks starting two weeks17 after CBDL, n=20). Prior to the 
operation, rats underwent an 8-h fast. On the day of sur-

Fig. 1.  Effect of baicalein on the liver of the CBDL rats. (A)Molecular structure of baicalein. (B)The detailed diagram of the experimental process. (C) The survival 
rate of rats in different groups. (D) Liver function and bile acid metabolism test on CBDL rats. Baicalein improved liver enzyme and bilirubin metabolism dysfunction. 
(E) Baicalein alleviated the level of unconjugated bile acids in the liver. (F, I) HE staining and Masson staining in different groups. Baicalein-reduced liver fibrosis was 
confirmed by Masson staining. (G, J) Baicalein decreases the expression of collagen-I and α-SMA in CBDL rats. (H) Baicalein improved liver fibrosis METAVIR scores. 
(K) Western blot analysis of collagen-I and α-SMA levels in different groups (n=3). ns, p>0.05; *p<0.05; **p<0.01; ****p<0.0001; CBDL, common bile duct ligation.
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gery, anesthesia was initiated in an isoflurane chamber, with 
continuous maintenance via isoflurane delivered nasally; 5% 
isoflurane was used for induction and 2% for maintenance. 
Post-surgery, rats were positioned laterally on a warming pad 
set to 37°C. All samples were collected five weeks post-CB-
DL. The analysis involved three randomly chosen fields from 
each section of three different rats per group, conducted by 
two researchers who were blinded to group assignments.

Biochemistry and blood gas analysis
The serum of the rats was collected by puncture into tubes 
containing anticoagulants and subsequently centrifuged for 
10 min at 4,000 rpm at 4°C. This process was carried out to 
analyze liver biochemistry indicators such as aspartate ami-
notransferase, alanine transaminase, alkaline phosphatase 
(ALP), gamma-glutamyl transferase (GGT), total bile acid, 
total bilirubin, indirect bilirubin (IBiL), and direct bilirubin as 
evidence of liver injury. These analyses were conducted us-
ing an Automatic Biochemistry Analyzer (AU5400, Olympus, 
Japan). In addition, arterial blood was extracted from the 
aorta ventralis for arterial blood gas analysis, which was per-
formed using an ABL 700 radiometer (Radiometer Copen-
hagen, Denmark) in the Clinical Laboratory at Southwest 
Hospital.

Hematoxylin & Eosin staining, Masson trichrome 
staining (MTS) and Periodic acid Schiff staining 
(PAS)
For histological examinations, liver and lung tissues were 
fixed in 10% formalin for 24 h and then embedded in paraf-
fin. Sections with a thickness of 4 µm were prepared after 
dehydration in graded ethanol solutions, clearing in chloro-
form, and embedding in Paraplast. These sections underwent 
Hematoxylin & Eosin (H&E) staining and PAS staining. Lung 
injury assessment was based on the H&E stained lung sec-
tions according to previously described methods. The degree 
of liver fibrosis was determined using Masson’s trichrome 
stain, which results in blue staining, and the METAVIR scoring 
system (F0: No fibrosis, F1: Portal fibrosis without septa, F2: 
Portal fibrosis with few septa, F3: Numerous septa without 
cirrhosis, F4: Cirrhosis). Microphotographs of the specimens 
were captured using a light microscope (Olympus BX51-PMS, 
Tokyo, Japan), and the images were analyzed with Image-Pro 
Plus software (version 6.0, Media Cybernetics, Inc., USA).

Immumohistochemical and Immunofluorescence 
Staining
For in vivo 3,3′-diaminobenzidine (DAB) staining, 4-µm-
thick paraffin sections were initially dewaxed and subjected 
to heat-mediated antigen retrieval. To quench endogenous 
peroxidase activity, sections were treated with 3% H2O2 in 
methanol for 30 min before being incubated with serum. This 
was followed by incubation with primary antibodies, includ-
ing rabbit anti-VEGF (1:100, 19003-1-AP, Proteintech), rab-
bit anti-C-X-C motif chemokine 2 (CXCL2) (1:200, 701126, 
Thermo Fisher Scientific), rabbit anti-PLGF (1:100, 19666, 
Abcam), rabbit anti-Sirtuin 1 (SIRT1) (1:500, 189494, Ab-
cam), rabbit anti-MMP9 (1:1,000, 76003, Abcam), rabbit 
anti-Dipeptidyl Peptidase-4 (DPP4) (1:500, 187048, Ab-
cam), rabbit anti-PGC-1α (1:500, 1918383, Abcam), and 
rabbit anti-PFKFB3 (1:50, 181861, Abcam), and rabbit an-
ti-SIRT1, (1:500, 189494, Abcam) at 4°C overnight. After 
PBS washes, the slides were incubated with HRP-labeled 
Goat Anti-Rabbit IgG (H+L) secondary antibodies. The stain-
ing patterns of these antibodies were visualized using DAB 
staining, with hematoxylin used for nuclear counterstaining 

and sealed with neutral resin. Ten representative regions per 
section were randomly selected by an assessor blinded to 
the treatment groups for analysis. Values were expressed as 
percentages, comparing the mean value for the sham group 
to the percentage of positive cells.

For in vivo fluorescence staining, 4-µm-thick frozen sec-
tions were incubated overnight at 4°C with a range of an-
tibodies: anti-CD31 rabbit antibody (1:400, GB11063-2, 
Servicebio), anti-inducible nitric oxide synthase (iNOS) rab-
bit antibody (1:500, GB11119, Servicebio), anti-vascular 
endothelial cadherin (VE-cadherin) (1:1,000, 205336, Ab-
cam), von Willebrand factor (vWF) (1:200, 6994, Abcam), 
anti-Collagen-I Rabbit (1:800, GB114197, Servicebio), and 
anti-α-smooth muscle actin (α-SMA) rabbit antibody (1:500, 
GB111364, Servicebio). This comprehensive antibody panel 
targets a variety of cellular markers indicative of angiogen-
esis, inflammation, and tissue remodeling, essential for un-
derstanding the pathological changes within the liver and 
lung tissues in the context of HPS research.

After washing with PBS, the slides were incubated with 
fluorochrome-conjugated secondary antibodies, specifically 
HRP-labeled Goat Anti-Rabbit IgG (H+L), to enhance fluo-
rescence visualization of the antibody staining patterns. The 
sections were further counterstained with Cy3-labeled Goat 
Anti-Rabbit IgG (H+L) and FITC-labeled Goat Anti-Rabbit 
IgG (H+L), providing a multicolor immunofluorescence land-
scape. Nuclei were stained with DAPI (4,6-diamidino-2-phe-
nylindole), offering a sharp contrast with its characteristic 
blue fluorescence. The sections were examined using an 
Imager.A2 microscope (ZEISS, Germany). Immunofluores-
cence quantification was performed utilizing ImageJ software 
(National Institutes of Health). Five fields were randomly 
selected for analysis using Pannoramic MIDI (3DHISTECH, 
Hungary) for each immunofluorescence-labeled section. The 
enumeration of CD31-positive cells per high-power field was 
facilitated by Image-Pro Plus software (version 6.0, Media 
Cybernetics Inc, USA), ensuring precise quantitative assess-
ment.

Western blotting analysis
Briefly, total proteins were extracted from 60 mg of liver and 
lung tissues using a total protein extraction kit suitable for 
animal-cultured cells and tissues (Epizyme Biotech, PC201, 
China). The concentration of the extracted proteins was de-
termined by the BCA method (Thermo, SF247582, USA). 
These denatured proteins were then separated on 7.5% SDS-
PAGE (Epizyme Biotech, PG211, China) and transferred onto 
polyvinylidene fluoride membranes for subsequent analysis. 
After blocking non-specific binding sites with BSA, the mem-
branes were incubated overnight at 4°C with primary anti-
bodies targeted against α-SMA (1:1,000, ab7817, Abcam), 
collagen-I (1:1,000, bs-10423R, Bioss), vWF (1:1,000, 
ab6994, Abcam), VE-cadherin (1:1,000, ab231227, Abcam), 
iNOS (1:1,000, 22226-1-AP, Proteintech), PGC1 (ab191838, 
Abcam), and PFKFB3 (ab181861, Abcam). Following incu-
bation, the membranes were washed with TBST containing 
0.1% Tween-20 and incubated with an HRP-conjugated sec-
ondary antibody goat anti-rabbit (Beyotime, A0208, Biotech-
nology, China) at a 1:1,000 dilution for 1 h at room tem-
perature. After three washes with TBST, the immunoreactive 
bands were visualized using an ECL chemiluminescent kit 
(Thermo, XF345252, USA), providing a robust method for 
protein expression analysis.

Enzyme-linked immunosorbent assay (ELISA)
To prepare liver tissue samples, 0.06 g of liver tissue was 
homogenized in 1 ml of PBS using a Bead Ruptor 24 (OMNI, 
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USA). The homogenate was centrifuged at 12,000 rpm and 
4°C for 15 min, and the supernatant was collected for subse-
quent analysis. The levels of glycogen phosphorylase (GPase) 
and glycogen synthase (GS) were determined using ELISA 
kits (JT-T1106 and JT-T1104, Jianglaibio, China). Similarly, 
MMP9 and CXCL2 levels were measured using ELISA (EK1463 
and EK0725, Boster Biological Technology, China), and VEGF 
and PLGF levels were assessed with ELISA kits (RA20124 
and RA20510, Bioswamp, China). Samples and the reagent 
solution were added to a 96-well plate and incubated accord-
ing to the kit instructions for 10 min and 5 min, respectively. 
Absorbance levels A1 and A2 were read at 340 nm and 450 
nm, respectively. The difference in A=A2-A1 was used to cal-
culate GPase (nmol/min/g)=238.7*(ΔA+0.0173)/0.05 g; GS 
(nmol/min/g)=160.8*ΔA/0.05 g.

Statistical analysis
All measurements were presented as means ± SD. The 
data were analyzed using students’ t-tests or ANOVA with 
Bonferroni correction for multiple group comparisons using 
GraphPad Prism 7.0 software (Inc., La Jolla, CA, USA). A p-
value<0.05 was considered statistically significant. p<0.05 
was considered statistical significance.

Results

Baicalein improved the liver function and outcome of 
the CBDL rats
We evaluated the therapeutic effect of baicalein on the liver 
function and survival outcome of rats subjected to common 
bile duct ligation (CBDL). Notably, baicalein significantly im-
proved the survival rate of CBDL rats (CBDL vs. Baicalein: 
6.4% vs. 68.1%, p=0.0085). Furthermore, baicalein admin-
istration resulted in a noticeable decrease in serum GGT, ALP, 

and IBiL levels, which had initially increased following CBDL 
(GGT: 82.67 µmol/L vs. 60 µmol/L, p<0.0001; ALP: 445.9 
µmol/L vs. 290.6 µmol/L, p<0.0001; IBiL: 57.5 µmol/L vs. 
32.4 µmol/L, p<0.0001). Baicalein also enhanced bile acid 
metabolism, indicated by reduced levels of unconjugated bile 
acids such as taurocholic acid and hyodeoxycholic acid (Fig. 
1D, E).

Histological analysis via HE and Masson staining revealed 
that baicalein mitigated liver fibrosis in CBDL rats, evidenced 
by decreased inflammatory cell infiltration, improved liver fi-
brosis scores, and reduced fibrosis deposition. Compared to 
the CBDL group, the baicalein group exhibited significantly re-
versed pathological tissue structures and improved liver fibro-
sis METAVIR scores (Fig. 1F, H, I). Significant fibrosis progres-
sion was observed in the CBDL group compared to the sham 
group, but baicalein treatment decreased the expression of 
collagen-I and α-SMA (Fig. 1G, J). We observed that collagen-
I and α-SMA have significantly higher expression levels than 
collagen-I and α-SMA in baicalein groups (Fig. 1K).

Baicalein improved the hypoxemia of the CBDL rats
The study investigated the effects of baicalein on lung in-
flammation and fibrosis in CBDL rats. Baicalein showed a 
significant reduction in lung inflammatory response and fi-
brosis, as evidenced by HE and Masson staining tests (Fig. 
2A). It notably improved alveolar gas exchange, indicated 
by decreased alveolar-arterial oxygen gradient (P(A-a)O2) 
and increased arterial oxygen partial pressure (PO2) in CBDL 
rats (P(A-a)O2: Sham vs. CBDL vs. Baicalein - 7.38 mmHg 
vs. 19.12 mmHg vs. 11.8 mmHg, p<0.0001; PO2: Sham 
vs. CBDL vs. Baicalein - 98.82 mmHg vs. 62.68 mmHg vs. 
80.42 mmHg, p<0.0001) (Fig. 2B). Additionally, baicalein 
was found to improve lung injury scores (Fig 2C), reverse 
fibrosis progression (Fig. 2D), and reduce the expression of 
fibrotic markers, collagen-I and α-SMA, in the lung tissues of 

Fig. 2.  Effects of baicalein on the lung of CBDL rats. H&E (A) and MTS confirmed that baicalein significantly reduced lung inflammatory infiltration and fibrosis in 
CBDL rats. (B) The effect of baicalein on hypoxemia in CBDL rats. (C) The lung injury score showed a lower score and fewer injuries in the baicalein group. (D) Baicalein 
alleviates pulmonary fibrosis in baicalein groups by MTS. (E, F) Representative images of Collagen-I(red) and α-SMA (green) immunostaining. (G) Western blot analysis 
of collagen-I and α-SMA levels in different groups (n=3). Nuclei, DAPI (blue). Scale bar, 50 µm; ****p<0.0001; CBDL, common bile duct ligation; H&E, hematoxylin 
& eosin; MTS, masson trichrome staining.
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CBDL rats (Fig. 2E-F). These findings suggest that baicalein 
enhances lung function, reduces inflammatory cell infiltra-
tion, and restores normal alveolar tissue structure, with re-
duced collagen-I staining confirmed by Masson staining. We 
observed that collagen-I and α-SMA have significantly higher 
lung expression levels than collagen-I and α-SMA in baicalein 
groups (Fig 2G).

Baicalein reduces the pathological angiogenesis of 
the liver and lung in CBDL rats
We analyzed angiogenesis endothelial markers CD31, vWF, 
and VE-cadherin and found extensive angiogenesis in the 
liver and lung of CBDL rats. Compared with the sham group, 
CD31, vWF, and VE-cadherin expression levels were signifi-
cantly enhanced in the CBDL group. Baicalein reduced the 
expression of CD31, vWF, and VE-cadherin in lung tissue and 
the liver (Fig. 3A, C). We further assessed the expression of 
angiogenesis-associated proteins. Baicalein decreased iNOS 
expression and demonstrated a reduced pathological vasodi-
latory state (Fig. 3B, D). We observed that CD31, vWF, VE-
cadherin, and iNOS have significantly higher expression lev-
els in CBDL, and baicalein mitigated the expression of CD31, 
vWF, VE-cadherin, and iNOS (Fig. 3E).

Baicalein reduces the expression of angiogenesis-
associated proteins in CBDL rats
Accompanying the reduction in pathological angiogenesis 
within the liver and lungs of rats treated with baicalein, a 
decrease in angiogenesis-associated proteins was observed 
via immunohistochemistry (Fig. 4A, B). Specifically, the ex-
pression levels of angiogenesis-related proteins such as 
VEGF, PLGF, MMP9, and CXCL2 were significantly elevated 
in the CBDL group compared to the sham group. Baicalein 
treatment resulted in a reduction of VEGF, PLGF, MMP9, and 
CXCL2 expression levels and inhibited the release of these 
angiogenesis proteins when compared to the CBDL group. 
We evaluated the expression of VEGF, PLGF, MMP9, and 
CXCL2 levels in different groups. A comparison of CBDL vs. 
baicalein showed decreased VEGF, PLGF, MMP9, and CXCL2 
levels, indicating that baicalein alleviated angiogenesis 
(Fig. 4C).

Effect of baicalein on liver glycogen and glucose me-
tabolism associated proteins in CBDL rats
Liver cirrhosis is often accompanied by abnormal glucose 
metabolism, which may exacerbate the condition. An abnor-
mal accumulation of liver glycogen was observed in CBDL 

Fig. 3.  Effects of baicalein on the pathological angiogenesis of the liver and lung in the CBDL rats and the expression of vasodilation-related proteins. 
(A, C) The numbers of CD31 (red), vWF (green) and VE-caderine (green) cells in different groups by immunofluorescence staining. (B, D) The numbers of iNOS (green) 
expression in different groups by immunofluorescence staining. (E) Western blot analysis of CD31 (red), vWF, VE-caderine, and iNOS levels in different groups and 
baicalein alleviate the expression of CD31 (red), vWF, VE-caderine, and iNOS (n=3). Nuclei, DAPI (blue). **p<0.01; ***p<0.001; ****p<0.0001;. Scale bar, 50 µm; 
CBDL, common bile duct ligation; vWF, von willebrand factor; VE-caderine, vascular endothelial cadherin; iNOS, inducible nitric oxide synthase.
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rats using PAS staining, while baicalein treatment significant-
ly improved glycogen accumulation in liver tissue (Fig. 5A, 
B). Baicalein was found to enhance the activity of glycogen-
metabolizing enzymes, improve glycogen storage in liver tis-
sue, and promote glycogen utilization (Fig. 5C). Changes in 
the expression of proteins associated with cellular glucose 
metabolism were also assessed by immunohistochemistry. 
Baicalein limited the expression levels of DPP4 and PFKFB3 
while promoting the expression of SIRT1 and PGC-1α, there-
by alleviating liver fibrosis (Fig. 5D, E). Examination of PGC-
1α and PFKFB3 levels showed that baicalein enhanced PGC-
1α and mitigated PFKFB3 expression, effectively reversing 
the levels of these proteins to normal (Fig. 5F, G).

Discussion
In this study, we discovered that baicalein mitigates liver 
fibrosis and improves hypoxemia, potentially through the 
regulation of glucose metabolism to reduce pathological an-
giogenesis in both the liver and lungs. Pathological angio-
genesis has recently been recognized as a vital mechanism 
underlying HPS.11,23 However, the first RCT focused on anti-
angiogenic therapy did not significantly improve hypoxemia 
and negatively impacted the quality of life.12 Interestingly, 
HPS almost invariably resolves following liver transplanta-
tion, highlighting that alleviating liver injury should be a pri-
mary treatment goal for HPS.

Baicalein, metabolized from baicalin by gut microbiota, 
is derived from traditional Chinese herbal medicine18,20 and 
has been shown in previous studies to inhibit the expres-
sion levels of pro-inflammatory cytokines such as TNF-α and 
IL-6.24,25 Furthermore, it reduces the expression of pro-an-

giogenic and angiogenesis-related proteins, including VEGF 
and PLGF.6,11,14 It inhibits the activity of MMP9, which plays 
a crucial role in the degradation of the extracellular matrix, a 
critical step in angiogenesis.14 Our findings corroborate these 
earlier reports, showing that baicalein significantly reduces 
the expression of VEGF and PLGF. Additionally, baicalein 
treatment decreased the levels of CXCL2 and MMP9 in the 
liver and lungs of CBDL groups, addressing pathological an-
giogenesis and its associated fibrosis.26

These results suggest that baicalein, through its multifac-
eted biological activities, offers a promising therapeutic ap-
proach to treating HPS by targeting the inflammatory and 
fibrotic pathways and the angiogenic mechanisms contribut-
ing to the disease’s pathophysiology.

The recent understanding that glucose metabolism levels 
are intricately linked with fibrosis highlights the complex in-
terplay between metabolic pathways and liver disease pro-
gression.27,28 DPP4 has been identified as a surface protein 
enriched in vascular endothelial cells29 and has been associ-
ated with liver disease severity and fibrosis.30 Elevated plas-
ma concentrations of DPP4 correlate with the severity of liver 
disease, whereas a decrease in DPP4 levels contributes to 
glucose homeostasis by reducing hepatic gluconeogenesis.31 
This regulatory mechanism suggests that targeting DPP4 
could offer therapeutic benefits in managing liver disease and 
associated metabolic dysfunctions.

SIRT1 operates as a nicotinamide adenine dinucleotide-
dependent deacetylase involved in various metabolic pro-
cesses, including glucose metabolism and mitochondrial 
biogenesis. The activation of SIRT1 enhances insulin sensi-
tivity and glucose homeostasis, and it plays a critical role 
in mitigating fibrosis by promoting the renewal of hepatic 

Fig. 4.  Baicalein attenuates the expression of angiogenesis-related proteins. (A-B) The expression of (A, B) VEGF, PLGF, and pro-angiogenic factors MMP-9 and 
CXCL2 in the liver and lung of rats in sham, CBDL, and baicalein groups. (C) Evaluation of VEGF, PLGF, MMP9, and CXCL2 levels in different groups indicated baicalein 
alleviated angiogenesis. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001; Scale bar, 50 µm; VEGF, vascular endothelial growth factor; PLGF, Placental growth factors; 
MMP9, matrix metalloprotease 9; CXCL2, C-X-C motif chemokine2.
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Fig. 5.  The effect of baicalein on glucose metabolism in the liver. (A, B) Baicalein increases the content of glycogen in liver tissue. Scale bar, 20 µm. (C) The ef-
fect of baicalein on the activity of glycogen-metabolizing enzymes. (D, E) The effect of baicalein on glycose metabolism-related proteins. (F, G) Western blot analysis of 
PGC-1α and PFKFB3 levels in different groups. Scale bar, 50 µm; ***p<0.001; ****p<0.0001; PGC-1α, PPARγ coactivator-1α; PFKFB3, fructose-2,6-biphosphatase 3.
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astrocytes.32 DPP4 inhibition has been shown to depend on 
the activation of SIRT1,33–35 linking these two proteins in a 
regulatory axis that controls blood glucose levels in condi-
tions like CBDL-induced liver damage and slows the progres-
sion of fibrosis in hepatic astrocytes.

PGC-1α is recognized as a transcriptional co-activator 
that enhances the function of numerous transcription fac-
tors involved in mitochondrial biogenesis and glucose 
metabolism.36 PFKFB3, a protein involved in glycolysis, 
contributes to the metabolic adjustments required under 
fibrotic conditions and vessel sprouting. The knockdown of 
PFKFB3 leads to reduced glycolytic flux and suppresses the 
hypermetabolic state induced by fibrosis.37,38 PGC-1α has 
been shown to negatively regulate PFKFB3, suggesting that 
the activation of PGC-1α signaling can ameliorate fibrosis 
by downregulating PFKFB3, thereby reducing glycolysis 
flux.39 This intricate network of metabolic regulators—DPP4, 
SIRT1, PGC-1α, and PFKFB3 offers potential therapeutic 
targets for addressing the metabolic alterations associated 
with liver fibrosis. Modulating these pathways may improve 
glucose metabolism, reduce hepatic gluconeogenesis, and 
slow fibrosis progression, offering a multifaceted approach 
to treating liver diseases.

Compared with the CBDL group, baicalein modulates ho-
meostasis by inhibiting the expression of DPP4 and PFKFB3 
while enhancing SIRT1 and PGC-1α levels to improve tissue 
fibrosis and maintain glucose metabolism. Fibrosis necessi-
tates substantial energy consumption.37,40 The depletion of 
glycogen in the CBDL model has been substantiated by PAS 
staining; baicalein partially restores glycogen content in the 
liver through glucose metabolism regulation. Moreover, bai-
calein mitigates energy consumption by modulating glucose 
metabolism, thereby ameliorating liver fibrosis.

This study acknowledges certain limitations. Primarily, the 
baicalein intervention commenced 14 days post-CBDL model 
establishment, with specimen analysis following three weeks 
of continuous treatment. Although this timeframe aligns 
with standard observation periods for CBDL rat interven-
tions, extended studies are warranted to evaluate baicalein’s 
long-term impacts. Secondly, due to baicalein’s poor water 
solubility and intestinal absorption, intraperitoneal injection 
was employed to enhance absorption, a method not typically 
utilized in clinical settings. This necessitates further research 
to identify the most effective administration route. Lastly, 
baicalein’s clinical use often involves combination with other 
decoctions, necessitating additional studies to understand 
potential drug interactions.

In conclusion, baicalein significantly attenuates pulmonary 
angiogenesis by suppressing VEGF, PLGF, CXCL2, and MMP9 
expression. It also alleviates liver fibrosis by activating the 
glucose metabolism signaling pathway, improving hypoxemia 
in CBDL rats. Our findings suggest baicalein as a promising 
therapeutic strategy for treating HPS.
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