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Changes in chromatin accessibility are not
concordant with transcriptional changes for
single-factor perturbations
Karun Kiani1, Eric M Sanford2, Yogesh Goyal3,4,5 & Arjun Raj3,6,*

Abstract

A major goal in the field of transcriptional regulation is the map-
ping of changes in the binding of transcription factors to the resul-
tant changes in gene expression. Recently, methods for measuring
chromatin accessibility have enabled us to measure changes in
accessibility across the genome, which are thought to correspond
to transcription factor-binding events. In concert with RNA-
sequencing, these data in principle enable such mappings; how-
ever, few studies have looked at their concordance over short-
duration treatments with specific perturbations. Here, we used
tandem, bulk ATAC-seq, and RNA-seq measurements from MCF-7
breast carcinoma cells to systematically evaluate the concordance
between changes in accessibility and changes in expression in
response to retinoic acid and TGF-β. We found two classes of genes
whose expression showed a significant change: those that showed
some changes in the accessibility of nearby chromatin, and those
that showed virtually no change despite strong changes in expres-
sion. The peaks associated with genes in the former group had
lower baseline accessibility prior to exposure to signal. Focusing
the analysis specifically on peaks with motifs for transcription fac-
tors associated with retinoic acid and TGF-β signaling did not
reduce the lack of correspondence. Analysis of paired chromatin
accessibility and gene expression data from distinct paths along
the hematopoietic differentiation trajectory showed a much
stronger correspondence, suggesting that the multifactorial bio-
logical processes associated with differentiation may lead to
changes in chromatin accessibility that reflect rather than driving
altered transcriptional status. Together, these results show many
gene expression changes can happen independently of changes in
the accessibility of local chromatin in the context of a single-factor
perturbation.
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Introduction

Transcription factors regulate gene expression by binding to specific

DNA sequences, facilitating transcription through the recruitment

and activation of the transcriptional machinery. Deciphering the

combinatorial logic underlying which transcription factors bind to

what portions of DNA and in what contexts are a central challenge

in creating a complete model of transcriptional regulation.

Sequencing-based methods have enabled the measurement of tran-

script levels for all genes and the putative binding profiles of tran-

scription factors across the genome. However, the precise mapping

between changes in these putative binding profiles and the changes

in transcriptional activity remains the subject of debate.

A key component of decoding the relationship between transcrip-

tion factor activity and the resultant changes in transcription is the

measurement of transcription factor binding to DNA. Recently, the

combination of biochemical binding assays with sequencing-based

readouts has led to a cornucopia of methods for making such mea-

surements. One workhorse method is chromatin immunoprecipita-

tion sequencing (ChIP-seq), which characterizes the binding of

transcription factors and other DNA-protein interactions genome-

wide (Barski et al, 2007; Robertson et al, 2007; Ma & Zhang, 2020)

by using immunoprecipitation of proteins that bind to chromatin

and subsequently sequencing the coprecipitated DNA. However,

ChIP-seq is limited in that each experiment can only interrogate the

binding profile of one transcription factor at a time.

An alternative approach that circumvents that issue is the mea-

surement of changes in the accessibility of DNA to infer changes in

the binding of all transcription factors at once. Accessible regions of

DNA (i.e., those regions depleted of nucleosomes) represent only

3% of the genome but often participate in the regulation of gene
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expression (Weintraub & Groudine, 1976; Wu et al, 1979; Lee

et al, 2004; Thurman et al, 2012). These regions can be detected

genome-wide by combining the enzymatic activity of nucleases with

high-throughput sequencing using techniques such as DNase I

hypersensitive site sequencing (DNase-seq; Boyle et al, 2008) and

assay for transposase accessible chromatin with sequencing (ATAC-

seq; Buenrostro et al, 2013). The interpretation of these accessibility

methods leans heavily on the assumption that changes in regulatory

factor binding are reflected in changes in chromatin accessibility.

Certainly, there are many examples in which the correspondence

between changes in accessibility strongly corresponds to changes in

transcriptional output. For instance, the summation of ChIP-seq sig-

nal for 42 transcription factors mapped by encoding in K562 chronic

myelogenous leukemia cells paralleled the signal from accessible

sites revealed by DNase-seq (Thurman et al, 2012). Moreover, com-

putational methods to infer transcription factor footprints from

accessibility measurements have been shown to recapitulate ChIP-

seq binding well (Pique-Regi et al, 2011). Accessibility methods can

also be used to look for changes in accessibility across various per-

turbations and cell types. Changes in accessibility generally seem to

correspond to changes in transcription in the sense that large

changes in transcriptional output are reflected in broad changes in

the accessibility of several loci in the surrounding chromatin

(Gonz�alez et al, 2015a; de la Torre-Ubieta et al, 2018).

However, it is unclear how well these accessibility-based meth-

ods capture the activity of all transcription factors. It is possible that

some transcription factors’ binding and activity do not result in cor-

responding changes in accessibility and vice versa. Such a lack of

correspondence could manifest itself as a lack of correlation

between changes in accessibility and changes in transcription. Given

the underlying assumption that a change in transcription must be

mediated by the change in some transcription factor activity, then

such a lack of correspondence would suggest that changes in the

activity of transcription factors could change expression without

changing accessibility near its binding site. Indeed, previous work

has demonstrated that the glucocorticoid receptor binds almost

exclusively to pre-existing accessible chromatin prior to small-

molecule stimulation (John et al, 2011) and that activator protein 1

(AP-1) establishes these binding patterns for the glucocorticoid

receptor by maintaining chromatin accessibility (Biddie et al, 2011).

Similarly, the lineage-defining transcription factor Foxp3 binds to

preformed accessible sites established by its structural homolog,

Foxo1, to establish regulatory T cell identity (Samstein et al, 2012).

Of note, this process of regulatory T cell specification via Foxp3 is

considered a “late differentiation” process, as the precursor cell

state, the mature naive CD4+ T cell is considered mature. While

reports from the literature generally show a strong correspondence

(Gonz�alez et al, 2015a; Ampuja et al, 2017; de la Torre-Ubieta et

al, 2018; Starks et al, 2019), it is worth noting that the comparisons

in such studies are often across rather different cell types. In such

cases, it is possible that the changes in accessibility are not driven

by regulation per se but rather reflect the consequences of sequential

exposure to multiple regulatory factors that characterize the differ-

entiation process. Such accessibility changes could, in principle, sig-

nify the reinforcement of genes that are already transcriptionally

active genes or could even just appear around actively transcribed

genes without any functional role. Disentangling such possibilities

could be revealed with the use of single-factor perturbations that

more directly affect an individual pathway; however, few such data

are available.

Here, we used tandem bulk RNA-seq and ATAC-seq data from

MCF-7 breast carcinoma cells exposed to multiple doses of retinoic

acid or TGF-β to determine the degree of concordance between

changes in chromatin accessibility and changes in gene expression.

We demonstrate that while some differentially expressed genes have

a high concordance between gene expression and chromatin accessi-

bility changes, many other genes are differentially expressed without

changes in their local chromatin accessibility. We show that these

results hold across multiple parameters and definitions of accessibil-

ity change and that it does not depend on the type of transcription

factor per se. We evaluated another published dataset of hematopoi-

etic differentiation, which has much deeper and multifactorial differ-

ences, that showed much stronger concordance. We finally compare

differences in pre-existing accessibility between concordant and non-

concordant genes prior to single-factor perturbation. Our results

provide a systematic evaluation of the concordance between changes

in gene expression and local chromatin accessibility.

Results

Genome-wide expression and chromatin accessibility changes
reflect known biology of two perturbations

To measure the correspondence between changes in chromatin

accessibility and changes in gene expression, we used MCF-7 breast

carcinoma cells due to their previously described transcriptional

responses to all-trans retinoic acid (Hua et al, 2009; referred to from

here on as retinoic acid) and transforming growth factor beta (TGF-

β; Mahdi et al, 2015). We used paired, bulk accessibility (ATAC-

seq) and expression data (RNA-seq) from these cells (Sanford et

al, 2020a; Data ref: Sanford et al, 2020b) collected 72 h after contin-

uous exposure to three different doses of each signal (Fig 1A). We

chose this timescale because previous work with MCF-7 cells

showed more transcriptional changes at 72 h compared with 24 h

after exposure to retinoic acid (Hua et al, 2009), and chromatin

accessibility changes may not be detectable until 24 h after pertur-

bation (Ramirez et al, 2017a).

Differential gene expression and differential peak accessibility

analysis showed a dose-dependent response to both signals com-

pared with ethanol control (Fig 1A and Appendix Fig S1A, bar

plots). The ethanol “vehicle” controls comprise three different den-

sities of cells, and the transcriptomes of control conditions globally

were similar regardless of cell density (Appendix Fig S1B). To con-

firm that global gene expression and chromatin accessibility pat-

terns were similar between signals and dosages, we performed a

principal component analysis. For both RNA-seq and ATAC-seq

data, all samples exposed to the same signal or ethanol control clus-

tered together, indicating that their gene expression and chromatin

accessibility were more similar to each other than to other condi-

tions, supporting the quality of these data.

To validate that changes in gene expression were consistent with

the known biology of these signaling pathways, we performed an

over-representation analysis on the upregulated genes in response

to high dose retinoic acid or TGF-β against curated gene sets from

the molecular signatures database (Liberzon et al, 2011, 2015). The
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top 10 gene sets based on false discovery rate (FDR)-adjusted P-

values were processes canonically associated with retinoic acid

(morphogenesis, organ development, anterior-posterior patterning)

and TGF-β (extracellular matrix, endopeptidase activity), respec-

tively (Fig 1B). Gene set enrichment analysis (Subramanian et

al, 2005) showed that genes that were differentially expressed in

response to high dose retinoic acid were significantly enriched for

genes associated with skeletal system morphogenesis, and genes

that were differentially expressed as a result of exposure to high

dose TGF-β were significantly enriched for genes associated with

epithelial-to-mesenchymal transition (Appendix Fig S1B). Thus, the

differentially expressed genes generally reflected the known biology

of the signals the cells were exposed to.

We next wondered if the changes in chromatin accessibility in

response to signal were associated with the activity of specific tran-

scription factors, in particular, those associated with the biology of

these signaling pathways. We used a modified version of the

chromVAR package along with its curated database of transcription

factor motifs, cisBP, to identify the transcription factors with the

largest predicted change in activity (Schep et al, 2017). We used the

set of differential peaks to determine the set of the top 150 transcrip-

tion factors with the greatest magnitude of change. These included

the binding motifs of transcription factors that are canonical effec-

tors of retinoic acid (RAR-α, HOXA13) and TGF-β signaling (SMAD3,

SMAD4, and SMAD9). For each of these transcription factor motifs,

we calculated a motif enrichment score for each condition based on

the bias-uncorrected deviation score from chromVAR. The motif

enrichment score represents the percentage change in ATAC-seq

fragment counts in all peaks that contain a given transcription fac-

tor’s motif (Fig 1B). For example, the enrichment score of 28% for

SMAD3 in the TGF-β condition meant that peaks containing the

SMAD3 motif on average saw a 28% increase in fragment counts

after exposure to TGF-β. We pooled together the low, medium, and

high doses for each condition together in order to decrease the vari-

ability of motif enrichment scores estimates. Thus, our data recapit-

ulated expected changes in accessibility, presumably due to the

activity of transcription factors well-known to be activated by the

signals used. Thus, of the changes in accessibility we did detect,

they made sense based on a model of transcription factor activity

leading to changes in accessibility. However, it was still possible

that the activity of many transcription factors was not captured by

changes in accessibility.

The relationship between changes in chromatin accessibility and
gene expression varies on a gene-by-gene basis

We next wondered whether genes that were differentially expressed

were more likely to have differentially accessible peaks nearby, i.e.,

was there concordance between gene expression and chromatin

accessibility changes at the level of individual genes? To initially

characterize the extent of concordance between these data, we

looked at the overlap between genes that were differentially

expressed in response to high dose signal and genes with differen-

tially accessible peaks nearby after exposure to signal (Fig 1C). We

assigned each accessible peak to the nearest transcriptional start site

(“nearest approach”). Using this approach, the majority of genes

had fewer than 20 peaks assigned to them (Appendix Fig S2A). and

found that of the over 2,000 genes upregulated in response to high

dose retinoic acid, more than half of them had at least one differen-

tial peak (irrespective of the direction of peak change) assigned to

its transcriptional start site (P-value < 2.2 × 10−16, Fisher’s exact

test). Similarly, a third of the genes whose expression was upregu-

lated in response to TGF-β had differential peaks assigned to them

(P-value < 2.2 × 10−16, Fisher’s exact test). For differentially

expressed genes in response to high dose retinoic acid or TGF-β,
approximately 75 and 81% of genes had all peaks either not differ-

entially accessible or differentially accessible in the same direction

of gene expression changes, respectively (Appendix Fig S2B). Thus,

using the “nearest” approach, genes that are differentially expressed

are more likely than random chance to have a nearby peak that is

differentially accessible in response to retinoic acid or TGF-β.
While using this overlap-based approach showed correspondence

between genes that are differentially expressed and their nearby

peaks in response to signal, aspects of the nature of the concordance

of these changes were not captured by this analysis. For example,

the overlap-based method counted all differentially accessible genes

◀ Figure 1. Changes in gene expression can occur with or without concordant changes in chromatin accessibility in response to signal.

A Schematic of signal response experiments in MCF-7 cells from Sanford et al (2020a). Briefly, cells were treated with either ethanol vehicle control (gray) or three dif-
ferent doses of retinoic acid (shades of red) or TGF-β (shades of blue). After 72 h of continuous exposure, bulk RNA-seq and ATAC-seq were performed on samples. We
show the number of differentially expressed genes and differentially accessible peaks for each dose of each condition compared with ethanol vehicle control.

B Validation that changes in gene expression and chromatin accessibility reflects known biology of perturbations. Left: over-representation analysis of differentially
upregulated genes in response to high dose retinoic acid (red) or TGF-β (blue). Top 10 gene sets for each signal by −log10 FDR-adjusted P-value are shown. Right:
motif enrichment analysis of differentially accessible peaks for selected motifs of transcription factors related to signaling pathways of these signals. Y-axis shows the
percentage change of ATAC-seq signal at motif-containing peaks relative to ethanol vehicle control samples. For each condition, we pooled together replicates for all
three doses. Error bars represent bootstrapped confidence intervals.

C Overlap between changes in gene expression and changes in chromatin accessibility in response to high dose retinoic acid (top) or high dose TGF-β (bottom). Of the
genes that were differentially expressed (right circle of Venn diagram), we looked at the overlap (shaded) of how many of the genes also had at least one differentially
accessible peak assigned to it using the “nearest” approach (left circle). We performed Fisher’s exact test to show the probability of the joint values of genes with over-
lapping changes in expression and chromatin accessibility in our data compared with all possible combinations.

D Expression and accessibility change of HOXA1 in response to increasing doses of retinoic acid. Left: Expression (TPM, average of n = 3 biological replicates) in response
to increasing dose of retinoic acid (error bars represent SEM). Middle: track view of HOXA1 locus with accessibility in fragments per million and peaks and differential
peaks annotated. Right: quantification of peak accessibility (normalized fragment counts, average of n = 3 biological replicates) within a 50 kilobase window of HOXA1
locus with peaks that are differentially accessible between ethanol vehicle control and high dose retinoic acid conditions marked with black lines.

E Expression and accessibility change of SLC5A5 in response to increasing doses of retinoic acid. Left: Expression (TPM, average of n = 3 biological replicates) in response
to increasing dose of retinoic acid (error bars represent SEM). Middle: track view of SLC5A5 locus with accessibility in fragments per million and peaks and differential
peaks annotated. Right: quantification of peak accessibility (normalized fragment counts, average of n = 3 biological replicates) within a 50 kilobase window of
SLC5A5 locus with peaks that are differentially accessible between ethanol vehicle control and high dose retinoic acid conditions marked with black lines.
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that had at least one differentially accessible peak assigned to them

as concordant but did not take into account the proportion or degree

to which those nearby peaks change. Moreover, we did not take into

account the relationship between the directionality of changes in

gene expression and chromatin accessibility. The underlying

assumption at the basis of this relationship is that when peaks

become more accessible than the nearby gene increases its expres-

sion, and the overlap-based approach does not take this correspon-

dence of the direction of change into account. To better characterize

these facets of concordance, we first individually examined the

changes in chromatin accessibility nearby two genes whose expres-

sion was upregulated in response to retinoic acid.

After optimizing parameters for calling peaks and determining

differentially accessible peaks (Appendix Fig S3), we found that

while a large number of peaks are differentially accessible near the

HOXA1 locus, very few peaks are differentially accessible near the

SLC5A5 locus (Fig 1D and E, track view middle, accessibility plot,

right; Appendix Fig S4A and B). HOXA1 and SLC5A5 induction are

associated with exposure to retinoic acid (Schmutzler et al, 1997;

Kogai et al, 2000; Glover et al, 2006), and both genes showed a

dose-dependent increase in expression in response to retinoic acid

(Fig 1D and E leftmost panels; Appendix Figs S4A and B). There-

fore, genes with high expression change in response to signal can

show a large degree of accessibility changes or show very little

accessibility changes, suggesting that changes in transcription factor

activity may or may not be reflected in changes in accessibility.

Chromatin accessibility changes are less concordant with large
changes in gene expression in signaling compared with
hematopoietic differentiation

Next, we evaluated the concordance between accessibility and gene

expression genome-wide while also factoring in the directionality of

changes and the relative proportion of peaks that are changing on a

gene-by-gene basis. As a point of comparison, we used previously

published gene expression and chromatin accessibility data from

hematopoietic differentiation (Gonz�alez et al, 2015a; Data ref:

Gonz�alez et al, 2015b) that demonstrated that large changes in gene

expression were typically associated with gains or losses (depending

on the direction of expression change) of cell type-specific enhan-

cers when comparing the expression and accessibility of hematopoi-

etic stem and progenitor cells (HSPCs) to monocytes.

Before using this dataset as a comparison to ours for measur-

ing concordance between chromatin accessibility and gene expres-

sion changes, we verified that the hematopoietic differentiation

data was similar to our own by a variety of metrics. First, we

wanted to compare whether the number of differentially expressed

genes and differentially accessible peaks between HSPCs and

monocytes in the hematopoietic differentiation data was similar to

the numbers from MCF-7 cells exposed to retinoic acid or TGF-β.
We found that both HSPC and monocyte populations had greater

than 2,000 genes that were specifically expressed in their respec-

tive cell types compared with the approximately 2,000 and 1,500

genes differentially expressed in MCF-7 cells in response to high

dose retinoic acid and TGF-β, respectively (Fig 1A). Moreover,

HSPC and monocyte populations had more than 6,000 differen-

tially accessible peaks (Appendix Fig S5A) compared with the

approximately 15,000 and 6,000 differentially accessible peaks in

MCF-7 cells in response to high dose retinoic acid and TGF-β,
respectively (Fig 1A).

Next, we annotated the location of peaks based on where in the

genome they were located relative to gene bodies and quantified

what proportion of peaks fell into annotation categories such as

promoter, intergenic, exonic, intronic, etc. ATAC-seq peaks from

MCF-7 cells had a larger proportion of peaks at gene promoters

(within 3 kilobases upstream or downstream of the transcription

start site) whereas a greater proportion of the DNase I hypersensi-

tive sites in the HSPC and monocyte populations were from distal

intergenic regions compared with promoters (Appendix Fig S5B).

This finding could be the result of inherent differences in the

assays or could reflect biological differences. Moreover, the MCF-7

data had a greater proportion of peaks located at gene promoters,

which could in principle bias our results toward having a larger

degree of concordance because accessibility changes at promoters

were more strongly correlated with gene expression changes than

distal accessible. Despite this bias, our data demonstrate less con-

cordance.

Given the different assays used to determine genome-wide chro-

matin accessibility, we realigned the DNase-seq data to the hg38 ref-

erence and examined the peaks at a “housekeeping gene” (GAPDH),

hematopoietic differentiation-specific genes (CD34, CD14) and reti-

noic acid and TGF-β-related genes (DHRS3, SERPINA11) to spot-

check that the accessibility data were similar. Indeed, there were

similar accessibility profiles for GAPDH, and appropriate differences

in accessibility given the cell type of signal for the other sites, indi-

cating the accessibility data were comparable (Appendix Fig S6A–
E). Moreover, to look at similarities in accessibility genome-wide,

we calculated the intersection of the consensus peak sets from

hematopoietic differentiation and MCF-7 signal response datasets,

which included both peaks that were differentially accessible and

those that were not. We observed that approximately 55% of peaks

from hematopoietic differentiation data (DNase-seq) overlapped

with peaks from the MCF-7 signal response dataset (ATAC-seq).

These results show that the datasets do not have systematic qualita-

tive differences in either expression or accessibility, enabling us to

compare the degree of concordance across these two systems.

In the original analysis of hematopoietic differentiation, the

authors found that regulatory complexity (defined as the number of

accessible regions closest to a gene’s transcriptional unit) was an

important discriminating factor for whether changes in accessibility

corresponded to changes in expression, with areas of high complex-

ity showing more correspondence than those of low complexity.

Hence, we similarly grouped genes from our MCF-7 dataset into

high and low complexity for our comparisons. We categorized genes

with more than 7 peaks assigned to them using the “nearest

approach” as “high complexity,” while genes with 7 or fewer peaks

were categorized as having “low complexity” (Fig 2A, top panel).

The cutoff for loci complexity was calculated by taking a tertile-

based approach (Gonz�alez et al, 2015a) and calling any number of

peaks above the highest tertile cutoff as high and any peak below

that as low complexity (Fig 2B, solid line, lower plot). Because high

complexity genes on average had higher levels of expression in the

hematopoietic differentiation data, we sought to determine whether

there was any difference in expression between high and low com-

plexity genes in our MCF-7 data. The median expression of high

complexity loci was similarly higher than low complexity loci in
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response to both exposure to high dose retinoic acid (23.30 versus

13.27 TPM) and high dose TGF-β (24.06 vs. 13.05 TPM)

(Appendix Fig S7C, P-value < 2.2 × 10−16 for both, Kolmogorov–
Smirnov test) demonstrating that high complexity genes are more

highly expressed as in the hematopoietic differentiation data.

Despite this difference in expression, the distributions of peak

widths for peaks of high and low complexity genes were similar

(Appendix Fig S7D).

We began our analysis by focusing on the high complexity genes.

To determine the concordance between gene expression changes

and chromatin accessibility changes, we used the “nearest

approach” to assign peaks to genes. For each gene, we compared

the log2 of the fold change in expression between conditions versus

the proportion of peaks that were differentially accessible in the

same direction (i.e., peaks that increase in accessibility for genes

that increase in expression after exposure to signal and vice versa).

We observed that for hematopoietic differentiation, the 100 most

highly expressed high complexity genes in the HSPC and monocyte

populations had a high proportion of peaks, which were differen-

tially accessible in the concordant direction, reproducing the conclu-

sions of Gonz�alez et al (2015a) that large changes in expression

were consistently associated with concordant changes in chromatin

accessibility (Fig 2C). Next, we used this approach on our data to

compare expression and accessibility changes between ethanol vehi-

cle control and high dose retinoic acid or TGF-β. For both signals,

we observed two distinct groups of genes within the top 100 most

differentially expressed genes. One group of genes (“accessibility-

concordant genes”) behaved similarly to those in the hematopoietic

differentiation data, demonstrating a concordance between expres-

sion and accessibility changes (Fig 2C and D). However, the other

group of genes (“accessibility-nonconcordant genes”) had large

expression changes with little to no peaks nearby changing in acces-

sibility, creating a skew in the distribution toward a lower propor-

tion of peaks being differentially accessible in a concordant manner

compared with the hematopoietic differentiation data (Fig 2B–D,
density plots).

Adjusting the minimum peak coverage parameter changes the

number of differential peaks and the proportion of differential peaks

that change in the corresponding direction of expression. We won-

dered if a lower minimum coverage threshold changed the qualita-

tive result we noticed before and thus conducted the same analysis

using a lower minimum peak coverage threshold for determining

differential peaks (see methods). We observed that a similar pattern

occurred in high complexity genes with this set of parameters

(Appendix Fig S8).

Gonz�alez et al (2015a) showed that for some low complexity

genes, large changes in expression were not accompanied by con-

cordant changes in accessibility (Gonz�alez et al, 2015a). We simi-

larly wanted to confirm whether this decreased correspondence was

the case in our data in response to retinoic acid and TGF-β. Using
the same approach as before, we compared the log2 of the fold

change in expression of low complexity genes to the proportion of

peaks with differential accessibility in the concordant direction. The

hematopoietic differentiation and signaling data for low complexity

all qualitatively had genes whose expression increased without con-

cordant changes in accessibility (Appendix Fig S9A–C). The distri-

bution of the proportion peaks that was differentially accessible in

the concordant direction for the top 100 up and downregulated

genes was roughly uniform when comparing HSPCs to monocytes

(Appendix Fig S9A, density plot on right). By comparison, the dis-

tribution was skewed toward more genes having a lower proportion

of peaks being differentially accessible in the concordant direction

in response to signals in MCF-7 cells, especially in the case of TGF-

β (Appendix Fig S9B and C, density plots on right). However, it is

also possible that these differences may owe to systematic differ-

ences between the datasets, given that the hematopoietic differenti-

ation data have twice as many differentially accessible peaks as the

MCF-7 data. Thus, while both the signaling in MCF-7 and

hematopoietic data demonstrated large gene expression changes

without concordant changes in chromatin accessibility with low

complexity genes, a greater proportion of genes did so in the signal-

ing data.

◀ Figure 2. Signaling shows less concordance between highly differentially expressed genes and chromatin accessibility changes comparedwith hematopoietic
differentiation data for high complexity genes.

A Schematic demonstrating how data from chromatin accessibility and gene expression data are used to create a proportion-based concordance plot.
B Concordance between expression and accessibility changes between hematopoietic stem and progenitor cells and monocytes. Left: plot showing changes in gene

expression in CD34+ hematopoietic stem and progenitor cells (blue) and CD14+ monocytes (orange) from Gonz�alez et al, 2015a (schematic, top). For the plots, each
dot is a gene, and on the x-axis is a log2 fold change in expression and on the y-axis the proportion of differentially accessible DHSs for each associated gene. The
top 100 most highly expressed genes in hematopoietic stem and progenitor cells and monocytes are colored in shades of orange and blue, respectively. Middle:
density plot of the distribution of the proportion of high complexity DHS associated with the top 100 expressed genes in CD34+ hematopoietic stem and progeni-
tor cells and CD14+ monocytes with median value marked by a vertical black line. Right: example tracks DNase I sequencing data for KIT and CCR1 (marked on
plot on left).

C Concordance between expression and accessibility changes between cells exposed to ethanol vehicle control and high dose retinoic acid. Left: plot showing changes
in gene expression and chromatin accessibility between ethanol vehicle control and high dose retinoic acid. Each dot is a gene, and on the x-axis is the log2 fold
change in expression and on the y-axis the proportion of differentially accessible ATAC-seq peaks for each gene. The top 100 most highly expressed genes in ethanol
vehicle control and high dose retinoic acid are colored in shades of gray and red, respectively. Middle: density plot of the distribution of the proportion of high com-
plexity ATAC-seq peaks associated with the top 100 expressed genes in ethanol vehicle control and high dose retinoic acid with median value marked by a vertical
black line. Right: example ATAC-seq tracks of STRA6 and WNT11.

D Concordance between expression and accessibility changes between cells exposed to ethanol vehicle control and high dose TGF-β. Left: plot showing changes in gene
expression and chromatin accessibility between ethanol vehicle control and high dose TGF-β. Each dot is a gene, and on the x-axis is the log2 fold change in expres-
sion and on the y-axis the proportion of differentially accessible ATAC-seq peaks for each gene. The top 100 most highly expressed genes in ethanol vehicle control
and high dose TGF-β are colored in shades of gray and blue, respectively. Middle: density plot of the distribution of the proportion of high complexity ATAC-seq peaks
associated with the top 100 expressed genes in ethanol vehicle control and high dose retinoic acid with median value marked by a vertical black line. Right: example
ATAC-seq tracks of PMEPA1 and COL4A3.
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Peaks nearby genes with high concordance have lower
accessibility prior to exposure to signal

We wondered what the differences were between genes that were

differentially expressed and had large accessibility changes versus

those that were differentially expressed and had low accessibility

changes. First, for high dose retinoic acid and TGF-β, we split genes

into four groups based on whether they were differentially

expressed and the proportion of peaks assigned to them using the

“nearest” method that was differentially accessible in the appropri-

ate direction. These four groups were (i) genes with differentially

upregulated expression and concordant accessibility changes (ii)

genes with differentially upregulated expression nonconcordant

accessibility changes (iii) genes with differentially downregulated

expression and concordant accessibility changes, and (iv) genes

with differentially downregulated expression and nonconcordant

accessibility changes (Fig 3A and B). We quantified the distribution

of peak complexity across these groups and observed that genes

with any concordant peaks for both conditions in both directions

tended to have a higher degree of locus complexity

(Appendix Fig S10A and B).

We first asked whether the change in accessibility between these

two gene groups was due to differences in the pre-existing accessi-

bility of peaks for these genes. Indeed, we found the baseline acces-

sibility of peaks for genes with concordant increases in expression

and accessibility in ethanol vehicle conditions was lower than those

of peaks of genes that increase in expression without a commensu-

rate change in chromatin accessibility (Fig 3C). This relationship

was also recapitulated for concordant peaks that increase in expres-

sion and accessibility in response to high dose TGF-β (Fig 3D). Simi-

larly, when comparing genes that are differentially downregulated

in expression a similar pattern holds true in the opposite direction

(Fig 3C and D; Appendix Fig S10C and D). One explanation may be

that genes whose nearby chromatin was already accessible were

permissive toward the action of the appropriate transcription factors

to modulate expression. An alternative explanation is that the

ATAC-seq assay itself had saturated in its ability to measure chro-

matin accessibility. By contrast, the difference in accessibility

decreased between genes with a low proportion of peaks that were

differentially accessible and genes with a high proportion of accessi-

ble peaks after exposure to signal (Appendix Fig S10C and D). Thus,

the difference in the proportion of accessible peaks nearby the two

groups of genes was partially explained by the pre-existing chro-

matin accessibility.

Multiple approaches to integrating chromatin accessibility and
gene expression changes show a low degree of concordance
during signaling

Finally, we measured to what degree the change in the accessibility

of chromatin nearby a gene is reflected in the change in gene expres-

sion. Because linear distance is not always a good predictor of what

accessible regions interact with what genes, we used multiple

approaches to assign peaks to genes. First, we used the “nearest

approach” to create a one-to-one mapping between accessible sites

and genes by assigning them to the nearest transcriptional start site

(Li et al, 2012; Nair et al, 2021), again comparing our signaling

dataset to the hematopoietic differentiation dataset. Because many

genes have multiple peaks assigned to them, we used two methods

for collapsing peak values per gene: either the median accessibility

of peaks across genes or the maximum (Fig 4A, schematic). We

observed a stronger correlation between accessibility and expression

changes in differentiation data (median approach Pearson’s

r = 0.34, maximum approach Pearson’s r = 0.26) than in MCF-7 in

response to signal (retinoic acid: median approach Pearson’s

r = 0.27, maximum approach Pearson’s r = 0.10; TGF-β: median

approach Pearson’s r = 0.27, maximum approach Pearson’s

r = 0.10; Fig 4A, right side).

Next, we used a window-based approach where there was the

possibility of many-to-one mapping of peaks to genes. We assigned

all peaks within a 100 kilobase window (Sanford et al, 2020a) in

order to maximize the number of differential peaks assigned to a

gene (Appendix Fig S11A and B). Similar to the “nearest” approach,

we collapsed values using median accessibility change across all

peaks assigned to a gene and maximum accessibility per gene (Fig 4

B, schematic) We observed a similar effect using this approach

where there was a stronger correlation between change in accessi-

bility and change in expression between HSPC versus monocyte ver-

sus MCF-7 cells exposed to signal (Fig 4B). Of note, the correlation

coefficients were similar between both methods of assigning peaks.

Additionally, we used the window-based method to subset

promoter-proximal peaks (i.e., within 1.5 kilobase pairs up or

downstream from the transcription site) and distal peaks (greater

than 20 kilobase pairs from the transcriptional site). This approach

similarly did not demonstrate a strong relationship in the concor-

dance between chromatin accessibility changes and gene expression

changes in response to retinoic acid or TGF-β (Appendix Fig S12A

and B). We also used a variable window approach by restricting our

analyses to all peaks within the same topologically associating

domain (TAD), which also did not demonstrate a strong correlation

between changes in accessibility and changes in gene expression

(Appendix Fig S12C).

We also wondered if the correlation between the extent of chro-

matin accessibility changes and gene expression changes would be

different at the two lower doses. We used both the median and max-

imum peak value per gene while assigning peaks to genes using the

nearest and window approaches. We observed a similarly weak cor-

relation as high dose signal using all methods at both low and

medium doses (Appendix Fig S11C and D). Consequently, the corre-

lation between the magnitude of change in gene expression and

chromatin accessibility was modest across the range of doses of sig-

nals.

To see whether peaks in specific genomic regions (promoters,

parts of the gene body, downstream and intergenic areas) had

unique relationships between change in chromatin accessibility and

change in gene expression, we subsetted our correlation analysis.

We annotated peaks using ChiPseeker (Yu et al, 2015) to categorize

them as being at promoters, within the gene body (50 UTR, 30 UTR,
intronic, and exonic sequences), downstream of the gene end, or at

intergenic sequences. We used peaks assigned to genes using the

“nearest” approach and took the median change in accessibility per

gene. The strongest correlation between changes in accessibility and

gene expression across sets of comparisons was at promoter peaks

(Fig 4C). While promoter correlation is quantitatively stronger, the

overall qualitative conclusion remains the same. We also quantified

changes in intronic reads and compared them with changes in
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exonic reads in order to determine whether there is a stronger rela-

tionship between more nascent RNA changes and accessibility

changes. However, the quantitative relationship was no better than

those using other methods (Appendix Fig S13). Thus, despite using

a variety of approaches for both assigning peaks to genes and col-

lapsing the accessibility of all peaks for a given gene to a single
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Figure 3. Separation of differentially expressed genes in response to signal into high and low concordance groups shows differences in pre-existing acces-
sibility.

A Categorization of differentially expressed genes in response to high dose retinoic acid based on the direction of expression change and proportion of peaks
differentially accessible in the same direction.

B Categorization of differentially expressed genes in response to high dose TGF-β based on the direction of expression change and proportion of peaks differentially
accessible in the same direction.

C Differential accessibility in ethanol vehicle control conditions prior to addition of high dose retinoic acid. Accessibility of every peak assigned using the “nearest”
approach for gene groups from (A) in ethanol vehicle control conditions. Each peak must be present in at least the majority of n = 3 biological replicates to be used
for analysis. P-values represent the probability of these data or more extreme under the null hypothesis that the distribution of peak accessibilities was drawn from
the same probability distribution via the Kolmogorov–Smirnov test. Box and whisker plot: central band—median, box: 25th and 75th percentiles also known as the
interquartile range (IQR), whiskers: 25th percentile—1.5*IQR and 75th percentile + 1.5*IQR.

D Differential accessibility in ethanol vehicle control conditions prior to addition of high dose TGF-β. Accessibility of every peak assigned using the “nearest” approach
for gene groups from (B) in ethanol vehicle control conditions. Each peak must be present in at least the majority of n = 3 biological replicates to be used for analysis.
P-values represent the probability of these data or more extreme under the null hypothesis that the distribution of peak accessibilities was drawn from the same
probability distribution via the Kolmogorov–Smirnov test. Box and whisker plot: central band—median, box: 25th and 75th percentiles also known as the interquartile
range (IQR), whiskers: 25th percentile—1.5*IQR and 75th percentile + 1.5*IQR.
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value, we failed to appreciate a strong relationship between changes

in accessibility and changes in gene expression.

Finally, we wondered if peaks that contained the motifs of tran-

scription factors that are associated with retinoic acid and TGF-β sig-

naling only (as opposed to all peaks) would show a stronger

correlation between the changes in chromatin accessibility and gene

expression. We annotated peaks with a log-likelihood score of a

given motif being found in that peak and subsetted those peaks with

a nonzero log-likelihood score to examine the correlation between

changes in accessibility and gene expression. Using this approach,

we examined log-likelihood scores for motifs associated with reti-

noic acid signaling (RARA-α, HOXA13, and FOXA1) and motifs asso-

ciated with TGF-β (SMAD3, SMAD4, and SMAD9). We observed

that focusing on peaks annotated with peaks we would a priori

expect to be involved in modulating gene expression in response to

signal showed a limited correlation between changes in chromatin

accessibility and changes in gene expression (Fig 5A and B). We

also used this approach to look for peak-expression correlations for

transcription factors downstream of IL-1α (NFκB1, REL, and RELA,

of which NFκB1 has pioneer activity) and similarly found little cor-

relation between chromatin accessibility and gene expression

changes (Appendix Fig S14B). These results suggest that particular

transcription factors show no more concordance between peak

changes and expression changes, even for pioneer transcription fac-

tors. To exclude the possibility that “subregions” within unchanging

peaks could be facilitating transcription factor binding, we measured

RAR-α and SMAD footprints within these peaks. The number of

reads between control and exposure conditions did not change for

these footprints, indicating that there are no more accessible subre-

gions that could mediate transcription factor binding within peaks

that were not differentially accessible (Appendix Fig S15A and B).

Discussion

Here, we integrated tandem, genome-wide chromatin accessibility,

and transcriptomic data to characterize the extent of concordance

between them in response to inductive signals. We demonstrated

that while certain genes have a high degree of concordance of

change between expression and accessibility changes, there is also a

large group of differentially expressed genes whose local chromatin

remains unchanged. By comparison, data from cell types along the

hematopoietic differentiation trajectory had a much higher degree of

concordance between genes with large gene expression changes and

chromatin accessibility changes.

What might explain the lack of concordant changes in chromatin

accessibility? One explanation could be that pre-existing chromatin

accessibility dictates the de novo binding of transcription factors,

but that the binding of transcription factors to those regions does

not result in further changes to accessibility. Such effects have been

reported in the context of glucocorticoid signaling, in which the glu-

cocorticoid receptor almost exclusively binds to chromatin that is

already accessible in response to dexamethasone (John et al, 2011).

Indeed, we demonstrated that genes that lacked concordance

between changes in chromatin accessibility and gene expression

were more likely to have nearby chromatin that was already accessi-

ble (Fig 3C and D). It is possible that in MCF-7 cells, the transcrip-

tional effects of RA and TGF-β do not lead to a significant change in

the activity of pioneer transcription factors, which are able to bind

directly to condensed or inaccessible chromatin to facilitate its open-

ing (Zaret, 2020). Also, implicit in our approach is the assumption

that an increase in accessibility is associated with an increase in

expression, which is not necessarily the case if a genomic locus

becomes accessible to a repressive factor or a bound repressive fac-

tor is displaced by a nucleosome.

We looked at MCF-7 cells exposed to retinoic acid and TGF-β
because these two signals induce a robust transcriptional response

through distinct mechanisms. RAR-α remains bound to DNA and

interacts with transcriptional activators in response to retinoic acid

binding, while SMAD family members require TGF-β to bind to sur-

face receptors to translocate to the nucleus. Yet, despite these differ-

ences, we observed that many genes changed expression

independent of changes in chromatin accessibility for both signals.

It is, however, possible that signaling molecules that exert their

effects through very different types of transcription factors may have

a different profile of concordance between changes in accessibility

and gene expression. It is possible that other types of factors in a dif-

ferent context (e.g., different cell lines) may yield a stronger corre-

spondence (Appendix Fig S14). Indeed, some acute stimuli can lead

to more concordance (Appendix Fig S16A). Potential reasons for

this difference are the ability of transcription factors such as NFκB
to rapidly decondense heterochromatin to quickly mediate inflam-

matory responses (Jurida et al 2015a; Weiterer et al, 2020a). Fur-

ther, systematic studies of a number of signaling pathways and

timescales will be required to make a complete determination of the

degree of concordance in various contexts.

◀ Figure 4. Multiple approaches to quantifying peak accessibility show a low correlation between gene expression changes and accessibility changes in
signaling.

A “Nearest” approach to assigning peaks to genes shows less concordance in signaling compared with hematopoietic differentiation. Left: schematic showing “nearest”
approach where peaks are assigned to the nearest transcriptional site and change in accessibility (purple) on a per-gene basis is calculated by either median change
in accessibility (top row) or maximum peak change (bottom row). Right: scatterplots showing the change in peak accessibility (median or maximum) versus log2 fold
change in expression on y-axis for hematopoietic differentiation data from Gonz�alez et al (2015a) (left column) and for high dose retinoic acid and high dose TGF-β
(right two columns). Pearson’s correlation coefficients were reported with 95% confidence interval from bootstrapping with 10,000 replicates in parentheses.

B “Window” approach to assigning peaks to genes shows less concordance in signaling compared with hematopoietic differentiation. Left: schematic showing “window”

approach where all peaks within a certain window of the transcriptional start site are assigned to that gene and the change in accessibility (purple) on a per-gene
basis is calculated by the median change in accessibility (top row) or the maximum change in accessibility (bottom row). Right: scatterplots showing the change in
peak accessibility (median or maximum) using “window” approach with a 100 kilobase window versus log2 fold change in expression on y-axis for hematopoietic dif-
ferentiation data from Gonz�alez et al (2015a) (left column) and for high dose retinoic acid and high dose TGF-β (right two columns). Pearson’s correlation coefficients
were reported with 95% confidence interval from bootstrapping with 10,000 replicates in parentheses.

C Using the “nearest” approach to look for correlation between accessibility and gene expression changes based on annotations of peak location. First two columns
showing correlation for hematopoietic differentiation data from Gonz�alez et al (2015a), and right four columns showing correlation for high dose retinoic acid and
high dose TGF-β, respectively. Pearson’s correlation coefficients were reported with 95% confidence interval from bootstrapping with 10,000 replicates in parentheses.
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Our data characterized molecular changes resulting from a single

input (retinoic acid or TGF-β) in a clonal cell line, whereas the major-

ity of work reported a stronger concordance between simultaneous

measurements of accessibility and transcription compared with

entirely different cell types or cells undergoing a directed differentia-

tion protocol. What we have observed in the case of a single pertur-

bation applied to cells that are not thought to change type per se is

increased or decreased transcription with less concomitant nearby

change in accessibility. How can one reconcile these observations?

One possibility is that if we were to leave the signal on for longer, or

combine it over time with the effects of several other signals, that we

eventually would observe many further changes in accessibility

proximal to a gene, concordant with the aforementioned results from

comparisons between cell types. Whatever the source, these further
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changes in accessibility do not seem to occur randomly, given that

they largely reflect the direction of change in transcription (increased

accessibility for upregulation, decreased for downregulation). It may

be that these subsequent changes in accessibility do not explicitly

change transcription but rather alter the underlying regulatory logic

of the gene, i.e., the removal of a signal may not lead to a decrease in

the gene’s transcription, or the gene’s transcription may be sensi-

tized or desensitized to some other set of transcription factors.

Materials and Methods

PCA of RNA and ATAC-sequencing samples

Principal component analysis and visualization of RNA-seq and

ATAC-seq samples were performed using raw counts and perform-

ing a variance stabilizing transform. Results were visualized using

functions from the R DESeq2 package (Love et al, 2014).

RNA-sequencing analysis

Initial RNA-sequencing analysis was performed as previously

(preprint: Goyal et al, 2021). Briefly, reads were aligned to the

hg38 assembly using STAR v.2.7.1a and counted uniquely

mapped reads with HTSeq v0.6.1 and hg38 GTF file from

Ensembl (release 90). We used DESeq2 v1.22.2 in R 3.5.1 using

a minimum absolute-value log-fold change of 0.5 and a q value

of 0.05. For genes with multiple annotated transcriptional start

sites, we used the “canonical” transcription start site from the

knownCanonical table from GENCODE v29 in the UCSC Table

Browser.

We performed functional over-representation and gene set

enrichment analysis (Subramanian et al, 2005) of upregulated tran-

scripts in the high dose retinoic acid and high dose TGF-β using

clusterProfiler v4.0.5 and enrichplot v1.12.3 (Wu et al, 2021). P-

values for the over-representation analysis were adjusted using a

false discovery rate approach. We used the C5 ontology and H hall-

mark curated gene sets from the Molecular Signatures Database

(MSigDB) v7.4 (Liberzon et al, 2011, 2015) as reference gene sets to

compare our upregulated genes.

ATAC-sequencing analysis

ATAC-seq alignment and peak calling were performed as previously

(Sanford et al, 2020a). We aligned peaks to the hg38 assembly using

bowtie2 v2.3.4.1 and filtered out low-quality alignments with sam-

tools v1.96, removed duplicate read pairs with picard 1.96, and used

custom Python scripts along with bedtools v2.25.0 to create

alignment files with inferred Tn5 insertion points. We called peaks

using MACS2 (Zhang et al, 2008) v2.1.1.20160309 with the

command, “macs2 callpeak --nomodel --nolambda --keep-

dup all --call-summits -B --SPMR --format BED -q 0.05

--shift 75 --extsize 150.”

Since we had three biological replicates per condition, we

used a majority rule approach to retain only summits that

were found in at least two replicates (Yang et al, 2014). Using

these condition-specific peak files, we used bedtools to create a

consensus peak file by merging each individual condition’s

peak summit file together in a manner that disallowed overlap-

ping peaks. We used bedtools merge command “bedtools

merge -d 50” to combine features within 50 base pairs of

each other into a single peak after testing multiple merge dis-

tances. We used the number of ATAC-seq fragment counts at

each peak in this merged consensus peak file for differential

peak analysis.

We used the custom peak analysis algorithm from Sanford et

al (2020a) that took advantage of additional ethanol control condi-

tions to estimate the false discovery rate in ethanol controls to then

identify differential peaks. Briefly, reads were quantified for each

peak in the master consensus file and fragments at each peak were

normalized to correct for differences in total sequencing depth using

the equation:

samples total reads in peaks

mean number of reads in peaks across all samples
:

Next, an estimated false discovery rate was calculated in each cell

of a 50 × 50 grid containing 50 exponentially-spaced steps of mini-

mum fold change values (ranging from 1.5–10) and 50 exponen-

tially spaced steps of the minimum number of normalized

fragment counts in the condition with the greater number of counts

(ranging from 30 to 237 or 10 to 237). The estimated false discov-

ery rate (FDR) was calculated using the equation:

estimated FDR¼
no: of conditionsð Þ est: number of false positive peaks per conditionð Þ

total number of differential peaks in experimental conditions
:

After calculating the estimated FDR in each cell of the 50 × 50 grid,

we then pooled together differential peaks contained in any cell

with an FDR of less than 0.25%.

◀ Figure 5. Focusing on peaks annotated for biologically relevant transcription factor motifs fails to demonstrate a strong correlation between the magnitude
of gene expression and chromatin accessibility changes.

A Peaks annotated for motifs of transcription factors related to retinoic acid biology (RAR-α, HOXA13, FOXA1, left column) showed weak correlation between changes in
gene expression and chromatin accessibility in response to high dose retinoic acid. Peaks are colored based on the log-odds of a motif being present in a given peak.
Plot of expression and accessibility change for 5,000 randomly sampled peaks lacking the corresponding peak (right column). Pearson’s correlation for peaks not hav-
ing a given motif is for all peaks without that motif, not the 5,000 subsampled peaks. Pearson’s correlation coefficients were reported with 95% confidence interval
from bootstrapping with 10,000 replicates in parentheses.

B Peaks annotated for motifs of transcription factors related to retinoic acid biology (SMAD3, SMAD4, SMAD9, left column) showed weak correlation between changes in
gene expression and chromatin accessibility in response to high dose TGF-β. Peaks are colored based on the log-odds of a motif being present in a given peak. Plot of
expression and accessibility change for 5,000 randomly sampled peaks lacking the corresponding peak (right column). Pearson’s correlation for peaks not having a
given motif is for all peaks without that motif, not the 5,000 subsampled peaks. Pearson’s correlation coefficients were reported with 95% confidence interval from
bootstrapping with 10,000 replicates in parentheses.
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We performed motif analysis on our set of differential peaks

using chromVAR v1.8.0 (Schep et al, 2017), its associated cisBP

database of transcription factor motifs, and the motifmatchR pack-

age from bioconductor. To decrease the variance of the transcription

factor motif deviation scores, we pooled together the different

dosages of retinoic acid or TGF-β. The chromVAR code was modi-

fied to extract an internal metric that equals the fractional change in

fragment counts at motif-containing peaks for a given motif. For the

calculation of motif enrichment scores, the motifs we used were

derived from four distinct groups of motif recognition sequences:

RARA, HOX, SMAD, and AP-1.

Footprint was performed by subsetting on peaks that were not

differentially accessible but met the minimum normalized fragment

count threshold. These peaks were used as the basis for the HINT

(Li et al, 2019) subroutine of the Regulatory Genomics Toolbox

suite (http://www.regulatory-genomics.org/).

Hematopoietic differentiation data

We used pre-existing RNA- and DNase I-seq data (aligned to

genome assembly hg19) of hematopoietic differentiation (Data ref:

Gonz�alez et al, 2015b) to compare against our data. We used data

from the website provided in the paper (http://cbio.mskcc.org/

public/Leslie/Early_enhancer_establishment/) to download annota-

tions of peaks (peaksTable.txt), counts of DNase-seq

(DNaseCnts.txt), and RNA-seq counts (RNAseqCnts.txt). Counts

presented in these data files were quantile normalized and averaged

when biological replicates were available. We filtered peaks with

“CD14” or “CD34” under the “accessPattern” annotation to choose

from peaks that were relevant for comparing HSPCs to monocytes.

We used a log2 fold change of greater than or equal to 2 as a cutoff

for assigning differential peaks. We used the pre-existing annota-

tions of genes for each peak for peak-gene mapping. For determin-

ing the log2 fold change in gene expression we discarded genes

whose maximum expression value across the two conditions was

fewer than 5 quantile-normalized units.

For visualization of this dataset with our own accessibility data,

we realigned raw fastq files DNase-seq files to the hg38 assembly

using bowtie v2.3.4.1 and filtered out low-quality alignments with

samtools v1.1 to generate new bam alignment files. The alignment

files were combined using samtools merge in a single .bam file per

cell type. Bam files were converted to .bigWig format using deep-

tools 3.5.1 (Ramı́rez et al, 2016) “bamCoverage -- normal-

izeUsing CPM” to create a “consensus” .bigWig for visualization.

Peaks for CD34+ and CD14+ samples were made by filtering peaks

annotated for these populations in the “accessPattern” column and

creating separate .bed files using a custom script. The peak location

in these .bed files was then lifted over from hg19 to hg38 using

UCSC hgLiftOver. For comparing the overlap of peaks between data-

sets, we created consensus peak sets across all sample types and

used the bedtools intersect function to quantify the proportion of

peaks that intersected between the hematopoietic differentiation and

signaling data.

Peak annotation

Peaks were annotated using ChIPseeker (Yu et al, 2015) to deter-

mine the relative proportion of features in the data from Gonz�alez et

al (2015a) (DNAse-seq) and Sanford et al, 2020a (ATAC-seq). For

ease of visualization, certain categories like the three promoter cate-

gories were collapsed into one. ChiPseeker was also used to identify

the nearest transcriptional start site to a gene used for the nearest

integration approach described below. For making scatterplots of

change in accessibility versus change in expression annotated by

peak feature, a custom script was used to combine annotations from

ChIPseeker into four categories: downstream, gene body, intergenic,

and promoter.

For each of the top 150 most variable transcription factor motifs

we identified using differential accessibility analysis, we used the R

bioconductor motifmatchR package to annotate both the number of

motif matches and a log-likelihood match score for each peak.

IL-1α stimulation and myelocyte differentiation data

Pre-existing RNA- and ATAC-seq data from KB epithelial cells before

and after 1 h of stimulation with IL-1α (Data ref: Jurida et al, 2015b;

Data ref: Weiterer et al, 2020b) and differentiation data of cells

along the myelocyte lineage (Data ref: Ramirez et al, 2017b) were

used for further comparison. Both types of data were aligned and

normalized as mentioned above and peaks were annotated accord-

ingly.

For the IL-1α data, there was only one biological replicate and

the data were not collected concurrently. For the myelocyte data,

we compared three replicates of HL-60 promyelocytes and three

replicates of monocyte-derived macrophages, which were the

result of a directed differentiation over the course of 168 h that

involved exposure to vitamin D3 and phorbol-12-myristate-13-

acetate (PMA). For determining the log2 fold change in gene

expression we discarded genes whose maximum expression value

across the conditions was fewer than 5 TPM. We used a log2 fold

change of greater than or equal to 0.58 as a cutoff for assigning

differential peaks.

ATAC-seq footprinting

To examine whether possible “subpeaks” within nondifferentially

accessible peaks could explain concordance, be used “samtools

merge” to combine aligned and filtered .bam files across conditions

to make a single .bam file per condition. We then used a custom

script to make .bed files of the peaks that were not differentially

accessible and used HINT-ATAC (Li et al, 2019) from the regulatory

genomics toolbox using “rgt-hint footprinting,” “rgt-

motifanalysis matching,” and “rgt-hint differential”

commands to measure the difference in reading accessibility for

motifs across ethanol control and either high dose retinoic acid or

high dose TGF-β conditions.

RNA and ATAC data integration

We employed a variety of methods for assigning peaks to genes. In

the “nearest” approach, we used annotation from ChIPseeker to

assign each peak to the nearest transcriptional start site. With this

method, each peak is uniquely mapped to a single gene. In the

“window” approach, we used a window of 50 kilobases on either

side of the transcriptional start site (100 kilobases in total) to assign

peaks to a gene, which could result in a peak being assigned to
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multiple genes. To look at promoter-proximal peaks, we used a

window of 1.5 kilobases on either side of the transcriptional start

site (3 kilobases in total) to assign peaks to a gene. To examine pro-

moter distal peaks, we took all peaks within the 100 kilobase total

window and subsequently all peaks within 20 kilobases up or

downstream of the transcriptional start site. For creating windows

based on topologically associating domains (TADs), we used avail-

able MCF-7 TAD data (Barutcu et al, 2015) and lifted coordinates

from hg19 to hg38 using UCSC hgLiftOver. We then used bedtools

intersect to assign out peaks within TADs near transcriptional start

sites.

For the initial overlap analysis for Fig 1, peaks were assigned to

genes using the “nearest method.” Overlap was considered if any of

the differentially expressed genes had a differentially accessible

peak, regardless of whether the expression and accessibility changes

were in the same direction. Further analyses integrating gene

expression and chromatin accessibility data took the magnitude and

direction of change into account.

Intron/exon analysis

In order to look at the possibility of more nascent transcripts

being more concordant with chromatin accessibility changes, we

performed a secondary alignment of RNA-seq reads to an

intron-formatted .gtf file and quantified counts using HT-seq

with the option “--type intron.” Raw intron and exon

counts were quantile normalized and used to create scatterplots

to compare the change in counts across conditions versus

change in accessibility.

Track visualization

We visualized accessibility data using the web-based version of inte-

grative genomics viewer (IGV) (Robinson et al, 2011, 2020). We

prepared accessibility data for visualization by taking consensus

files and converting them to .bigWig file format with either frag-

ments per million or counts per million normalization. Bed files for

identifying peaks were created using custom scripts.

Statistics and software

Unless otherwise stated, we performed analyses using R v4.1.0 with

data manipulation and visualization done with tidyverse v1.3.1

(Wickham et al, 2019) and ggpubr v0.4.0. We used a Kolmogorov–
Smirnov test to compare means. Unless otherwise stated, 95% con-

fidence intervals for Pearson’s r were calculated by bootstrapping

using 10,000 replicates.

Data availability

The datasets and computer code produced in this study are available

in the following databases:

• Raw and processed data: BioStudies (S-BSST886; https://www.

ebi.ac.uk/biostudies/studies/S-BSST886).

• Intermediate data types, processing, and plotting scripts: GitHub

(https://github.com/kdhkiani/concordancePaper).

• Links to pre-existing data from other studies can be found in

Appendix Table S1.

Expanded View for this article is available online.
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