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Abstract 

Background:  Acute kidney injury (AKI) in pediatric critical care patients is diagnosed using elevated serum creati‑
nine, which occurs only after kidney impairment. There are no treatments other than supportive care for AKI once it 
has developed, so it is important to identify patients at risk to prevent injury. This study develops a machine learning 
model to learn pre-disease patterns of physiological measurements and predict pediatric AKI up to 48 h earlier than 
the currently established diagnostic guidelines.

Methods:  EHR data from 16,863 pediatric critical care patients between 1 month to 21 years of age from three inde‑
pendent institutions were used to develop a single machine learning model for early prediction of creatinine-based 
AKI using intelligently engineered predictors, such as creatinine rate of change, to automatically assess real-time AKI 
risk. The primary outcome is prediction of moderate to severe AKI (Stage 2/3), and secondary outcomes are predic‑
tion of any AKI (Stage 1/2/3) and requirement of renal replacement therapy (RRT). Predictions generate alerts allowing 
fast assessment and reduction of AKI risk, such as: “patient has 90% risk of developing AKI in the next 48 h” along with 
contextual information and suggested response such as “patient on aminoglycosides, suggest check level and review 
dose and indication”.

Results:  The model was successful in predicting Stage 2/3 AKI prior to detection by conventional criteria with a 
median lead-time of 30 h at AUROC of 0.89. The model predicted 70% of subsequent RRT episodes, 58% of Stage 2/3 
episodes, and 41% of any AKI episodes. The ratio of false to true alerts of any AKI episodes was approximately one-to-
one (PPV 47%). Among patients predicted, 79% received potentially nephrotoxic medication after being identified by 
the model but before development of AKI.

Conclusions:  As the first multi-center validated AKI prediction model for all pediatric critical care patients, the 
machine learning model described in this study accurately predicts moderate to severe AKI up to 48 h in advance 
of AKI onset. The model may improve outcome of pediatric AKI by providing early alerting and actionable feedback, 
potentially preventing or reducing AKI by implementing early measures such as medication adjustment.
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Background
AKI affects up to a quarter of pediatric critical care 
patients [1], and is independently associated with higher 
mortality, longer lengths of stay, and subsequent develop-
ment of chronic kidney disease [2–4]. Currently, AKI is 
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diagnosed using Kidney Disease Improving Global Out-
comes (KDIGO) clinical practice guidelines, based on 
serum creatinine and urine output [5]. However, since 
renal impairment typically precedes increases in creati-
nine, staging guidelines only detect AKI after renal injury 
or impairment has already set in. Whilst in pediatric 
intensive care units (PICU) there are often no specific 
treatments to reverse AKI after it has developed [6], some 
studies have shown that early improvements in renal 
function after AKI may lead to better outcomes [1, 5, 7]. 
Therefore, early prediction of AKI is important for iden-
tifying patients at risk of developing AKI and intervening 
early to improve outcomes. While AKI is multifactorial 
in PICU patients, it most commonly occurs following a 
period of renal hypoperfusion due to hypotension. Sim-
ple interventions which might improve renal function 
include ensuring adequate renal perfusion with intra-
vascular filling or inotropes and avoiding or reducing 
nephrotoxic drugs. The Acute Dialysis Quality Initiative 
(ADQI) group recommended developing machine learn-
ing models for early prediction of moderate to severe 
AKI (Stage 2/3) between 48 and 72  h before diagnosis, 
and suggested that the prediction model should present 
information about patient measurements contributing to 
these risks and provide feedback to practitioners regard-
ing potential actionable items [6]. Many research groups 
have tackled early prediction of AKI using electronic 
health records (EHR) data [8–11], but no model so far 
explains the rationale behind specific predictions despite 
a clear need for explainable and actionable predictions [6, 
12]. In pediatric patients where physiology differs greatly 
with age, developing a predictive model that learns age-
appropriate signs of early AKI remains an additional 
challenge. This study aims to develop a prediction model 
of AKI for general pediatric critical care patients, run-
ning in real-time, that can detect subtle ongoing changes 
in patient physiology and alert caregivers about patients 
at high risk of AKI and provide interpretable context 
and suggested actions. The primary outcome is the abil-
ity to predict the onset of moderate to severe AKI 6 to 
48 h before it develops. The same model is also assessed 
on secondary AKI-related outcome measures, including 
development of any AKI (Stage 1/2/3) and requirement 
of renal replacement therapy (RRT). To our knowledge, 
this is the first AKI prediction model built to explain each 
prediction, and the first multi-center validated model for 
general pediatric critical care AKI prediction.

Methods
Study population
The study cohort included patients from the PICU and 
cardiothoracic intensive care units (CTICU) of three 
independent tertiary-care pediatric intensive care 

centers. The first data set was from a US hospital (Hos-
pital 1) between 2003 to 2011, the second was from a 
UK hospital (Hospital 2) between 2009 to 2015, and 
the third was from a US Hospital (Hospital 3) between 
2014 to 2019. Records were de-identified for this study, 
and informed consent was waived as specified in 
Declerations.

Derivation and validation data
Patient data from each of the three centers were split into 
derivation (70%), validation (15%), and holdout testing 
(15%) datasets with no patient overlap. One single pre-
diction model was designed and trained using derivation 
and validation data from all hospitals, and then validated 
on the holdout test data of each hospital.

Cohort extraction
Creatinine measurements were used to label AKI stages 
using KDIGO serum creatinine criteria [5]. Baseline cre-
atinine was determined by the mean normal creatinine 
level for age and gender group [14–16]. Urine output cri-
teria were not used due to unreliable records. AKI onset 
times of patients who developed moderate to severe AKI 
were labeled as the time of measurement of the first cre-
atinine contributing to AKI Stage 2 or higher; onset times 
of patients who developed Stage 1 AKI, but not Stage 2/3, 
were labeled as the time of measurement of the first cre-
atinine contributing to Stage 1; onset times of patients 
who never developed AKI were selected as a random 
time during the stay. The following exclusion criteria 
were applied: (1) patients below one month (neonatal), 
above 21 years, or without a valid age record, (2) patients 
with AKI in the first 12 h of ICU stay, (3) patients with 
length of stay less than 24  h, and (4) if a single patient 
had multiple encounters, only one encounter was used 
while remaining encounters were excluded. The included 
encounter was the one with the highest stage of AKI or 
the longest length of stay if the highest AKI stage was the 
same in multiple encounters.

Outcomes
The primary outcome was prediction of Stage 2/3 AKI 
during the timeframe 48 to 6  h before onset. For the 
purpose of training the model on the primary outcome, 
patients without AKI or those with AKI Stage 1 were 
labeled as control patients. The trained model was also 
tested on secondary outcomes, including prediction of 
any AKI (Stages 1/2/3) and prediction of requirement of 
RRT.

Baseline comparator
The renal angina index (RAI), shown to be predictive 
of AKI at PICU admission [17], was used as a baseline 



Page 3 of 8Dong et al. Crit Care          (2021) 25:288 	

comparator. RAI was calculated prior to AKI onset, as 
detailed in Additional file  1, and compared to model 
predictions.

Predictors
Four types of data elements including vital signs, labora-
tory values, medication history, and ventilation parame-
ters were extracted from the EHR and used as predictors 
to train and build the model. Statistics including mean, 
median, minimum, maximum, change, and last value in 
the past 30 h were derived for each predictor. For creati-
nine, an additional creatinine rate of change (CRoC) was 
determined by calculating the slope (mg/dL/hour) of a 
line least square fitted to the creatinine measurements 
within the previous 48 h. Medication data were divided 
into three categories: low nephrotoxic potential drugs, 
high nephrotoxic potential drugs, and vasoactive drugs 
as shown in Additional file  1. The number of times any 
medication from each category was administered in the 
previous week was summed and used as predictors. This 
led to a total of 250 candidate predictors, which were 
finalized to 15 model input predictors shown in Table 2 
in a feature selection process described in Additional 
file 1.

Predictors were aggregated every six hours to gener-
ate AKI risk predictions. After model design and feature 
selection, the final model was trained on derivation and 
validation data spanning 48 to 24 h before AKI onset, and 
tested on holdout data 48 to 6 h before AKI onset. The 
model is able to make predictions when some predictors 
are missing in a given timeframe, removing the need for 
data imputation.

Statistical analysis methods
The model was developed following the Transparent 
Reporting of a Multivariate Prediction Model for Individ-
ual Prognosis or Diagnosis guidelines [13]. The derivation 
and validation data were trained on an age-dependent 
ensemble machine learning model [15] shown in Fig.  1, 
which belongs to a class of models that make classifica-
tions based on the sum of an ensemble of simpler ‘weak 
classifiers’. A weak classifier is learned for each predic-
tor and age pair to predict AKI risk given the measured 
value of that predictor, and can be thought of as a sophis-
ticated lookup table based on the patient’s age and single 
predictor value, such as age and bilirubin. The model’s 
consideration of age-dependent risk makes it adaptable 
to a wide patient age range. Example weak classifiers for 
CRoC and high nephrotoxic potential drugs are shown in 
Fig. 1. Since the predicted AKI risk is a sum of all weak 
classifier predictions, the contribution of each non-age 
predictor can be separated and ranked for each predic-
tion made. This enables the model to display the top 

predictors contributing to the highest risk for each pre-
diction, thereby making the AKI risk predictions trans-
parent and interpretable for the user. The predicted risk 
was adequately calibrated and evaluated by verifying 
that the calibration curve is close to the diagonal of AKI 
occurrence rate against predicted risk, as shown in Addi-
tional file 1.

Results
The final cohort demographics including the combined 
derivation, validation, and holdout cohorts of each hospi-
tal are shown in Table 1. The model uses 15 input predic-
tors plus age, as shown in Table 2.

Performance
The trained model predicts AKI well with AUROC 
increasing from 0.83 to 0.89 within the training predic-
tion window of 48 to 24 h before AKI onset, decreasing 
slightly to 0.85 outside the training window, as shown in 
Fig.  2a. Performance metrics are shown in more detail 
in Additional file 1. Figure 2b shows that model perfor-
mance between the two US hospitals (Hospital 1 and 3) 
were comparable, while the performance was worse on 
the UK hospital (Hospital 2), likely due to its smaller data 
size and differences in data characteristics (see Discus-
sion). Performance was slightly better in older patients: in 
CDC-defined age groups of 1mos to 2 years, 2 to 12 years, 
12 to 16 years, and 16 to 21 years, respectively, AUROC 
were 0.84, 0.90, 0.88, and 0.95. The model showed no per-
formance difference between PICU and CTICU patients.

The trained model can identify 70% of RRT, 58% of 
AKI Stage 2/3, and 41% of any AKI patients during the 
prediction timeframe as quantified in Table 3. AKI alerts 
triggered by the model have a true positive (TP) to false 
positive (FP) ratio of one-to-one for any AKI, meaning 
that there was one FP prediction that did not go on to 
develop any AKI for each TP prediction, which corre-
sponds to a positive predictive ratio (PPV) of 47%.

Moderate to severe AKI patients were identified with a 
median lead-time of 30 h. 16% of Stage 2/3 patients were 
identifiable 48 h before onset, increasing to 58% at 6 h to 
onset. For RRT patients, 70% were identified 6 h or ear-
lier before AKI onset.

The majority of AKI patients predicted by the model 
received potentially nephrotoxic medications within the 
prediction timeframe: 40%, 70%, and 79% of TP patients 
received drugs with high, low, or any nephrotoxic poten-
tial within the prediction window, respectively.

Predictions for example patient
Figure  1 shows predictions for a de-identified patient 
whose serum creatinine measurements consistently 
increased but did not exceed KDIGO threshold until 
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AKI onset at Time 0. Assuming the current time is 36 h 
before onset, bedside practioners have no knowledge 
of the unknown pending onset of AKI, and continue to 

give medications with nephrotoxic potential. The middle 
plot shows what the alert would look like to a caregiver: 
in addition to  noting that the “patient has 90% risk of 

Fig. 1  shows an example patient’s AKI disease trajectory and uses the prediction made 36 h before KDIGO Stage 2/3 AKI onset to demonstrate 
the inner-workings of the model. The top plot shows the patient’s measured serum creatinine values, with AKI onset time referenced as Time 0. 
The middle plot shows the predicted AKI risk up to prediction time—36 h before AKI onset. It also shows a mockup of the AKI alert that a user 
would see, including the patient context and suggested actions. The top three predictors contributing the highest risk to this specific prediction 
are displayed. The bottom portion demonstrates that the model is made up of age-dependent ‘weak classifiers’ of AKI risk based on single predictor 
values. The predicted AKI risk is the sum of weak classifier risks of all input predictors. Two example weak classifiers are shown. The first is the 
classifier for creatinine rate of change (CRoC). In the top plot, the example patient’s serum creatinine increases slowly under the AKI threshold prior 
to prediction time. The increase results in a positive CRoC value and elevated CRoC weak classifier risk of 0.60, as marked on the CRoC classifier plot. 
At the same time, the patient continuously received drugs with high nephrotoxic potential, shown by triangular ticks marking times of medication 
administration in the top plot. This results in the high-nephrotoxic drugs classifier risk being elevated to 0.14 (bottom plot). The ellipses (…) in the 
figure are placeholders for additional predictors not shown due to room constraints
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developing AKI in the next 48 h”, contextual information 
that the patient is “on aminoglycosides” and which meas-
urements are the main contributors to the high risk are 
given. Suggested action to “review dose and indication” 
of medications is also displayed.

Baseline comparator
In comparison, RAI was less predictive of AKI with 
AUROC around 0.57 in Fig. 2a and b and sensitivity and 
specificity shown in Table 3. RAI was calculated without 
patient stem cell transplantation information, as detailed 
in Additional file 1.

Discussion
The machine learning model described here results in 
a prediction tool for PICU, applicable to patients in a 
wide age range between 1 month to 21 years, and dem-
onstrates a strong predictive performance up to 48 h in 
advance of Stage 2/3 AKI onset. The model was trained 
and validated on multi-center data from three inde-
pendent PICUs. The model predicts 40% of any AKI 
episodes, 58% of all Stage 2/3 AKI episodes, and 70% of 
episodes requiring subsequent RRT, with a ratio of one-
to-one false to true alerts relevant to any AKI, as shown 
in Table 3. The model outperforms a more simple com-
parator, the RAI, shown to be predictive of AKI in criti-
cally ill children [17]. The model predicted onset of Stage 
2/3 AKI a median of 30  h before its actual occurrence, 
thus providing a critical window of time for clinical inter-
ventions that might prevent the development of AKI or 
reduce its severity.

In a consensus paper published four years ago, the 
ADQI group called for forecasting Stage 2/3 AKI and 
clinically important AKI-related outcomes for the gen-
eral critical care population [6]. Notably, ADQI stated 
that the role of the tool is not only to provide feedback on 
renal risk, but also to present information about patient 
measurements contributing to these risks and provide 
feedback to practitioners regarding potential actionable 
items [6]. To date, many studies have been published 
on AKI prediction, but none have focused on building a 
tool that provides information about the most relevant 
patient measurements as guidance for action. We built 

Table 1  Cohort demographics of datasets from the three 
centers

Age and length of stay are shown in median [25% percentile, 75% percentile]. 
*Hospital 2 has no CTICU

Hospital 1 Hospital 2 Hospital 3

Cohort size 7329 1220 8314

Age (years) 4 [0.7, 12.1] 2 [0.6, 6.0] 7 [3.8, 14.7]

Female 46% 46% 48%

Length of stay (days) 3 [1, 6] 4 [2, 8] 5 [3, 13]

Mortality 3.5% 3.5% 6.8%

CTICU 28.6% 0%* 12.2%

Any stage AKI 10.9% 19.8% 10.6%

AKI Stage 2 or 3 3.5% 5.7% 5.3%

RRT​ 0.8% 0.6% 1.7%

Table 2  Final predictors categorized by predictor type and ranked by the order in which the predictor was selected by the model

* Shock index = heart rate/blood pressure. †Ventilation-related predictors are treated as missing data for patients not on ventilation. When not available, predictor 
values are entered as not a number (NAN), which the model is capable of handling

Type Predictor Statistic Unit p-value

Vitals Shock index* Max bpm/mmHg  < 0.001

SpO2 Mean %  < 0.001

Laboratory values Blood urea nitrogen Last mg/dL  < 0.001

Serum creatinine rate of change Last mg/dL/hr  < 0.001

Bilirubin Last mg/dL  < 0.001

PaCO2 Max %  < 0.001

Anion gap Last mmol/L 0.005

White blood cell count (WBC) Last 109/L  < 0.001

Serum albumin Last g/dL  < 0.001

Serum chloride Last mmol/L  < 0.001

Gentamicin trough Last mg/L  < 0.001

Medications Number of vasoactive drugs administered – –  < 0.001

Number of high nephrotoxic potential drugs admin‑
istered

– –  < 0.001

Ventilation† Mean airway pressure Median cmH2O 0.277

Others Time since admission – hours  < 0.001
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this model with transparency and actionability as main 
goals, intentionally staying away from ‘black-box’ neural 
network models that could have achieved better perfor-
mance. It is also the first multi-center validated AKI pre-
diction model for PICU.

AKI predictors
This multi-center validated model demonstrates that 
there exists commonly available EHR data elements, con-
sistent across institutions, that are useful for early-indi-
cation of AKI development before creatinine becomes 
elevated. The 15 predictors used in this model reflect 
an effort to balance between model transparency and 
performance: there is a sufficient number of predic-
tors to inform patient state, but not so many to render 
the model un-interpretable and overfit. Predictors can 
be considered in three categories: (1) those that causally 
impact renal health, such as the admistration of nephro-
toxic drugs and gentamicin trough values, (2) those that 
directly reflect renal health, such as CRoC, and (3) those 
that reflect a more general state of patient health, such 
as WBC. What is learned about each predictor can be 

clearly visualized (Fig.  1 weak classifier visualizations) 
to show what measurement values contribute to low and 
high AKI risk, allowing users to study the inner-workings 
of the model before using it in real-time.

Impacting clinical workflow and improving outcomes
Ultimately, the goal is to use model predictions to inter-
vene early and prevent the development of AKI. The 
majority (79%) of predicted patients received potentially 
nephrotoxic medications after predictions were made but 
before AKI fully developed, which means that these med-
ications could have been stopped, reduced, or replaced by 
alternate non-nephrotoxic medications where possible, 
after an early alert. The example patient shown in Fig. 1 
exemplifies this: nephrotoxic medications continued to 
be administered after the patient was identified as high 
AKI risk by the model. The suggestion made 36 h early to 
“review dose and indication” of medications could have 
provided a critical time window towards early recovery.

When deploying predictive models to real-world set-
tings, transparency, interpretability, and actionability are 
critical in gaining caregiver trust. By presenting not only 
the predicted risk, but also displaying the top contrib-
uting predictors for the alert along with their measured 
values, and suggested actions, the model allows caregiv-
ers to quickly check if the prediction matches their clini-
cal intuition, as shown in Fig. 1. This addresses the need 
expressed by ADQI for a predictive model to present 
information about patient measurements contributing to 
the predicted risks and provide feedback to practitioners 
regarding potential actionable items [6].

Studies have shown that non-predictive real-time 
detection of guideline-based AKI reduces the rate of AKI 
occurrence [18], and we plan to conduct a similar pro-
spective study of prediction-based AKI monitoring to 
further reduce AKI.

Fig. 2  a AUROC of the model developed in this study and the renal angina index (RAI). Model AUROC increases closer to onset time, especially 
inside the training window of 48 to 24 h. b The receiver-operator curve at 30 h before onset time for the model and RAI. H1, H2 and H3 represent 
results from the holdout test data of the three hospitals. RAI results are shown for holdout test data from all three hospitals (H1-3)

Table 3  Evaluation metrics on the holdout test datasets of all 
hospitals aggregated across the prediction timeframe for the 
trained model and renal angina index (RAI)

Evaluation metrics were calculated from AKI alerts, which were triggered when 
the model’s predicted AKI risk crossed the pre-determined risk threshold. 
Sensitivity is computed as the percentage of AKI episodes that were identified 
by the model among target AKI episodes. Positive predictive value (PPV) is 
shown alongside true positive (TP) to false positive (FP) ratios for clarity

Sensitivity PPV (TP:FP)

Any Stage 
AKI (%)

AKI Stage 2 
or 3 (%)

Any stage AKI AKI Stage 2 or 3

Model 41 58 47% (1:1) 22% (1:4)

RAI 5 3 4% (1:21) 1% (1:98)
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Performance variability across hospitals
The model performed worse on the UK hospital than 
US hospitals. This is due in part to an imbalance in data 
size—the UK hospital has a smaller cohort size compared 
to other hospitals—so the trained model picks up on pre-
AKI data patterns more representative of the other two 
hospitals. UK hospital patients are younger than those 
of other hospitals as shown in Table 1. Younger patients 
were predicted less accurately by the model, so the lower 
performance could also be due to an over-representation 
of younger patients. We observed other differences in the 
data patterns between UK and US hospitals, discussed 
in more detail in Additional file 1. The dataset from the 
three hospitals cover different timeframes due to data 
availability, and should not impact results as manage-
ment strategies have not evolved.

Baseline comparator
The baseline comparator RAI, using mainly creatinine to 
predict AKI [17], performed worse than the model. The 
better performance of the model is enabled by the use of 
additional patient information such as medication his-
tory and laboratory values. In addition, stem cell trans-
plantation information, originally used in RAI [17] but 
not in the model, may have contributed to the higher per-
formance of previously reported RAI compared to those 
computed here. Information fields not readily accessible 
in the EHR, including patient co-morbidities, diagnostic 
categories, and contextual information such as stem cell 
transplantation, were not included given that the goal 
was to build an all-come PICU model that can automati-
cally assess AKI risk in real-time using only readily avail-
able information.

Prediction frequency
Due to the emphasis of the model on longer-term predic-
tors such as laboratory values, and the disease progres-
sion rate of AKI, the model was designed to generate 
predictions every 6 h. This helps reduce alert fatigue by 
decreasing the overall possible number of alerts, as clini-
cal decision support systems are recommended to be 
parsimonious and only alert on the most relevant or 
severe cases in order to reduce repeated alerts causing 
alert fatigue [19].

Limitations
The models uses creatinine alone to stage AKI due to 
data availability. Up to 20% of AKI patients are diagnosed 
based on the urine output criteria alone [20], and the lack 
of urine criteria may have resulted in lower AKI rates 
than previously described. This impacts the model results 
in a few ways. First, the model is likely to have lower 
sensitivity on urine-staged AKI patients and miss more 

of them. Second, some false positive patients predicted 
incorrectly to have creatinine-staged AKI may be urine-
staged patients, so the reported PPV may increase when 
urine-staged patients are taken into account. As urine-
staged patients have worse outcomes, a future goal is to 
improve the model when urine data recording is made 
more reliable.

Though this is the first pediatric AKI prediction model 
tested on multi-center data, model generalizability is not 
fully resolved. Given the current retrospective validation 
results, more validation work needs to be done on larger 
non-US datasets. The best way to present and integrate 
the model into the workflow remains to be tested. Perfor-
mance of the model against admission reason and patient 
comorbidities is unknown.

Conclusion
The machine learning model described in this study 
accurately predicts moderate to severe AKI up to 48 h in 
advance of AKI onset. The model was validated on three 
independent centers for general pediatric critical care 
patients, including PICU and CTICU, and across a wide 
age range from 1 month to 21 years. The model achieves 
good performance and may improve outcome of pediat-
ric AKI in clinical settings by providing early alerting and 
actionable feedback.
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