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Abstract
Progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) are both 4 micro-

tubule binding repeat tauopathy related disorders. Clinical trials need new biomarkers to

assess the effectiveness of tau-directed therapies. This study investigated the regional dis-

tribution of longitudinal diffusion tensor imaging changes, measured by fractional anisot-

ropy, radial and axial diffusivity over 6 months median interval, in 23 normal control

subjects, 35 patients with PSP, and 25 patients with CBS. A mixed-effects framework was

used to test longitudinal changes within and between groups. Correlations between

changes in diffusion variables and clinical progression were also tested. The study found

that over a 6 month period and compared to controls, the most prominent changes in PSP

were up to 3±1% higher rates of FA reduction predominantly in superior cerebellar pedun-

cles, and up to 18±6% higher rates of diffusivity increases in caudate nuclei. The most

prominent changes in CBS compared to controls were up to 4±1% higher rates of anisot-

ropy reduction and 18±6% higher rates of diffusivity increase in basal ganglia and wide-

spread white matter regions. Compared to PSP, CBS was mainly associated with up to 3

±1% greater rates of anisotropy reduction around the central sulci, and 11±3% greater rates

of diffusivity increase in superior fronto-occipital fascicules. Rates of diffusivity increases in

the superior cerebellar peduncle correlated with rates of ocular motor decline in PSP

patients. This study demonstrated that longitudinal diffusion tensor imaging measurement
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is a promising surrogate marker of disease progression in PSP and CBS over a relatively

short period.

Introduction
Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) are both sporadic
atypical parkinsonian disorders associated with abnormal 4 microtubule binding domain (4R)
tau protein accumulation in specific central nervous system neurons and glia, causing progres-
sive disability and death [1–3]. PSP is pathologically characterized by tau lesions mainly in the
basal ganglia and the brainstem [4], and clinically by postural instability and vertical supranuc-
lear gaze palsy [5]. CBD in contrast is pathologically characterized by tau lesions in the fronto-
parietal and motor cortices [6], while the disorder can clinically show a variety of phenotypes.
The most frequent presentation of CBD is with the corticobasal syndrome (CBS) characterized
by unilateral dystonia, rigidity, myoclonus, parkinsonism, alien limb and ideomotor apraxia
[7]. CBS can also be produced by pathology associated with other disorders such as Alzheimer’s
disease [8]. There is emerging evidence that pure 4R tauopathies without co-occurrence of
toxic amyloid plaques show faster brain atrophy than Alzheimer’s disease, which involves both
tau and amyloid [9].

As new pharmacologic agents targeting tau accumulation are being developed to treat 4R
tauopathies, there is an urgent need for powerful biomarkers that can accurately measure dis-
ease progression and assess the effectiveness of therapeutic interventions. Previous biomarker
studies of disease progression in PSP and CBS using MRI have focused on measuring rates of
regional gray matter atrophy [10–14]. Recently, there has been growing interests in also assess-
ing microscopic white matter degeneration, such as demyelination or loss of axonal fiber bun-
dles, using diffusion tensor imaging (DTI) [15]. A longitudinal DTI study [16] in PSP reported
an increase in tissue water diffusivity in the putamen over time. However, the regional distribu-
tion of such microstructural changes beyond the putamen remains largely unknown. It is also
unknown whether PSP and CBS each exhibit a characteristic pattern of regionally progressive
brain tissue damage that might reflect their respective disease progression.

This multicenter study investigates the progression of regional microstructural degeneration
in PSP and CBS using longitudinal DTI measurements. To the best of our knowledge, a longi-
tudinal DTI study of the regional distribution and rates of progressive microstructural degener-
ation in PSP and CBS has not been reported before. The main goals are: first, to determine the
pattern of regional microstructural changes in PSP and CBS as well as the degree to which the
changes exceed those seen in normal aging, potentially providing an imaging marker of disease
progression; second, to test the degree to which regional microstructural changes correlate
with growing clinical disability in PSP and CBS.

Materials and Methods

Subjects
Participants were recruited as part of two neuroimaging initiatives: the Four Repeat Tauopathy
Neuroimaging Initiative (4RTNI), which enrolled PSP and CBS patients, and the Neuroimag-
ing Initiative for Frontotemporal Lobar Degeneration (FTLDNI), which enrolled healthy sub-
jects. The study was approved by the Institutional Review Board of each participating site and
all subjects or their legal guardians gave informed written consent. Both initiatives were man-
aged by the University of California at San Francisco (UCSF) and followed the same principle
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study design and protocols for collecting clinical data and 3T Tesla MRI scans at three sites:
UCSF, University of California at San Diego (UCSD) and University Health Network (UHN),
University of Toronto. At UCSF, the MRI data were centrally checked for quality and pro-
cessed. A total of 92 subjects had two sequential MRI scans with a six months median scan
interval (range: 5 to 16 months). Data from six subjects (1 control, 4 PSP and 1 CBS) had to be
excluded because of egregious imaging artifacts. Of the remaining 86 subjects, 35 met criteria
for probable PSP [4], 25 for CBS (of those 23 were probable CBS [7], 2 had comorbid Alzhei-
mer’s disease [17]), and 23 were cognitively normal control subjects. Autopsy confirmed diag-
nosis is available for 7 PSP and one CBS patients. A subset of CBS patients (16 out of 25)
received amyloid assessments. Fourteen patients showed no evidence of elevated amyloid. Two
CBS patients were amyloid positive, but were included in the analyses based on a supplemental
study [18] that showed volumetric changes in these individuals were similar to their respective
diagnostic groups. The population demographic and clinical characteristics are summarized in
Table 1.

All 73 subjects who were enrolled in this study had a comprehensive neurological examina-
tion at baseline and follow-up visit that included: the PSP Rating Scale (PSPRS) [19] and the
Unified Parkinson's Disease Rating Scale (UPDRS) [20] for assessing motor disabilities; the
Mini-Mental State Examination (MMSE) [21] and the Montreal Cognitive Assessment
(MoCA) [22] for assessing global cognitive impairment; the Clinical Dementia Rating (CDR)
box scales [23], the Schwab and England Activities of Daily Living (SEADL) [24], and Func-
tional Activities Questionnaire (FAQ) [25] for measuring global living abilities.

MRI acquisition
Three MRI types, T1-weighted, T2-weighted, and DTI were collected using Siemens (Siemens
Healthcare Inc., USA) or GE (General Electric Healthcare, USA) 3T MRI machines. Acquisi-
tion parameters of the T1-weighted images, using a three-dimensional magnetization-prepared
rapid gradient echo (3D-MPRAGE) scheme, were: TR/TE/TI = 2300/3/900ms, flip angle of 9°,
sagittal orientation with 256×240×160 matrix size, 1 mm3 isotropic voxel resolution. Parame-
ters of T2-weighted images with fluid-attenuated inversion recovery were: TR/TE/TI = 6000/
390/2100ms and same resolution as MPRAGE. DTI was acquired using a standardized 2D sin-
gle-shot EPI sequence, which was initially optimized at UCSF and then installed at the two
other centers. The scan parameters are: with TR/TE = 9200/82ms, a 128×128 matrix in-plane
and 44 contiguous slices, yielding 2.7 mm3 isotropic resolutions. Four images with no diffusion
sensitization (b0 image) and 41 directional diffusion-weighted images (b = 1000s/mm2) were
acquired using parallel imaging with twofold acceleration to reduce susceptibility distortions
and signal loss. A standardized DTI protocol for diffusion time, gradient strength, and spatial
resolution was used to reduce variability between scanners. In addition and when appropriate,
statistical tests were performed with and without the addition of scan centers as co-variate to
determine the degree to which scanner variations potentially biased results.

Image processing and regions-of-interest extraction
The structural MRI and DTI data were processed using a largely automated processing pipeline
that is illustrated in Fig 1 and described also in a previous study [26]. Processing of DTI
included corrections for motion, eddy-current effects and susceptibility distortions as well as
voxelwise computation of fractional anisotropy (FA), radial diffusivity (rD), and axial diffusiv-
ity (aD). The DTI maps were then coregistered to the T1- weighted image via T2- weighted
weighted image in the native space of each subject for each time point. To reduce bias in image
coregistration toward a particular time point, a within-subject template was generated as
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Table 1. Demographic and clinical characteristics.

Information Control PSP CBS Cross-sectional group
differences (p)

Longitudinal changes (p)

Baseline Baseline Follow-up Baseline Follow-
up

Patients vs.
Control

PSP vs.
CBS

PSP CBS PSP vs.
CBS

No. of MRI scans 23 35 25 — — — —

Age at baseline MRI 66.0 ± 7.3 70.0 ± 7.7 65.6 ± 6.9 n.s. — — —

Sex (% male) 43 43 44 n.s. — — —

Mean MRI interval
(ranges) (mo)

7.8 (5–
16)

6.4 (5–11) 7.0 ± 2.0 (5–14) — — — —

Handedness 21R 30R: 5L 24R: 1L n.s. — — —

Side of motor
symptoms[1]*

— 13R: 11L: 9Sym 13R: 7L — — — —

Years of symptoms* — 5.2 ± 4.3 4.5 ± 3.3 n.s. — — —

Clinical visit interval
(mo)

7.4 ± 2.8 6.5 ± 1.1 6.9 ± 2.1 — — — —

Amyloid[2] (Neg:Pos:
NA)

— — 14Neg:2Pos:9NA — — — —

Autopsy confirmed
subjects

— 7 1 — — — —

L-dopa History (% On) — 48.6 51.4 56.0 48.0 — — — — —

L-dopa at MRI (% On) — 37.1 30.6 40.0 36.0 — — — — —

PSPRS total[3]* — 36.8 ± 13 39.8 ± 15 24.7 ± 9.2 32.2 ± 11 — 0.005[b] 0.007 <0.001 0.01[c]

PSPRS-Bulbar[4] — 2.8 ± 1.5 3.1 ± 1.4 1.4 ± 1.0 2.2 ± 1.4 — 0.002[b] n.s. n.s. n.s.

PSPRS-Ocular Motor[4] — 7.1 ± 3.7 8.1 ± 3.9 1.6 ± 1.9 3.5 ± 3.6 — <0.001[b] 0.02 0.003 n.s.

PSPRS-Limb Motor[4] — 5.1 ± 2.7 5.2 ± 3.2 8.2 ± 3.6 9.6 ± 4.0 — <0.001[c] n.s. 0.01 0.02[c]

PSPRS-Gait/Midline[4] — 10.0 ± 4.3 11.5 ± 5.1 5.2 ± 4.7 7.3 ± 4.9 — 0.002[b] 0.01 <0.001 n.s.

UPDRS-III total[5]* — 29.1 ± 13 32.3 ± 14 26.8 ± 11 32.8 ± 12 — n.s. n.s. 0.001 n.s.

CDR Box[6]* 0.1 ± 0.5 4.1 ± 2.6 3.5 ± 2.7 3.2 ± 2.8 3.1 ± 3.6 0.001[a] n.s. n.s. n.s. n.s.

MMSE[7]* 29.2 ± 1.0 25.7 ± 4.0 25.2 ± 3.8 24.9 ± 4.2 24.0 ± 5.1 <0.001[a] n.s. n.s. n.s. n.s.

MoCA total[8]* 27.7 ± 2.1 22.1 ± 4.1 21.6 ± 3.9 19.8 ± 6.4 19.6 ± 6.9 <0.001[a] n.s. n.s. n.s. n.s.

FAQ[9]* 0.4 ± 0.5 13.8 ± 7.6 15.1 ± 7.7 10.9 ± 8.7 13.2 ± 9.0 <0.001[a] n.s. n.s. n.s. n.s.

SEADL[10](%)* 100 59 ± 27 46 ± 26 58 ± 20 49 ± 24 <0.001[a] n.s. 0.002 0.03 n.s.

[1] The dominant side of motor symptoms was determined by an experienced neurologist (J.C.R.) from clinical data reviews.
[2] Numbers of patients that assessed with amyloid based on either amyloid imaging or CSF. Neg = amyloid negative cases; Pos = amyloid positive cases;

NA = subjects do not have available amyloid assessment.
[3] PSPRS = PSP Rating Scale, range from 0 (best) to 100 (worst).
[4] Four motor subscores from total PSPRS were analyzed: PSPRS-Bulbar, PSPRS-Ocular Motor, PSPRS-Limb Motor, and PSPRS-Gait/Midline.
[5] UPDRS-III = Part-III (motor exams) of the Unified Parkinson's Disease Rating Scale, range from 0 (best) to 108 (worst).
[6] CDR Box = Clinical Dementia Rating Sum of Boxes, range from 0 (best) to 18 (worst).
[7] MMSE = Mini-Mental State Examination, range from 0 (worst) to 30 (best).
[8] MoCA = Montreal Cognitive Assessment, range from 0 (worst) to 30 (best).
[9] FAQ = Functional Activities Questionnaire, range from 0 (best) to 30 (worst).
[10] SEADL = Schwab and England Activities of Daily Living, range from 0% (worst) to 100% (best).

* Subject numbers of missing information: Side of motor symptoms in 2 PSP, 5 CBS; Years of Symptom in 8 PSP and 2 CBS; PSPRS total in 5 PSP and

7 CBS; UPDRS-III total in 9 PSP and 9 CBS; CDR Box in 12 Controls, 3 PSP and 1 CBS; MMSE in 3 PSP and 4 CBS; MoCA in 1 Control, 12 PSP and 4

CBS; FAQ in 12 Controls, 10 PSP and 3 CBS; SEADL in 6 Controls, 6 PSP and 8 CBS subjects were missing.
[a] Scores significantly worse in PSP compared to control and CBS compared to control.
[b] Scores significantly worse in PSP compared to CBS.
[c] Scores significantly worse in CBS compared to PSP.—indicates not applicable. n.s. indicates not significant. mo = month. R:L:Sym = Right:Left:

Symmetric. Neg:Pos:NA = Positive:Negative:Not-tested.

doi:10.1371/journal.pone.0157218.t001
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reference by warping the corresponding baseline and follow-up images into the same space.
Thereafter, an inter-subject registration of the within-subject templates across all subjects was
performed via a nonlinear diffeomorphic registration (DARTEL) [27] that includes tissue seg-
mentation, diffeomorphic warping, spatial normalization of the individual subject templates to
the standard Montreal Neurological Institute (MNI) space [28] to accomplish anatomic label-
ing using the JHU-DTI-MNI (Type I WMPM) whole brain atlas [29]. Once in MNI space, all
images are averaged to generate a population-specific template map. To further ensure that the
population template matches well with the JHU-DTI-MNI atlas, an additional affine registra-
tion was performed between the JHU-DTI-MNI atlas and the population-specific template.
Lastly, the JHU-DTI-MNI atlas was reversely transformed to each subject’s template to assign
the anatomical labels onto the original images in their respective within-subject space. The ana-
tomical labels were aggregated into 120 regions of interests (ROIs) that cover the entire white
matter, including 42 white matter ROIs, 58 tract ROIs, and 20 basal ganglia and brainstem
ROIs, for each baseline and follow-up image, respectively.

Statistical analysis
All statistical tests were carried out using the R Project of Statistical Computing (http://www.r-
project.org/). Regional variations in FA, rD, and aD changes were separately entered as depen-
dent variables using linear mixed-effects regression model, in which a time-by-diagnosis inter-
action term was included to estimate a fixed group effect on the rate of DTI changes while
variations in scan intervals across subjects were treated as random effects. Group differences
were tested pairwise. Laterality of DTI changes were further tested by including a side-by-time
interaction term. Following a similar design in our previous study [30], side was defined as the
ipsilateral or contralateral hemisphere relative to the side of motor symptoms. For patients

Fig 1. Illustration of the DTI processing pipeline for longitudinal analysis. FA = fractional Anisotropy;
rD = radial diffusivity; aD = axial diffusivity; WM = white matter; GM = gray matter. See text for details of
native, subject and MNI space definitions.

doi:10.1371/journal.pone.0157218.g001
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with a symmetric motor symptom and for control subjects, left and right hemispheric DTI
measures were averaged. Correlations between regional DTI changes and rates of clinical
symptom progression were evaluated using Pearson’s correlation coefficients. To control the
type I error for multiple testing, the significance level of DTI measures was adjusted using the
false discovery rate (FDR) [31]. All tests were two-tailed with a false discovery rate corrected
significance level of PFDR<0.05.

Results

Demographics and neuropsychological findings
Demographic and clinical performance data at baseline and follow-up are summarized in Table 1.
Patients and control subjects had similar age and gender distributions. At baseline, patients showed
significant impairments in both motor and cognitive function compared to control subjects. PSP
patients were more impaired than CBS at baseline based on total PSPRS and PSPRS subscores with
the exception of the PSPRS Limb-motor subscore which showed CBS patients were more impaired.
However, PSP and CBS patients had similar degrees of cognitive impairment and disease durations.
Longitudinally, compared to control, both PSP and CBS patients showed significantly declined
total PSPRS, PSPRS-Ocular Motor and PSPRS-Gait/Midline subscores, and SEADL scores. CBS
patients further showed longitudinal decline in PSPRS Limb-motor subscore (p = 0.01) and total
UPDRS score (p = 0.001) over the six months. In comparison between PSP and CBS, CBS patients
declined clinically faster than PSP patients based on total PSPRS (p = 0.01) and PSPRS Limb-motor
subscore (p = 0.02). Other clinical declines over time were not significant.

Longitudinal DTI differences between groups
Regional patterns of group differences in FA, rD, and aD at baseline are illustrated in S1 Fig.
The results are largely consistent with previous cross-sectional reports in literature [32–37].
Group differences in regional DTI changes over 6 months are illustrated in Fig 2 and S2 Fig.
Tabulated summaries are given in S1 Table.

Compared to control subjects, PSP patients exhibited higher rates in FA reduction predomi-
nantly involving the superior cerebellar peduncles (left: 1.9±0.8% from baseline, PFDR = 0.01,
right: 2.6±1.2%, PFDR = 0.02) and to some degree also the left inferior frontal white matter
region. S2 Fig depicted individual trajectories of FA changes in the superior cerebellar pedun-
cle, where PSP patients had specifically reduced FA at baseline and over time than control,
whereas CBS patients had no significant baseline FA reduction than control, nor a significant
FA reduction over time. PSP patients also had higher than normal rates in increased rD involv-
ing bilaterally the caudate nuclei (left: 15.8±5%, PFDR = 0.004; right: 17.6±6%, PFDR = 0.003)
and to some degree the thalamus and midbrain. Furthermore, PSP patients had higher than
normal rates of increased aD bilaterally in the caudate nuclei (left: 10.7±3%, PFDR = 0.002;
right: 9.6±3%, PFDR = 0.004), and to some degree in the left thalamus and bilateral midbrain.

Compared to control subjects, CBS patients exhibited a diverse pattern of increased DTI
abnormalities over 6 months. In detail, CBS patients showed higher than normal FA reduction
rates between 2 to 4%±1% bilaterally in white matter regions including the frontal, parietal,
occipital and temporal lobes. S2 Fig depicted individual trajectories of FA changes in the post-
central white matter region, which showed the highest rates of FA reduction over time. In this
region, CBS patients had specifically reduced FA at baseline and over time than control sub-
jects, whereas PSP patients had intermediate FA reduction between CBS and control at baseline
and had no greater FA reduction over time than control group. In addition to FA, CBS patients
also had higher rates of rD increase that involved widespread supratentorial regions as well as
the basal ganglia and brainstem. The bilateral caudate nuclei had the highest rate of rD increase
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(13±3%, PFDR<0.001). CBS patients further showed higher than normal rates in aD increase
bilaterally in the caudate nuclei (11±2%, PFDR<0.001), as well as in the superior longitudinal
fasciculus, mid-posterior part of the cingulum, and the supramarginal white matter regions.

Compared to PSP, CBS was associated with higher rates of up to 3±1% FA reduction over 6
months in the pre- and post-central, superior parieto-occipital as well as the temporal white matter
regions, and higher rates of rD and aD increases in most of these regions, with the highest rates of
rD and aD increases in the right superior fronto-occipital fasciculus (rD: 11±3%, PFDR<0.001; aD:
8.4±3%, PFDR = 0.002). No brain region in PSP had higher DTI rates than CBS in any region.

Given the difficulty in pathologically separating CBD and PSP, an analysis was also performed
with the patients pooled into a single group. Patients had around 2±1% (PFDR<0.05) higher than
normal rates of FA reduction than control subjects in bilateral superior fronto-occipital fasciculus
and bilateral midbrain was well as in left pre- and post-central white matter areas and right thala-
mus. Patients also had higher than normal rates of rD increase that reached up to 25±6%,
(PFDR<0.001). The regions included bilaterally the caudate nucleus, the thalamus and the mid-
brain, and to some degree the mid-posterior cingulum as well as pre-central and supramarginal
white matter areas. In addition, the patients had higher than normal rates of aD increase that
reached up to 15±4% (PFDR<0.001) bilaterally in the caudate thalamus and midbrain.

Differences in DTI changes over time between the ipsilateral and contralateral side in
patients were not significant.

Clinical and imaging correlations
Correlations between DTI changes and clinical decline are summarized in Table 2. For correla-
tions between the motor decline and DTI changes, in PSP, only rates of decline in PSPRS-Ocu-
lar subscores and rates of increased aD in the superior cerebellar peduncle were significantly

Fig 2. Surface-rendered brain maps of group differences in regional DTI rates. Row A: fractional anisotropy (FA); Row B: radial diffusivity (rD); Row
C: axial diffusivity (aD). Color scales indicate rates of percent change from baseline within 6 months.

doi:10.1371/journal.pone.0157218.g002
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Table 2. Pearson’s correlation co-efficient and PFDR values showing associations between estimated rates of DTI and rates of clinical measures in
selected ROIs.

Region of
interest*

Measure Statistics PSPRS total PSPRS
Ocular
Motor

PSPRS Limb
Motor

UPDRS total MMSE MoCA SEADL

In
PSP

In
CBS

In
PSP

In
CBS

In
PSP

In
CBS

In
PSP

In
CBS

In
PSP

In
CBS

In
PSP

In
CBS

In
PSP

In
CBS

Precentral FA Co-
efficient

0.04 -0.08 0.08 0.10 0.18 -0.44 -0.23 -0.11 0.13 -0.10 -0.14 -0.11 -0.06 -0.11

WM (PFDR) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.)

rD Co-
efficient

-0.10 0.10 -0.27 -0.12 -0.21 0.60 0.14 0.07 -0.02 0.19 0.19 0.26 0.04 -0.04

(PFDR) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (<0.01) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.)

aD Co-
efficient

-0.16 0.01 -0.34 -0.17 -0.19 0.42 -0.05 -0.02 0.07 0.27 0.15 0.35 0.07 -0.11

(PFDR) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.)

Postcentral FA Co-
efficient

-0.35 -0.29 -0.11 -0.07 -0.41 -0.57 -0.04 -0.02 0.33 0.29 0.40 0.28 0.37 0.36

WM (PFDR) (n.s.) (n.s.) (n.s.) (n.s.) (0.03) (0.01) (n.s.) (n.s.) (n.s.) (n.s.) (0.03) (n.s.) (0.05) (n.s.)

rD Co-
efficient

-0.02 0.00 -0.14 -0.20 -0.16 0.53 0.18 -0.07 -0.13 0.18 0.03 0.09 0.03 -0.04

(PFDR) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (0.02) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.)

aD Co-
efficient

-0.02 0.12 -0.15 -0.18 -0.11 0.51 0.15 -0.15 0.04 0.07 0.11 0.02 0.02 -0.26

(PFDR) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (0.03) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.)

Mid- FA Co-
efficient

-0.07 0.03 0.06 0.14 0.10 -0.08 -0.06 0.01 0.47 0.07 0.26 0.25 -0.06 -0.16

posterior (PFDR) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (0.01) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.)

Cingulum rD Co-
efficient

-0.05 0.06 -0.17 -0.26 -0.28 0.11 -0.11 0.05 -0.41 -0.17 -0.20 -0.26 0.17 -0.08

(PFDR) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (0.02) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.)

aD Co-
efficient

-0.21 0.14 -0.22 -0.01 -0.27 0.04 -0.28 0.04 0.03 -0.08 0.09 0.13 0.18 -0.38

(PFDR) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.)

Superior FA Co-
efficient

-0.30 -0.06 -0.20 -0.11 -0.11 0.18 -0.16 0.03 0.07 -0.02 0.17 -0.01 0.04 0.04

Cerebellar (PFDR) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.)

Peduncle rD Co-
efficient

0.32 0.09 0.28 -0.18 0.05 0.06 0.14 -0.17 -0.05 -0.23 -0.19 -0.16 -0.04 -0.15

(PFDR) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.)

aD Co-
efficient

0.25 0.26 0.41 -0.13 0.08 0.12 0.02 -0.27 0.08 -0.56 -0.32 -0.40 -0.22 -0.28

(PFDR) (n.s.) (n.s.) (0.03) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (0.01) (n.s.) (n.s.) (n.s.) (n.s.)

Thalamus FA Co-
efficient

-0.24 0.00 -0.01 0.17 -0.07 -0.38 -0.19 -0.09 0.20 0.10 0.12 0.14 -0.02 -0.02

(PFDR) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.)

rD Co-
efficient

0.36 0.13 0.07 -0.14 0.23 0.28 0.04 0.15 -0.39 -0.36 -0.35 -0.34 -0.22 -0.13

(PFDR) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (0.04) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.)

aD Co-
efficient

0.32 -0.02 0.14 -0.36 0.16 0.26 0.08 0.10 -0.13 -0.19 -0.18 -0.13 -0.22 -0.00

(PFDR) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.) (n.s.)

FA = fractional anisotropy; rD = radial diffusivity; aD = axial diffusivity; WM = white matter. Bold: Significant correlations between rates of abnormal DTI

and rates of clinical dysfunctions in each patients’ group. n.s.: PFDR � 0.05.

*Regions are not listed if there is no significant correlation observed between rates of clinical changes (e.g. PSPRS-Bulbar, PSPRS-Gait/Midline, or FAQ)

and rates of DTI changes.

doi:10.1371/journal.pone.0157218.t002
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correlated (r = 0.41, PFDR = 0.03). In CBS, rates of decline in PSPRS-Limb subscores correlated
with rates of all three DTI variables in the post-central white matter region (FA: r = -0.57,
PFDR = 0.01; rD: r = 0.53, PFDR = 0.02; aD: r = 0.52, PFDR = 0.03). Correlations between decline
in total PSPRS (or total UPDRS) and DTI changes were not significant. For other clinical defi-
cits (e.g. MMSE, MoCA, and SEADL), significant correlation were mainly observed in PSP
group. In particular, decline in MoCA and SEADL correlated with rates of FA decline in the
post-central region, and decline in MMSE correlated with changes over time of FA and rD in
the mid-posterior cingulum.

Discussion
The main novel result of this study is that PSP and CBS are each associated with a distinct pat-
tern of longitudinal DTI changes in white matter relative to normal aging. These patterns are
consistent with histopathological studies [38–40] of the distributions of tau lesions in each dis-
ease. Furthermore, the finding that CBS yielded greater DTI changes than PSP and control sub-
jects is consistent with the view that CBS pathology has a predilection for white matter. It is
also noteworthy that microstructural changes were detectable over a relatively short imaging
interval of only six months on average, consistent with a rapid progression of primary tauopa-
thies [14]. Taken together, longitudinal DTI is potentially a surrogate marker for PSP and CBS
progression and potentially useful for assessing disease modifying interventions.

In PSP, the finding of progressive FA reduction particularly involving the superior cerebel-
lar peduncle is consistent with histopathological reports of high vulnerability of this region to
tau accumulation [38]. The superior cerebellar peduncle consists mainly of dentatorubrothala-
mic tracts with efferents from the dentate nucleus of the cerebellum that ascend to the ventro-
lateral thalamus through the superior cerebellar peduncles. Degeneration and activated
microglia along this tract are thought to be a hallmark of PSP pathology [41,42]. The character-
istic degeneration of the superior cerebellar peduncle in PSP has been demonstrated in a num-
ber of cross-sectional DTI studies [35,37,43,44]. Our longitudinal results expand on these
findings in that the degeneration of the superior cerebellar peduncle further progressed in a
short period from damage that was already detectable at baseline, and suggest that FA changes
in this key region may mirror the progression of PSP pathology.

Other prominent regions with high rates of diffusivity changes in PSP included the caudate,
thalamus and midbrain. These regions are consistent with neuropathological distributions of
tau-positive astrocytic inclusions in the basal ganglia, and the thalamus [39]. However, as to
the biological underpinning that are reflected in large rD and aD changes in absence of major
FA changes is notoriously complicated [45]. More DTI studies augmented by autopsy are nec-
essary to determine the underpinning of rD and aD changes in PSP.

The distribution of the rapid DTI changes over time in CBS than control and PSP subjects is
largely consistent with histopathological findings of diffuse cerebral tau accumulation in this
disease [40]. Unlike the histopathological features of PSP that are characterized by neuronal
loss, gliosis, and abundant neurofibrillary tangles in the basal ganglia, midbrain and brainstem
[2], the extensive accumulation of astrocytic plaques and tau-immunoreactive inclusions
throughout the white matter is a striking feature of CBD [46]. Our results fit well with autopsy
in CBD that report larger burden of astrocytic plaques and tau-immunoreactive inclusions
throughout the white matter than those observed in PSP and Pick’s disease [40]. These results
over all, suggest that progressive white matter degeneration is a prominent feature of CBS. In
contrast to our reports of up to 4% FA reduction and 13% diffusivity increases per 6 months,
previous structural MRI studies [13,14] have only reported up to 4%/year progressive regional
gray matter atrophy in autopsy confirmed CBD. Whether the DTI changes, reflecting
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progressing microstructural degeneration, precede the macroscopic atrophy remains to be
determined in future studies that use structural MRI and DTI together.

Our findings from evaluating DTI data of PSP and CBS together versus evaluating them
separately are worth a discussion in the context of difficulties mapping the clinical features of
PSP and CBS to a common pathology [47]. Based on using PSP and CBS data together, the
finding of progressive regional microstructural degeneration in primarily motor related white
matter regions suggests that the conditions share a neuropathological spectrum beyond the
diverging pattern of progressive white matter degenerations that differentiates them. Arguably
it is important to recognize a patient’s individual need for a clear diagnosis of either CBS or
PSP and a differential management plan despite the possibility that the two clinical phenotypes
have overlapping pathological underpinnings.

We found that aD changes in the superior cerebellar peduncle best correlated with decline
in PSPRS-Ocular motor subscores, although this correlation was significant only for aD, but
weak for FA and rD. The lack of statistic powers of this correlation may due to short follow-up
time, small sample size, or relatively later stage of the disease. However, the potential role of
DTI changes of the superior cerebellar peduncle as marker of PSP progression should not be
neglected, given the knowledge that selective damage to the superior cerebellar tracts contrib-
ute to the gaze palsy [48].

The dominance of increased regional rD rates as compared to regional FA rates seems a
prominent feature in CBS and PSP. Although the biological underpinning of various DTI
measures is notoriously difficult, increased rD is generally thought to indicate demyelination
[49], whereas decreased FA has been associated with a variety of microstructural alterations,
including loss or disruption of both axons, loss of degradation of myelin sheets, glial cells
infiltration. We therefore conclude that a major component of white matter degradation in
CBS and PSP is demyelination. DTI findings from animal studies suggest axonal damage
leads to aD decrease in early axonal injury and aD increase in later stage of the damage [50].
Human cerebral studies showed aD increase in neuropathologies. We therefore cautiously
interpret the finding of prominent regional aD increase in PSP and CBS as indication for axo-
nal damage.

A limitation of the study is that diagnosis was based on clinical symptoms without autopsy
confirmation in the majority of cases. While the clinical criteria are relatively accurate for iden-
tifying PSP pathology, they are known to lack specificity for CBD pathology [7]. Comorbid tau
conditions in CBS patients, such as Alzheimer’s disease, might have biased the findings in CBS.
In this study, absence of Alzheimer’s disease was established based on negative results from
amyloid imaging or CSF analysis in the majority (88%) of CBS patients. However, other tau
related conditions that confound pathologies of CBD couldn’t be fully excluded from the
study. It is worthwhile to note that the finding of abnormal regional DTI values in CBS pre-
vailed regardless whether the analysis was limited to the negative brain amyloid cases or also
included the cases with unknown amyloid status. The result suggests that amyloid prevalence
unlikely plays a major role in the abnormal DTI pattern in CBS. However, additional studies
involving validated positive amyloid cases will be necessary to come to a more firm conclusion
about the role of amyloid in CBS. Eventually, neuropathological confirmation of CBD is war-
ranted to interpret the findings in relation to CBD pathology. Another limitation is that,
although there was no evidence of bias fromMRI machine variations across the three centers
based on patient data (88% of DTI was collected using one machine at UCSF), the exclusion of
potential bias in comparisons between DTI data from patients and control subjects is not con-
clusive, because all controls were scanned on one machine. The assumption has been made
that MRI machine variations are not group specific.

Longitudinal DTI of PSP and CBS

PLOSONE | DOI:10.1371/journal.pone.0157218 June 16, 2016 10 / 13



Supporting Information
S1 Fig. Patterns of baseline group difference in FA (row A), rD (row B), and aD (row C).
(TIF)

S2 Fig. Individual trajectories of FA changes in A: the superior cerebellar peduncle, and B:
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