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Abstract

The modular organization of the cortex refers to subsets of highly interconnected

nodes, sharing specific cytoarchitectural and dynamical properties. These properties

condition the level of excitability of local pools of neurons. In this study, we

described TMS evoked potentials (TEP) input–output properties to provide new

insights into regional cortical excitability. We combined robotized TMS with EEG to

disentangle region-specific TEP from threshold to saturation and describe their oscil-

latory contents. Twenty-two young healthy participants received robotized TMS

pulses over the right primary motor cortex (M1), the right dorsolateral prefrontal cor-

tex (DLPFC) and the right superior occipital lobe (SOL) at five stimulation intensities

(40, 60, 80, 100, and 120% resting motor threshold) and one short-interval intra-

cortical inhibition condition during EEG recordings. Ten additional subjects under-

went the same experiment with a realistic sham TMS procedure. The results revealed

interregional differences in the TEPs input–output functions as well as in the

responses to paired-pulse conditioning protocols, when considering early local com-

ponents (<80 ms). Each intensity in the three regions was associated with complex

patterns of oscillatory activities. The quality of the regression of TEPs over stimula-

tion intensity was used to derive a new readout for cortical excitability and dynamical

properties, revealing lower excitability in the DLPFC, followed by SOL and M1. The

realistic sham experiment confirmed that these early local components were not con-

taminated by multisensory stimulations. This study provides an entirely new analytic

framework to characterize input–output relations throughout the cortex, paving the

way to a more accurate definition of local cortical excitability.
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1 | INTRODUCTION

The cerebral cortex presents a modular network organization allowing

better robustness, adaptivity, and evolvability of network functions

(Liao, Cao, Xia, & He, 2017; Meunier, Lambiotte, & Bullmore, 2010).

Some characteristics of these brain modules are strongly modulated

by topological and cytoarchitectural features, including the density of

pyramidal cells (Fernández-Ruiz et al., 2013), the distribution of

coactivated synapses, or the architectonic configuration of the cell

populations (Kajikawa & Schroeder, 2011; Murakami & Okada, 2006).

The same modular system exists in the vertical direction, with a

columnar organization subdivided into different layers. Each layer

contains a specific distribution of neuronal cell types and connections

with other cortical and subcortical regions. The differences in lamina-

tion shape the input and output connectivity of neuronal populations

and delineate distinct but interconnected functional cortical areas

(He et al., 2009; Meunier, Lambiotte, Fornito, Ersche, & Bullmore,

2009). This modularity of functional brain networks suggests that, at

the system level, discrete cortical regions or networks are associated

with specific dynamical properties, as can be defined by their input–

output properties. It is indeed likely that functionally relevant nodes

of a network share common input–output properties, reflecting the

aggregated architecture of the subsystems components. This might

form the neural bases supporting the emergence of adaptive behav-

iors, including sensory, motor, and cognitive functions.

Here, we refer to input–output properties as the spectrum of

modulations of a cortical area's activity to varying input levels, that

could either be endogenous (from another cortical area or subcortical

structure) or exogenous (using external stimulation, e.g. using TMS). In

all biological systems, one would expect that input–output properties

follow a few regular patterns, associated with a specific physiological

or behavioral phenotype. For instance, some systems are broadly sen-

sitive, that is, the output slightly changes, either linearly or nonlinearly,

over a wide range of inputs, while other systems are ultrasensitive or

bistable, that is, the output characteristics vary rapidly across a narrow

range of inputs (for few examples within different size scales and

inputs, see, e.g., (Desmurget & Sirigu, 2012; Trebaul et al., 2018) using

direct cortical stimulation in humans; (Hegerl & Juckel, 1993) using

peripheral stimulation in humans; (Yi, Wang, Tsang, Wei, & Deng,

2015) using single neuron model). This dynamical and network-

specific perspective on cortical physiology has been poorly or indi-

rectly explored so far, but could provide a better estimate of the

regional cortical excitability properties, characterizing the full input–

output excitability profiles, from threshold to saturation.

Cortical excitability has often been ill-defined as the unidimen-

sional cortex responsiveness to a stimulation such as TMS (Badawy,

Loetscher, Macdonell, & Brodtmann, 2013) or galvanic stimulation of

the contralateral median nerve (Salustri et al., 2007). Furthermore, it is

usually derived from specific peripheral readouts such as motor

evoked potentials (MEPs) and generalized to the whole cortex, assum-

ing the cortex has homogeneous input–output properties (Boroojerdi,

Battaglia, Muellbacher, & Cohen, 2001; Möller, Arai, Lücke, &

Ziemann, 2009; Ridding & Rothwell, 1997). However, there is

increasing evidence discrediting this hypothesis, as the response to

different stimulation intensities appears to vary with (a) neuron types,

(b) neuron circuits, and at larger scale (c) distant connectivity

(Chervyakov, Sinitsyn, & Piradov, 2016; Doron & Brecht, 2015). When

recording TEPs, one can directly and noninvasively assess cortical

reactivity and network properties that are specific to different cortical

areas (Casali, Casarotto, Rosanova, Mariotti, & Massimini, 2010;

Chung, Rogasch, Hoy, & Fitzgerald, 2015; Komssi & Kähkönen, 2006;

Rogasch & Fitzgerald, 2013). In a previous paper, we examined the

local EEG source activity surrounding 18 different cortical TMS sites

and identified region-specific spectral and spatial properties in the

EEG response pattern to TMS (Harquel et al., 2016). These data,

together with previous TMS–EEG data [Bortoletto, Veniero, Thut, &

Miniussi, 2015; Fecchio et al., 2017; Hill et al., 2016; Rosanova et al.,

2009], strongly support the notion that different cortical areas have

heterogeneous response properties all over the cortex.

The description of input–output properties of corticomotor or

nonmotor neuron populations using TMS–EEG have been sparsely

done though, and led to conflicting results. In an early study con-

ducted by Komssi, Kähkönen, and Ilmoniemi (2004), the authors

reported a nonlinear intensity dependency of the peak amplitudes of

the overall brain response when stimulating the left and right motor

cortices (but see (Saari et al., 2018) for opposite findings). Over the

prefrontal cortex, Kähkönen, Komssi, Wilenius, and Ilmoniemi (2005b)

found a linear dependency of the overall response on stimulus inten-

sity, but with different peak latencies. In the two TMS–EEG studies,

the authors reported similar potential distributions for the different

intensities. In the time–frequency domain, it has been shown over the

primary motor cortex (M1) that increasing TMS intensities induce a

progressive synchronization of alpha and beta rhythm in both hemi-

spheres (Fuggetta, Fiaschi, & Manganotti, 2005). Further data also

showed that depending on the motor output (presence or absence of

MEPs), the prestimulation EEG spectral power (Ferreri, Vecchio,

Ponzo, Pasqualetti, & Rossini, 2014) and the interregional connectivity

(Petrichella, Johnson, & He, 2017) differ. Additionally, this set of ear-

lier papers revealed that evoked responses can be elicited even at

subthreshold intensities (e.g., a minimal threshold of 60% resting

motor threshold [rMT] was found by Komssi et al. to evoke a measur-

able brain activity over M1) although with different waveforms of

overall activity (Kähkönen, Komssi, Wilenius, & Ilmoniemi, 2005a;

Komssi et al., 2004; Komssi, Savolainen, Heiskala, & Kähkönen, 2007).

Paired-pulse TMS–EEG can also provide information on the local

intracortical circuitry mediating inhibitory activity (Daskalakis et al., 2008;

Farzan et al., 2009; Ferreri et al., 2011; Opie, Rogasch, Goldsworthy, Rid-

ding, & Semmler, 2017; Rogasch, Daskalakis, & Fitzgerald, 2013; Rogasch,

Daskalakis, & Fitzgerald, 2015; Ziemann, 2015). These studies used a

paired-pulse paradigm called long-interval intracortical inhibition (LICI)

with two pulses separated by 100–200 ms to investigate the presumed

activation of cortical GABAergic interneurons. For both the primary

motor and prefrontal cortices, the mean cortical evoked activity was

decreased and all typical components were found to be reduced com-

pared to a single pulse TMS–EEG. By opposition, contrasting results have

been published regarding the effects of another paired-pulse protocol
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called short-interval intracortical inhibition (SICI) over M1 using a 3 ms

interval between the two pulses (Cash et al., 2017; Ferreri et al., 2011;

Paus, Sipila, & Strafella, 2001). Although mediated by partially distinct

receptors, a recent study showed similar amplitude reduction of the late

TEP components induced by SICI and LICI (Premoli et al., 2018), which

preclude any conclusion about the exact mechanisms of SICI over M1.

Here, we probed the activation of GABAA-ergic circuits over M1 by com-

paring it to single pulse TMS of different intensities and compared SICI

modulations in three different brain regions.

Finally, a comprehensive definition of cortical excitability must con-

sider the large interindividual variability in evoked neural responses, as

increasingly reported in the literature (Gaspar, Rousselet, & Pernet,

2011). This variability undeniably limits the strength of the conclusions

drawn from grand average ERP components, and motivates the use of

more complex analytic tools (Bridwell et al., 2018), as we implemented

in this article.

Hence, to fill the gap in the definition of cortical excitability, we

provide a new dynamical and network perspective by characterizing the

dynamical modes of the local source activity (LSA) evoked by TMS of

increasing intensities in three distinct brain regions. We expected dis-

tinctive regional dynamical signatures with increasing intensities, poten-

tially reflecting the recruitment of distinct neuronal populations. To

consider the intersubject variability in ERP components, we also com-

pared the quality of the linear regressions of the local evoked potentials

on single trials. Its modulation through increasing stimulation intensities

allows us to explore the sensitivity of the evoked neural activity across

stimulation intensities and extract a new excitability threshold.

2 | METHODS

2.1 | Participants

Thirty healthy volunteers (19 males, aged 26.3 ± 6.2, two left handed)

participated in the study. A first group of 22 subjects were recruited for

the actual TMS–EEG experiment, while a second group of 10 subjects

(including two participants from the first group) underwent a control

experiment, in which a “realistic” sham procedure was used (see Conde

et al., 2019; Gordon et al., 2018). All of them gave their written consent

and filled a pre inclusion questionnaire screening for any contraindica-

tion for MRI nor TMS (Rossini et al., 2015). None had history of neuro-

logic or psychiatric disorders, neither history of alcohol or substance

abuse. All were free of any medicinal treatment likely to modulate their

excitability. All participants received payment for their participation in

the study. This study was approved by the ethical committee of Greno-

ble University Hospital (ID RCB: 2013-A01734-41), and registered on

ClinicalTrials.gov (number NCT02168413).

2.2 | Protocol design

MRI and TMS acquisitions were performed at IRMaGe MRI and neu-

rophysiology facilities (Grenoble, France). Prior to the TMS EEG

experiment, we recorded cerebral anatomical T1-weighted MRI

(Achieva 3.0T TX, Philips, Netherlands; T1TF2, TR = 25 ms, TE = 4 ms,

voxel size = 0.95 mm3 anisotropic). The T1 MRI was segmented in the

TMS neuronavigation software (Localite GmbH, Germany) and cortical

targets were defined using the standard Montreal Neurological Insti-

tute referential: right dorsolateral prefrontal cortex (DLPFC,

[42;42;30] mm), right superior occipital lobe (SOL, [25;–87;33] mm)

and projected on the anatomical MRI using SPM8 software inverse

spatial transform. The right primary motor cortex (M1, [36;–33;64])

mm) target was located using anatomical landmark (hand knob of the

precentral gyrus) and readjusted on the hotspot location to maximize

EMG responses from the first dorsal interosseous (FDI) (bottom part

of Figure 1).

The TMS–EEG experiment was performed in a 2-hr session. First,

we prepared the subject for EEG (EEG cap setup) and we performed

the coregistration step between the MRI and the physical subject's

space that is necessary for the neuronavigation system. Second, a

robotized hotspot hunting procedure was performed on a 7 × 7 grid

(spaced by 7 m). The hotspot was defined as the cortical target maxi-

mizing muscular contractions from the FDI. The rMT was then

assessed on the hotspot. Finally, we stimulated the three cortical

areas at five different stimulation intensities (40, 60, 80, 100, 120%

rMT, corresponding to 24 ± 4, 36 ± 6, 48 ± 8, 59 ± 10, 71 ± 11% of

maximal stimulation output [MSO], respectively) and one paired pulse

SICI protocol (conditioning pulse 80% rMT, stimulus pulse 120% rMT).

The order of stimulation sites was randomized across subjects and

within each site, the order of the intensities was randomized but kept

constant across sites. Participants had to sit still and relax during the

measurements with their eyes open while staring at a black cross in

front of them.

In order to take into account the last recommendations in the

TMS–EEG field, an additional control experiment was run on 10 sub-

jects (Belardinelli et al., 2019; Conde et al., 2019). None of them were

naïve to TMS and TMS–EEG experiments: two of them underwent

the actual TMS–EEG experiment described above, while the

remaining eight took part in other on-going studies running in the lab.

The purpose of this control experiment was to provide a “realistic”

sham, combining both auditory and somatosensory confounds

(realSHAM). We electrically stimulated the right frontal area above

right DLPFC, while placing the placebo coil on this latter target. Five

different stimulation intensities were used and delivered using the

same procedure previously described. rMTs were taken from previous

TMS–EEG experiments undergone by these participants (40, 60,

80, 100, 120% rMT corresponding to 22 ± 5, 33 ± 8, 44 ± 9, 55 ± 11,

65 ± 14% MSO, respectively). An anecdotal evidence was found

toward an absence of difference between the rMTs of the two groups

(Bayesian independent t test, BF10 = 0.6, see Section 2.11).

2.3 | TMS parameters

Biphasic TMS pulses induced an anteroposterior followed by post-

eroanterior current in the brain (AP-PA) using a MagPro Cool B65-RO
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butterfly coil (MagVenture A/S, Denmark) plugged in a MagPro ×100

TMS stimulator (MagVenture A/S). The coil was positioned and hold

by a TMS robot (Axilum Robotics, France), navigated using Localite

neuronavigation software (Localite GmbH). EMG electrodes were

placed in a tendon-belly montage over the FDI. MEPs were recorded

using a Dantec Keypoint portable EMG recording system (Natus Med-

ical Inc.) and a CED micro 1401 MKII recording system (Digitimer,

Cambridge Electronic Design, Cambridge, UK) for the six last subjects.

The rMT assessment was performed using the threshold hunting

method (Awiszus, 2003) over the hotspot. The coil was positioned

tangentially to the scalp surface in a posterior to anterior direction

angled perpendicular to the central sulcus for M1. For the two other

cortical targets, the coil was positioned perpendicular to the gyrus for

DLPFC, and perpendicular to the axial plane for SOL. These angles

were adjusted to the standard coil orientations used in the literature

and to the mechanical constrains introduced by robot's motion

(Janssen, Oostendorp, & Stegeman, 2015).

Each cortical target was stimulated at instantaneous frequency

around 0.5–0.7 Hz for 2 min 30 s, resulting in an average number of

80–90 trials per stimulation point. For each cortical target, we

adjusted the stimulation intensities using the Stokes formula calculat-

ing the scalp–cortex distance measured from subject's anatomical

MRI (Stokes et al., 2007). We performed for each subject a classical

sham condition (SHAM), which consisted of stimulations 3–5 cm over

one of the cortical targets at the highest intensity used for each sub-

ject, allowing us to mimic the loudest sound generated by the TMS

pulse without generating any somatosensory costimulation. We used

active noise cancelation intraauricular earphones (Bose QC 20) com-

bined with white noise to mask the TMS click susceptible to evoked

auditory responses on the ongoing EEG activity [ter Braack

et al., 2015]. The sound level was adjusted for each subject, so that

the TMS click delivered at the loudest intensity (SICI) during the ses-

sion became barely audible while the delivered sound was not loud

enough to induce any discomfort. A thin layer of soft plastic was

F IGURE 1 Local TMS evoked potentials (TEPs) (a) and local source activity (LSA) power (b) for each stimulation site (lines) modulated by
increased stimulation intensities (colors): from 40 to 120% resting motor threshold (rMT) and for 120% rMT and short-interval intracortical
inhibition (SICI) on the left and right columns, respectively. The SICI condition corresponds to the response to the conditioned and test pulses
(without substraction of/normalization to the test pulse only). Lines and shaded areas represent mean and SEM of local TEPs (a) and LSA power
(b) z-scored against baseline. Black bars indicate periods of significant difference between conditions (see text). Bottom: Electrodes clusters taken
for each site for the computing of local TEPs (left) and localization of the three scouts (regions of interest [ROIs]) defined for extracting LSA (right)
in one representative participant
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placed on the coil surface to dampen both sensory and auditory feed-

backs to the subject.

2.4 | Realistic sham stimulation parameters

The realistic sham stimulation was delivered using the MagPro Cool

B65-A/P RO butterfly coil (MagVenture A/S), which is a coil originally

designed to perform double-blind studies (Figure 3a). The coil was

flipped on the placebo side. Concurrently to each TMS pulse, an elec-

trical stimulation was delivered through two skin electrodes (stimulat-

ing area of 10 × 6 mm2) placed on the scalp underneath the EEG cap

above the DLPFC area, in a bipolar montage near electrodes AF4 and

F6 (Figure 3a,b). Using this system, the electrical stimulation consists

in a dissymmetric triangular monophasic pulse, with rise and fall times

of 200 and 2,000 μs, respectively. The current intensity can be set

from 0 to 6 mA, using a maximum voltage of 1,000 V. This intensity is

adjustable by users (on an arbitrary scale from 0 to 10), and varies lin-

early together with the % MSO used in each experimental condition

(40, 60, 80, 100, 120% rMT). The maximal intensity was defined for

each subject prior to the EEG recording session. To that end, we first

set the stimulator to 120% rMT, and then gradually increased the

electrical stimulation intensity from 0 to 10. Subjects were asked to

tell which stimulation intensity produced muscular twitches or skin

sensations comparable in terms of strength, pain, or discomfort, to

active TMS pulses. The selected intensity was then used throughout

all the control experiment (mean 5.3 ± 3.9).

2.5 | EEG acquisition

EEG was recorded using a 64 channels TMS compatible system

(BrainAmp DC amplifiers and BrainCap EEG cap, Brain Products GmbH,

Germany). The EEG cap set up was done following the 10–20 standard

system. Electrode impedances were adjusted and kept under 5 kΩ using

conduction gel. The impedance levels were checked throughout the

experiment and corrected if needed during breaks between conditions.

The signal was recorded using DC mode, filtered at 500 Hz anti-aliasing

low-pass filter and digitalized at 5 kHz sampling frequency. During the

experiment, the Fz and Afz electrodes were used as reference and gro-

und, respectively. Channel coordinates were individually assessed using

the neuronavigation software at the end of the experiment.

2.6 | EEG preprocessing

EEG signals were processed using Fieldtrip (Oostenveld, Fries, Maris, &

Schoffelen, 2011) and Brainstorm3 (Tadel, Baillet, Mosher, Pantazis, &

Leahy, 2011) software, and other custom scripts written in MATLAB

(The MathWorks Inc.). EEG signals were preprocessed semiautomati-

cally based on the methodology described in Rogasch et al. (2014), for

each condition (three targets, six conditions, and one sham) and each

subject. First, the channels showing electrical noise (flat signal or

peak-to-peak amplitude superior to 100 μV) spanning more than 15%

of the trials were discarded from the analysis (on average, 1.4 ± 3.2

channels per condition). EEG signals were then epoched around the

TMS pulse, using a −1 to +1 s time window of interest. TMS artifacts

were discarded by cutting out the −5 to +17 ms period surrounding

the TMS pulses. Two rounds of independent component analysis

(ICA) were then applied in order to remove noise remaining in the sig-

nal. The first ICA suppressed the muscle artifacts, while the second

ICA aimed at removing the decay artifact, ocular activity, auditory-

evoked potentials, and other noise-related artifacts (Rogasch et al.,

2014). Before the second ICA, the signal was spline interpolated over

the −5 to +17 ms period, band-pass filtered (1–80 Hz), re-referenced

using the average reference, and cleaned from bad trials (leading to a

mean of 73.9 ± 9.7 trials left per condition). The ocular components

were automatically identified using a threshold of 0.7 on the correla-

tion product ρ between the spatial topographies of the components

and a template of typical horizontal eye movements and blinks build

from our own database by averaging over subjects. Other artifact

components (decay, auditory-evoked potentials, and other noises)

were detected by thresholding the z-score (above 4) of their mean

activity against the prestimulus period, and by visual inspection. On

average, 9 (±4.2) components were removed from the signal. Cleaned

EEG time series were reconstructed using the remaining components

and any isolated channel still showing remaining noise was discarded

from further analysis. Time series of rejected channels were finally

inferred using the activity averaged over their neighboring channels

(see Harquel et al., 2016, figure 3, for an illustration of the main

preprocessing steps).

Additionally, for the realistic sham data that are affected by a pro-

nounced decay artifact, we applied a decay subtraction procedure

between the two rounds of ICA (adapted from Conde et al., 2019).

Briefly, this procedure consists in subtracting the best fit of a two-

exponential function from each trial of each channel. We used the

nlinfit() function from MATLAB to estimate the five coefficients of the

following regression function: A × exp(B × x) + C × exp(D × x) + E,

with x being the time series of a specific trial and channel. Since the

timing of the decay varies across conditions and channels, the fitting

was optimized by processing it on increasing time window widths,

from 200 to 800 ms by step of 100 ms. The width minimizing the

mean squared error between the actual signal and the fitting function

during the whole period of interest (0–1,000 ms) was taken.

2.7 | Global mean field potentials, TEPs, and LSA

First, to assess the TMS-evoked global cortical response, the global mean

field potentials (GMFPs) were computed using the following formula:

GMFP tð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXc

i
Vi tð Þ−Vmean tð Þð Þ2½ �

q
:
1
C

where t is time, C is the number of channels, Vi is the voltage in chan-

nel i averaged across participants, and Vmean is the mean of the volt-

age in all the channels.
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Next, TEPs were computed for each target, stimulation intensity

and subject by averaging the EEG signal across trials, using a

baseline normalization (z-scoring) over the −200 to −5 ms period.

Grand average TEP was obtained by averaging normalized TEPs

across subjects.

Source reconstruction for each nonnormalized TEP was per-

formed following the default procedure proposed in Brainstorm 3 soft-

ware (Tadel et al., 2011). First, the cortex and head meshes (15,000

and 10,000 vertices, respectively) of each individual were generated

using the automated MRI segmentation routine of FreeSurfer (Reuter,

Schmansky, Rosas, & Fischl, 2012). The locations of EEG electrodes

were coregistered on each subject's anatomical MRI. The forward

model was then computed using the symmetric boundary element

method developed in the open MEEG freeware, using default values

for conductivity and layer thickness (Gramfort, Papadopoulo, Olivi, &

Clerc, 2010). The full noise covariance matrix was then computed for

each subject using the temporal concatenation of the baseline periods

of all conditions. Sources orientation was kept orthogonally to the

cortical surface and sources amplitude was estimated using the

default values of the Brainstorm implementation of the whitened and

depth-weighted linear L2-minimum norm solution.

In order to extract LSA power, regions of interest (ROIs) were cre-

ated on each individual anatomy using a mean spatial extent of

10 cm2, covering about 50–60 vertices of cortical mesh. LSA power

was then computed for each cortical target by averaging the absolute,

smoothed (using a spatial smoothing filter with full width at half maxi-

mum of 5 mm) and normalized (z-score against baseline) source activ-

ity within its corresponding ROI. Grand average LSA power was finally

calculated for each stimulation site and intensity by averaging LSA

power across subjects.

2.8 | LSA mode analysis

In order to disentangle the EEG response characteristics of various

stimulation intensities through the identification of modes, we

proceeded to a group ICA analysis over subjects for each stimulation

site independently. Following the same methodology used in Harquel

et al. (2016), this decomposition was performed on the signed LSA

time series Si
k of each stimulation intensity i and subject k, from −50

to +400 ms. The signed LSA time series were computed by averaging

the signed and normalized source activity within each ROI (sign of

sources with opposite directions were flipped before the averaging).

Each group ICA was performed after the concatenation of LSA matri-

ces along the temporal dimension (Calhoun, Liu, & Adali, 2009), lead-

ing to a group LSA matrix M, where Mi = [S1i …S2i …SKi ] for the ith row

corresponding to intensity i. M is of size [Ni NK], where Ni is the num-

ber of intensities (6), N is the number of time bins (451), and K is the

number of subjects (22). The matrix M was thus decomposed into Ni

(6) independent components (data dimension) using the logistic

infomax ICA algorithm (Bell & Sejnowski, 1995) with the natural gradi-

ent feature from Amari, Cichocki, and Yang as implemented in EEGLab

(Makeig, Bell, Jung, & Sejnowski, 1996).

Finally, the dynamical signature of each component was assessed

in each individual by means of its time/frequency (TF) decomposition

obtained using Morlet wavelet transform between 7 and 45 Hz (win-

dow width of 7 cycles, 0.5 Hz bandwidth). Individual TF power maps

were normalized (z-score against baseline) and averaged across

subjects.

2.9 | Linear regressions of early components of the
local TEP in single trials

Different linear regression analyses were performed at the scalp level.

First, the local TEPs xi were derived for each stimulation intensity

i and each subject from the corresponding TEPs by averaging the sig-

nal of the four closest electrodes to each stimulation site (Figure 1a).

For sham condition, local TEPs were extracted on central electrodes

C1, Cz, and C2. The local TEPs were computed from +17 to +80 ms,

in order to exclusively encompass the early components of the

evoked activity. Then, linear regressions of the local TEPs were per-

formed for each site on single trials sj extracted from the same elec-

trodes and time window, so that:

sj tð Þ= β× xi tð Þ+ ε tð Þ, t∈ −17,80½ �ms ð1Þ

with (i, j) ∈ {40,60,80,100,120}% rMT, and then in a second analysis

with (i, j) ∈ {80%,120%, SICI}, for each (i,j) intensity pairs. The term

“paired intensities,” used throughout this manuscript, refers to pairs

where the intensity chosen to select a TEP matched the one used to

select trials (see Figure 4c for a graphical description). In such cases,

the TEP was thus computed from these same trials. For sham condi-

tion, the local TEP was regressed in its corresponding trials. Finally,

the quality of the linear regression was assessed by extracting t-

statistics associated with the local TEP xi factor, for each trial, inten-

sity pair, site, and subject. For group analysis, these scores were aver-

aged across trials for each intensity pair, site, and subject.

2.10 | Linearly scaled TEPs (simulated data)

We generated a set of simulated data whose components are linearly

scaled with stimulation intensities in order to rule out a simple scaling

effect of evoked temporal or spectral components. The set of simu-

lated data ŝi(t) were generated on a −400 to +600 ms period for each

intensity (Figure 4b). The effect of the stimulation intensity consisted

in a simple scaling of its inherent components' amplitudes, mimicking

what is usually observed when increasing intensities on sensory

evoked potentials (Juckel, Csépe, Molnár, Hegerl, & Karmos, 1996;

Shiga et al., 2016; Tsuji, Lüders, Dinner, Lesser, & Klem, 1984). Wave-

form of simulated signals was designed to get close of what is typi-

cally reported in TEPs (Farzan et al., 2016), that is, from two to six

alternative components together with some oscillatory patterns. Since

the sole aim of these simulated data was to test the amplitude-scaling

hypothesis mentioned above, the level of complexity of our simulation
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was kept rather low. Simulated signals were composed of two evoked

early components (positive and negative peaks p1 and p2) within the

first 80 ms and a late induced oscillatory activity o, contaminated with

noise ε drawn for a uniform distribution filtered in the 1–80 Hz fre-

quency band:

ŝi tð Þ=Ai × p1 tð Þ–2×p2 tð Þ+o tð Þð Þ+ ε tð Þ, t∈ −400, + 600½ �ms ð2Þ

The two early components were modeled using Gaussian func-

tions of different mean (30 and 45 ms) and SD (5 and 20 ms, respec-

tively) parameters. The late induced activity consisted in a sinusoidal

function mimicking an alpha rhythm oscillation (10 Hz) starting from

+150 to +350 ms. Finally, the effect of the stimulation intensity was

modeled using the amplitude factor Ai. Five different intensities were

modeled, where Ai ∈ {20,40,60,80,100} (Figure 4b).

2.11 | Statistics

Statistical analyses were conducted using the Fieldtrip and MATLAB

statistical toolboxes on EEG signal, and using JASP Team (2018)

(Version 0.9) for the Bayesian statistics analysis of regression quality

scores.

2.12 | Local source activity

For each stimulation site, significant differences in the LSA across stimula-

tion intensities were assessed over time, from +17 to +400 ms, using

nonparametric permutation tests. The effect at the sample level was eval-

uated using the dependent samples F-statistics and T-statistics for the

comparison of all stimulation intensities and the comparison between the

SICI and 120% condition, respectively. The significance probability was

then inferred using Monte-Carlo procedure with 10,000 permutations.

Finally, p-values were temporally corrected for multiple comparisons: dif-

ferences were considered as significant at p < .05 for at least 20 consecu-

tive time bins (20 ms, see Blair & Karniski, 1993; Carota et al., 2010;

Harquel et al., 2016). Statistical significance of TF maps of ICA compo-

nents was obtained using paired comparisons against baseline. A non-

parametric Wilcoxon test was performed per time–frequency bin, and

the resulting p-values were spatiotemporally corrected: differences were

considered significant for p < .05 for at least five consecutive frequency

bins and 20 time bins (tiles of 2.5 Hz × 20 ms).

2.13 | Regression quality scores

The mean regression quality scores across trials were analyzed using

the Bayesian equivalent of repeated measures analysis of variance

(rmANOVA) and analysis of variance (ANOVA) tests. Additional post

hoc analysis was performed using the Bayesian equivalent of indepen-

dent and paired t tests. Three analyses were conducted. The first one

took all data expect SHAM and SICI conditions as inputs, and

performed an ANOVA with three fixed factors: TEPs' stimulation

intensity, single trials' stimulation intensity, and stimulation site

(including active sites and realSHAM). Subjects were included as a

random factor. Then, a second ANOVA analysis focused on the

regression scores obtained in paired intensities (e.g., when the TEP of

80% rMT was regressed in its corresponding trials of 80% rMT, see

above) using all data (including SHAM or SICI condition), with two

fixed factors: stimulation intensity and stimulation site (including

active sites and realSHAM). Subjects were included as a random factor

as well. Finally, a third analysis was conducted specifically on SICI,

80 and 120% rMT conditions, using a rmANOVA with three factors:

TEPs' stimulation intensity, single trials' stimulation intensity and stim-

ulation site (including only active sites). Due to the exploratory nature

of this work, priors on effect sizes were kept relatively large, using

default values proposed within JASP framework. Statistical evidences

were reported using Bayes factors (BFs), with BF10 and BFincl denoted

the level of evidence of the alternate hypothesis (nonsigned differ-

ence) and the inclusion of a specific factor in ANOVA and rmANOVA

models (across all possible models), respectively. The cut-off values,

defined by Jeffreys (1998) were used to interpret BFs.

3 | RESULTS

Overall, the 22 participants tolerated well the experiment. For two

subjects, however, the SICI condition over the DLPFC was too painful,

and was therefore omitted. The 10 additional subjects recruited for

the realistic sham experiment did not report any adverse effect. How-

ever, three of them reported an increase of the pain throughout the

procedure, probably due to the cumulative effect of the electrical

stimulation on the skin. Below, different aspects of the input/output

properties are described through complementary features computed

for each targeted cortical area.

3.1 | TEPs and GMFPs

Figure 1a presents the grand average of local TEPs for each condition

and cortical site, which were obtained by averaging the EEG signal

within the three or four closest electrodes to each stimulation site.

Figure 2 shows the GMFP of the single pulse TMS conditions and the

associated topoplots (2a) and the GMFP of the conditioned TEP (SICI)

compared to the unconditioned TEP (120% stimulation intensity) with

the associated topoplots (2b). Finally, TEPs and GMFPs from the real-

istic sham conditions are presented in Figure 3. Globally, while active

conditions generated both early and late components that presented

either local or distributed topographies, realistic sham conditions

mostly evoked late components that were focused in the central area.

The maximal voltage amplitude of early components (17–80 ms,

across all electrodes) in active conditions were 2.2 ± 0.7, 2.5 ± 0.9,

3.4 ± 1.7, 4.3 ± 2.1, 6.4 ± 5.3, 7.8 ± 6.5, and 6.8 ± 3.8 μV for SHAM,

40%, 60%, 80%, 100%, 120%, and SICI condition, respectively. In con-

trast, the maximal voltage amplitude of early components (17 to
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80 ms, across all electrodes) in realistic sham conditions were

1.4 ± 0.3, 1.8 ± 0.5, 1.8 ± 0.5, 2.1 ± 0.6, and 2.5 ± 0.8 μV for 40, 60,

80, 100, and 120% stimulation intensities. Finally, the distribution of

the electrical fields differed across stimulation sites, both in terms of

spatial and temporal features.

3.2 | LSA power

Sources of TEPs for the three stimulated regions were estimated and

local cortical responses (LSA) were extracted from the mean source

time series of an ROI, centered on the stimulation target (Harquel

et al., 2016). Figure 1b shows the LSA over M1, DLPFC, and SOL

associated with different stimulation intensities, extracted from the

clusters depicted in the bottom panel. All three regions showed a gen-

eral increase of the EEG activity as a function of stimulation intensity.

The strong main effect of stimulation intensity in the three regions

(p < .05, F-test corrected for multiple comparisons) shows that EEG

response to TMS depends on intensity for a period of at least 300 ms

over M1 and DLPFC, and 250 ms for SOL. Interestingly, the three

regions returned distinct local activity patterns and different activity

response to stimulation intensity. While a few components showed a

F IGURE 2 Global mean field
potentials (GMFP) on active
stimulations. (a) GMFP of the six
single pulse TMS conditions and
the associated topoplots
corresponding to the four time
periods displayed on top of the
GMFP. Lines and shaded areas
represent mean and SE of the

GMFP z-scored against baseline.
(b) GMFP of the conditioned
TMS evoked potential (TEP)
(short-interval intracortical
inhibition [SICI]) compared to the
unconditioned TEP (120%
stimulation intensity) and the
associated topoplots
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clear linear relationship with increased intensities, for example, in

M1 at 100 ms and in SOL at 30 ms, other components displayed

nonlinear associations demonstrating a saturation effect already at

100% rMT, for example, late components (100–200 ms) for the

DLPFC or early component (30 ms) in M1.

The LSA response patterns to SICI also differed in the three

regions (right part of Figure 3b). In M1, late activities (100 and

300 ms) were significantly inhibited by SICI (p < .05, t test corrected

for multiple comparisons) as compared with the LSA over the same

region obtained with a stimulation intensity of 120% rMT. In contrast,

SICI induced significant modulations on the early components: facilita-

tion at 60 ms and inhibition at 30 ms for SOL. Interestingly, the global

LSA recorded over DLPFC was not modulated by SICI. No modulation

was found over the DLPFC, the SICI and the 120% rMT: LSA profiles

were superimposable in the 400 ms time-window poststimulation.

A closer look on the individual TEPs revealed a large inter-

individual variability (Figure 4a). This observation and the increasing

reports in the EEG literature regarding the interindividual variability in

evoked potentials (see, e.g., Bridwell et al., 2018) prompted us to

design two additional analytic tools to demonstrate that condition

specific effects remained despite this high interindividual

variability. These analyses aimed at (a) defining the typical oscillatory

signature preferentially explained by one given condition and

(b) comparing the robustness of the evoked neural activity across

stimulation intensities.

3.3 | Dynamic modes of LSA

Dynamic modes (i.e., evoked time series that share common temporal

properties) were inferred from a group ICA on the single subject's LSA

signed time series of the five intensities and SICI, for each cortical site

separately (Harquel et al., 2016). The left panels of Figure 5a display

the contribution of each stimulation condition on the six components

extracted from the group ICAs of each condition. The right panels of

Figure 5a show the spectral contents of each component (i.e., time–

frequency representation of the LSA modes). The same information is

provided for the simulated data on Figure 5b.

F IGURE 3 Experimental setup and results from realistic sham experiment. (a) Experimental setup for the realistic sham experiment. Electrical
stimulation electrodes are placed underneath the EEG scalp nearby the dorsolateral prefrontal cortex (DLPFC) location, next to AF4 and F6

electrodes, and connected to stimulator outputs (top). The double TMS coil is then positioned over the DLPFC target, on its placebo side
(bottom). (b; top): Central (top) and frontal (bottom) TMS evoked potentials (TEPs) modulated by increased stimulation intensities (colors). Lines
and shaded areas represent mean and SEM of TEPs z-scored against baseline. (b; bottom): Electrodes clusters taken for computing of central and
frontal TEPs (yellow). The location of skin electrodes used for delivering electrical stimulation is represented in black and red. (c) Global mean field
potential (GMFP) of the six realistic sham conditions and the associated topoplots corresponding to the four time periods displayed on top of the
GMFP. Lines and shaded areas represent mean and SE of the GMFP z-scored against baseline
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First, the explained variances of the components were somehow

comparable for all physical sites (explained variance for M1 for com-

ponents in increasing order: 26.9, 22.2, 20.2, 18.5, 6.8, and 5.4%, for

DLPFC: 36, 21.9, 17.7, 13.3, 6.9, and 4.2% and for SOL: 29.6, 17.5,

15.7, 13.6, 12.1, and 11.3%), and each component was mainly driven

by one specific stimulation condition. Only one and two components

were below 10% for SOL, M1 and DLPFC, respectively, which were

mainly driven by low intensities (60 and 40% rMT).

These modes were, moreover, associated with their own dynami-

cal signature, which combined activity in the low and high frequency

bands. For instance, 120% rMT over M1 was mainly explained by

Component #1, which showed the most powerful and sustained mu

rhythm activation (15–25 Hz, from 50 to 200 ms after stimulation

onset) (Figure 5a). Mu rhythm emerged at 60% rMT in the fifth com-

ponent and was maximal for Component #1, while it was diminished

for SICI (Component #4). SICI was in turn associated with strong

gamma activity. Low frequency waves (alpha, 10 Hz) were present in

the conditions 100% rMT, 120% rMT, and SICI. Congruently for

DLPFC, each LSA mode was associated with a dominant stimulation

condition. Beta activity emerged at 60%, 80%, 100%, and SICI, associ-

ated with Components #2–5. In line with the TEPs, 120% and SICI,

although associated with two distinct modes were relatively close to

each other, with the presence of early gamma activity. Short burst of

alpha activity was present in most components and reached a maxi-

mum at 80 and 100% rMT. SOL was the cortical region that showed

the most complex interactions between stimulation conditions regard-

ing their spectral contents: Component #1 showed the common sig-

nature of SICI, 100 and 40% rMT, Component #2 of SICI and 100%

rMT, and Component #3 of SICI, 100 and 80% rMT. Components #1

and #2 showed sustained alpha activity, whereas gamma band activity

significantly emerged in all five main modes.

In contrast, we found that the variance of simulated data was mainly

explained by one single component (explained variance on the simulated

data: 92.4, 2.6, 1.7, 1.6, and 1.6%) (Figure 5b). Four to five components

were needed to reach 90% of explained variance in real data, compared

to only one for the simulated data. All the stimulation conditions of the

simulated data shared the same dynamical signature, as depicted on the

corresponding time–frequency map of Figure 5b (right panels). This signa-

ture showed the two early components, generating a powerful gamma

activity, together with the late alpha oscillation, that were scaled through-

out all the stimulation conditions. Since all the simulated data contained

only one shared source of signal, the weights of the mixing matrix are not

relevant here, and are mostly affected by computational noise coming

from the limitation of this decomposition in this very particular case.

3.4 | Linear regression of the local TEP in single
trials

3.4.1 | Regression quality scores in every possible
intensity pairs

Next, linear regressions of the early components (<80 ms) of the local

evoked potentials on their single trials were performed (Figure 6a).

This analysis captures the sensitivity of the evoked neural activity

across stimulation intensities, by exploring the intensity-dependent

F IGURE 4 Linear regression analysis as a tool to handle interindividual variability in EEG responses to TMS. (a) Individual local TMS evoked
potentials (TEPs) plotted for different subjects, for each site (rows) and stimulation intensity (colors). (b) Computed data simulating a linear scaling
of the response amplitude in respect to the stimulation intensity while keeping the intrinsic dynamic. (c) Illustration of the linear regressions of the
local evoked potentials on single trials
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modulation of the quality of this regression (Figure 4c). For all condi-

tions and sites (including active sites and realistic sham), we per-

formed a linear regression of the TEP on individual trials at the scalp

level from 17 to 80 ms. For each site, all possible combinations

between TEPs and trials intensity were explored, that is, TEP 60% in

120% trials, TEP 100% in 40% trials, and so forth. The Bayesian

ANOVA analysis on regression quality scores showed extreme evi-

dence for the inclusion of all principal effects (site, TEPs intensity, and

trials intensity), and all interactions between them.

First, an extreme effect of site (BFincl > 1013) was found,

suggesting that the regression fit is different in the four regions

(Figure 6a). Post hoc comparisons showed with strong evidence that

M1 and SOL had similar fits (BF10 = 0.07), which both exceeded

DLPFC (vs. M1: BF10 > 500, vs. SOL: BF10 > 103). All active conditions

showed stronger regression quality scores than realistic sham

(BF10 = 9.8; >105; >107 for DLPFC, M1, and SOL, respectively). The

two other main factors (intensity of TEPs and trials) were also signifi-

cant (BFincl > 1013 for both). This confirmed that the quality of the

regression differed with intensity for both the TEP and the trials used

for the regression, as the signal to noise ratio (SNR) gradually

increased with intensity in the EEG signal.

The significant TEPs intensity by trials intensity interaction

(BFincl > 1013) indicated that the regression of a given TEP fits better with

the trials corresponding to the same intensity (paired intensities). More-

over, for all three active sites together, post hoc comparisons showed

that the quality of regression was maximal for paired intensities (see

Figure 6a), except for 40% rMT. Above 40% rMT, the best regression

qualities were systematically obtained when using the same trials inten-

sity than the TEPs intensity used for the regression (with strong to

extreme evidence), confirming that each intensity has its own spatiotem-

poral signature. This was not the case for realistic sham conditions, where

this one-to-one association was only observed in the 60 and 120% con-

ditions (with moderate to strong evidence). Finally, a triple interaction

TEPs intensity by trials intensity by site interaction (BFincl > 104) showed

with extreme evidence that the increase in stimulation intensity had a

different impact on the regression fit in the four regions.

We conducted a complementary analysis on the regression qual-

ity scores obtained using the late components (from 80 to 400 ms) of

the central evoked potentials, on C1 Cz and C2 electrodes (supple-

mentary Figure S1). A similar Bayesian ANOVA was performed, that

showed extreme evidence (BFincl > 1013) for all the three main effects

and the interaction between TEPs intensity and trials intensity. How-

ever, moderate to strong evidence suggested that the interaction

between site and TEPs intensity (BFincl = 0.17), as well as the triple

interaction (BFincl = 0.07), had no effect on the model. Regarding the

main effect of stimulation site, post hoc analysis revealed with strong

F IGURE 5 Dynamic modes of local source activity (LSA) across stimulation intensities. Left panels: Mixing matrix of group ICA for each
stimulation site. For each component (in column), the relative weight of each stimulation intensity (in line and detoured using its specific color) is
given by its gray scale level (from 0 in black, to 1 in white, corresponding to the maximum weight of the component). Components explaining less
than 10% of total variance are masked. Right panels: Time–frequency (TF) map of each ICA component. Frequency power is normalized (z-score),
and nonsignificant modulations against baseline are masked. TF maps of components explaining less than 10% of total variance are masked.
(a) Real data and (b) simulated data
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to extreme evidence that the quality of regression was higher on

DLPFC than on M1 (BF10 = 27.9), SOL (BF10 > 106) or realistic sham

(BF10 = 14.4). Moderate evidence showed that the quality of regres-

sion was equivalent between M1, SOL, and realistic sham (BF10

between 0.12 and 0.24). Unlike what we have observed with early

local components, the post hoc analysis exploring the interaction

between TEPs and trials intensity did not reveal any systematic better

fit on paired intensities. The best fit was obtained for trials intensities

that were equal to or higher than the TEP used (see Figure S1,

Supporting Information). For each TEP above 40% rMT, we found

extreme evidence toward differences between paired and lower

intensities (all BF10 > 100), while a lack of evidence or a moderate evi-

dence toward absences of difference emerged from the comparison

between paired and higher intensities (BF10 between 0.17 and 1).

3.4.2 | Regression quality scores on simulated data

To demonstrate that increased intensities do not act like a simple scal-

ing of the evoked components on real data, we generated a set of simu-

lated data whose components were linearly scaled with stimulation

intensities (see Section 2). The same statistical model applied to the sim-

ulated data showed significant main effects of TEPs intensity (BFincl =

+inf) and trials intensity (BFincl = +inf) as well as a significant TEPs inten-

sity by trials intensity interaction (BFincl > 107). Importantly, post hoc

tests revealed that the best fit was obtained with 120% rMT trials

whichever TEPs intensity was used for the regression. Figure 6a shows

this clear linear relationship between intensities and regression quality

scores, and the difference regarding curve shape with real data.

3.4.3 | Regression quality scores in paired intensity

Next, we restricted our model to the TEPs regressed with their

corresponding trials (e.g., M1 TEP 100% rMT regressed on M1 100%

rMT trials), including the sham and the realistic sham conditions in the

model. A Bayesian ANOVA revealed extreme main effects of TEPs inten-

sity (BFincl > 1014), site (BFincl > 1011), and a TEPs intensity by site interac-

tion (BFincl > 105). Figure 6b shows the four different response curves

associated with the four stimulation sites. Post hoc comparisons showed

that a stimulation intensity effect was present for all three active sites

(for M1: BF10 > 1012, for DLPFC: BFincl > 107, for SOL: BFincl > 105),

F IGURE 6 Regression quality scores modulated by increased stimulation intensities on local early components (<80 ms). (a) Regression

quality scores obtained for each site (marker symbol), trials intensity (y axis), and TMS evoked potentials (TEPs) intensity (panel columns), on both
real and simulated data (upper and bottom part, respectively). In each panel column, the corresponding paired intensities (where i = j, see
Section 2) are highlighted using its specific color. (b) Regression quality scores obtained for each site in paired intensities on real data. (c) Bayes
factors of post hoc comparisons between each paired intensity and SHAM condition
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whereas a moderate evidence toward an absence of stimulation intensity

effect was found for the realistic sham conditions (BFincl = 0.16).

The analysis of Figure 6b suggests a saturation effect at 100%

rMT for DLPFC and SOL. Post hoc pairwise comparisons indeed pro-

vided substantial evidence for similar regression fits between 100 and

120% over DLPFC (BF10 = 0.23) and SOL (BF10 = 0.23), and moderate

evidence for a better regression at 120% for M1 (BF10 = 6.5). They

also revealed that the minimal intensity needed to reach a statistical

difference with sham was 60% rMT over M1 (Figure 6c). Over the

DLPFC and SOL, TMS needed to be applied at 100 and at 80% rMT,

respectively, to reach strong statistical evidence. No statistical evi-

dence was found to infer about a difference or an absence of differ-

ence between realistic sham conditions and sham, in any used

intensity (all BF10 fell between 0.38 and 0.74, Figure 6c).

3.4.4 | Regression quality scores in SICI condition

The last rmANOVA performed on 80, 120% rMT and SICI conditions

also indicated a significant TEPs intensity effect (BFincl = +inf) and a

significant site × TEPs intensity interaction (BFincl = 9.2). Post hoc

tests (Figure 7a) showed that the regression quality scores acquired

with SICI were smaller than for 120% rMT only for M1 (BF10 = 10.6).

Moderate evidence tended to show that it had no effect on the qual-

ity of the regression for DLPFC and SOL (BF10 = 0.25 and BF10 = 0.23,

respectively). Considering all intensity pairs, a last analysis showed

again a typical response pattern for the SICI trials (extreme TEPs

intensity by trials intensity interaction: BFincl > 1015) that were better

regressed by their own TEP and could not be found in the other con-

ditions (Figure 7b). This comparison further suggests that SICI, which

is composed by a first TMS pulse at 80% rMT and a second one at

120% rMT, induced a specific pattern of activity which significantly

differed from single pulse TMS given at 80 or 120% rMT.

4 | DISCUSSION

In the present paper, we reported a set of new EEG markers able to

quantify interregional differences in input–output properties and

inhibitory activities in three different brain areas.

F IGURE 7 Regression quality scores
modulated by short-interval intracortical
inhibition (SICI). (a) Regression quality
scores obtained for each site in paired
intensities. (b) Regression quality scores
obtained for each site, trials intensity
(y axis), and TMS evoked potentials (TEPs)
intensity (panel columns). In each panel
column, the corresponding paired
intensities (where i = j, see Section 2) are
highlighted using its specific color
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4.1 | Regional input output properties of the
cerebral cortex

4.1.1 | Local neural activity scales with stimulation
intensity

LSA recorded in the three regions with the five intensities showed an

overall dose-dependency relationship. This finding replicates previous

TMS–EEG or TMS–fMRI studies, either stimulating the primary motor

cortex (Bohning et al., 1999; Komssi et al., 2004; Komssi et al., 2007)

or the left middle frontal gyrus (Kähkönen et al., 2005a). The earlier

TMS–EEG studies have intrinsic limitations in terms of data acquisi-

tion and analysis, precluding a full understanding of the input–output

response function to TMS. Although ROI analyses in the source space

have been criticized (Farahibozorg et al., 2018), the LSA profiles com-

puted from each of the three ROIs encompassing the stimulated area,

allowed us to distinguish complex shapes of biological input–output

relationships. Unlike Komssi et al. (2004) where all EEG peaks

depended nonlinearly on stimulation intensity up to 100 ms

poststimulation, our patterns of changes yielded to mixed results in

M1. The N100 showed a clear linear relationship while the P30

increased nonlinearly with increased stimulation intensity. This dis-

crepancy was also present in the two other regions showing nonlinear

dependencies (i.e., the N100/P200 for both the DLPFC and SOL), as

well as linear dependencies (i.e., the P200 and P30 for the DLPFC and

SOL, respectively).

While each EEG component reflects brain activation and is

thought to be associated with one or more cognitive processes

(Brandeis & Lehmann, 1986; Sur & Sinha, 2009), the exact functional

meaning and cortical origin of each TEP's peaks are not clear. The

electrophysiological nature of the TMS-induced EEG components is

indeed difficult to interpret, since (a) EEG represents the summation

of excitatory and inhibitory afferents over a large population of neu-

rons (Kirschstein & Köhling, 2009), and (b) TMS elicits neural activa-

tion both locally and remotely with the activation of corticocortical or

corticosubcortical loops (Bortoletto et al., 2015; Rogasch & Fitzgerald,

2013; Siebner, Conde, Tomasevic, Thielscher, & Bergmann, 2019).

However, we know that the amplitude of this TMS-evoked response

relays information on the excitability and reactivity of the underlying

cortical networks, as the amplitude of the peaks and troughs are sen-

sitive to changes in cortical excitability (Harquel et al., 2016; Veniero,

Bortoletto, & Miniussi, 2014). The dynamics of these input–output

relationships can then express information about the size of the neu-

ron population and its level of synchrony during the component gen-

eration. Therefore, the various shapes of input–output relationships

of each EEG components reveal distinct local properties, in terms of

synchronization properties of neuronal networks. For instance, the

shorter latency components (<60 ms), which are thought to be more

influenced by the physical features of the stimulus (here the TMS

pulse) present a ceiling effect in M1 (no further increase in LSA

between 100% rMT and 120% rMT). This might reflect saturation in

synchronous activation of local neurons involved in the generation of

these components.

Comparing M1 and DLPFC, Kähkönen et al. (2005b) found differ-

ent reactivities of motor and prefrontal cortices and different dynam-

ics. A quadratic polynomial function described the data of motor

cortex, whereas a linear model fitted better for the response–stimulus

intensity function of prefrontal TMS. We also found that the dynamic

of the input/output functions differed across the three regions,

suggesting different dynamical properties of neuronal responses. This

provides additional evidence that TMS–EEG can noninvasively probe

regional differences in cortical microcircuits underlying functional

cytoarchitecture (Harquel et al., 2016). Of interest, a recent study

investigated the effect of stimulation intensities of intermittent theta

burst stimulation on the cortical properties assessed with TMS–EEG.

The authors reported an inverse U-shaped relation between intensity

and induced plastic effects, where 75% iTBS yielded the largest neu-

rophysiological changes (Chung et al., 2018). These results not only

raised interesting aspects about the relationship between intensity

and plasticity induction but also about homeostatic regulation

maintained through the recruitment of excitatory and inhibitory sub-

populations of neurons, which can be characterized by TMS–EEG

components (Premoli et al., 2014). Then, for rTMS treatments applied

in “silent” regions, a systematic description of the input–output func-

tions of different cortical areas is crucial in order to induce the most

efficient plasticity change. An individual and fine-tuning of rTMS

intensity is particularly important given that the brain responses to

rTMS are dose dependent, precisely, stimulation intensities influences

the plasticity induction (see, e.g. Nettekoven et al., 2014 or Fitzgerald

et al., 2002). Using regional biophysical models of neural plasticity

induced by TMS and individual input–output excitability profiles, get-

ting more reliable rTMS outcomes might be possible. Alternatively, for

clinical practices, the use of region-specific atlases of excitability pro-

files might already help the clinicians to define the optimal ranges of

stimulation intensities, although this last option does not take into

account the particularities of pathological brains.

4.1.2 | Intensity-dependent spectral properties of
the evoked neuronal responses

Earlier single-pulse TMS–EEG data (Lea-Carnall, Montemurro, Trujillo-

Barreto, Parkes, & El-Deredy, 2016; Rosanova et al., 2009) indicated

that each brain region mostly resonates at its own natural frequency.

Moreover, our previous work showed that distant cortical areas can

also share common dynamical properties, depending on their local

cytoarchitectonics (Harquel et al., 2016). In the primary motor cortex,

Fuggetta et al. (2005) showed that different stimulation intensities

appear to involve different levels of modulation of oscillatory activity.

Precisely, increases in alpha and beta power were found to be more

pronounced with increasing of stimulation intensity from subthreshold

to the 130% rMT. Here, we used LSA modes decomposition to further

reveal that different intensities in each of the tested regions were

associated with distinct and complex patterns of oscillatory activities,

rather than with a linear or nonlinear scaling of a specific frequency

pattern.
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For the three tested sites, our group ICA including the five inten-

sities and the SICI condition revealed at least four components with

comparable level of explained variances, arguing for the existence of

mixed and complex dynamics. Moreover, each component was mainly

driven by one unique stimulation intensity, which entails its own oscil-

latory signature. In addition, to explain approximately 90% of the total

variance, all components have to be included, suggesting that each

stimulation condition is associated with a complex mixture of oscilla-

tory signals.

As a matter of fact, the power of the so-called “natural” rhythm of

a given area was not the only one impacted by stimulation intensity.

Instead, this analysis showed that the input–output relationship is

unlikely to be driven by a simple linear scaling of the stimulation inten-

sity as for the simulated data. The variance of simulated data was

mainly explained by one single component (explained variance on the

simulated data: 90.9, 3.5, 2.7, 1.2,and 0.78%), which means that the

same information content, and its related oscillatory signature, can be

found in all conditions. To sum up, this analysis demonstrated that

each stimulation intensity induced oscillatory activities reflecting com-

plex combination of frequency bands, distinct from each other and

different across brain regions.

The changes observed in the EEG activity at low TMS intensity

are thought to originate from the stimulation of the superficial layers

of the cortex through both direct and indirect excitation of pyramidal

neurons in the gray matter (Di Lazzaro et al., 2000; Kujirai et al., 1993;

Ziemann, Rothwell, & Ridding, 1996). In contrast, by increasing stimu-

lation intensities, the direct axonal pathways in deep gray matter

structures get activated (Amassian & Cracco, 1987; Nakamura,

Kitagawa, Kawaguchi, & Tsuji, 1996). This could additionally activate

deeper subcortical structures and trigger complex corticosubcortical

loops. Such indirect subcortical or transcallosal effects might also

account for the change in oscillatory activity induced by stronger TMS

pulses that we observed in the three regions.

4.2 | TEP linear regression quality as a new
readout for input–output properties?

Classical studies investigating input–output properties of the cortex

rely on group-based component analyses. Modulation of specific com-

ponents at the group level (either in the temporal or spectral domain)

by different experimental conditions or stimulation intensities is

thought to return information about the input–output function of the

cortex. However, in such analysis frameworks the interindividual vari-

ability of the evoked response regarding its dynamic characteristics is

neglected. For example, the relevance of studying N45 amplitude

modulations is questionable if this component is absent, reversed in

terms of polarity, or delayed in several subjects (Lioumis, Kiči�c,

Savolainen, Mäkelä, & Kähkönen, 2009). Here, we propose a different

approach based on the linear regression of TEP in single trials for each

subject. This method allows to fully consider the intersubject variabil-

ity of the dynamics of the evoked response, since subject-specific

dynamical contents of TEPs will not influence the regression process.

The quality of the regression could provide a new local readout for

cortical excitability and dynamical properties specificity. Precisely, cor-

tical excitability could be defined by the quality of the regression of

TEPs' early components compared across intensities for each cortical

region. The rationale of this new metric is that, at similar stimulation

intensities, highly excitable neural populations would be more prone

to produce electrical activity above noise level in a single trial basis,

compared to low-excitable populations. This will be associated with

better quality of TEP regression. In the same line, inspecting the shape

of the relationship between regression quality and stimulation inten-

sity might provide a more specific definition of cortical excitability

definition.

The results showed first that regression fits were overall smaller

in the DLPFC compared to SOL and M1, indicating a lower excitability

in this region, at least regarding early components. This means that

each trial carries more information from local neural activations for

M1 and SOL compared to DLPFC in which a single trial poorly

explains the average TEP. A new regional cortical excitability index

can then be inferred based on the comparison of the regression qual-

ity obtained in the sham condition and with different TMS intensities.

This index would correspond to the weakest stimulation intensity able

to elicit significant TEP regression quality (i.e., different from sham

stimulation). Note that as expected, our analysis also showed that the

goodness of fit gradually improves with intensity, reflecting a better

SNR with increasing intensities. This metric has the advantage to be

defined locally even in “silent” areas and does not rely on peripheral

readout. It is biologically informative because it directly reflects the

quantity of energy needed to evoke a meaningful EEG signal in a

given brain region. This idea is reinforced by the fact that no signifi-

cant information could have been retrieved from realistic sham condi-

tions. As shown by the comparison between areas, it is sensitive

enough to discriminate the different excitability levels between differ-

ent cortical areas. The input–output curves drawn from regression

score suggested that the primary motor cortex was the most excitable

area (eliciting significant activity from 60% rMT), followed by SOL and

DLPFC (80 and 100% rMT, respectively). Fecchio and colleagues also

report larger local mean field potentials evoked over M1 compared to

prefrontal, premotor, and parietal targets (Fecchio et al., 2017). This

has direct consequences on TMS titration for clinical trials. Our data

suggest that adjusting rTMS intensities (for instance, applied to the

DLPFC) to the rMT is suboptimal. The new excitability metric we pre-

sent here brings instead an accurate estimate of regional excitability,

which could serve as a basis to better adjust stimulation intensities. In

the same vein, Casali et al., 2010 also derived a local excitability esti-

mate based on the minimal TMS intensity needed to significantly acti-

vate more than 1% of the cortical sources within the stimulated area,

and found comparable values over the superior occipital lobe (Casali

et al., 2010).

Furthermore, regression quality could also provide interesting

insights about the dynamical properties of the evoked response and

especially about its modulation across brain areas and stimulation

intensities. Our results showed that above 40% rMT, the quality of

regression is maximal for the trials corresponding to the regressed
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TEP, confirming that each intensity has its own spatiotemporal signa-

ture. For example, the dynamic properties of the TEP obtained with

100% rMT could not be found on the EEG activity evoked by 80% or

120% rMT stimulations. This phenomenon was partially observed in

realistic sham conditions (in 60 and 120% rMT conditions), showing

that a part of this effect might originate from the specificity of the

preprocessing (mostly ICAs, and decay correction for realSHAM) that

was done independently on the different set of data. However, the

level of regression quality in paired realistic sham conditions never dif-

fered from sham condition, showing that this spurious interaction

effect can be ignored. Again, the same analysis performed on simu-

lated data consisting in a simple scaling of the EEG response to

increased TMS intensity, returned linear relationships between the

quality of the regression and TMS intensities. This shows that unlike

the real data, the TEP of each intensity can be found in all single trials

with better fits using higher intensities. In this case then, the different

intensities have similar spatiotemporal correlates. Importantly, a key

challenge remains to define the precise and individual relationship

between the modeling and simulation of TMS induced electrical field

and the neuronal activation threshold based on EEG recordings that is

relevant for therapeutic outcomes or side effects in each of the

brain area.

4.3 | Regional inhibitory properties of the cerebral
cortex

4.3.1 | Local neural activity shows opposite
response patterns to SICI

Paired-pulse TMS delivered with an interval of 2–3 ms can noninvasively

probe the level of GABAA receptor (GABAAR) mediated inhibition

(Di Lazzaro et al., 2007; Kujirai et al., 1993). Importantly, the resulting

EEG responses reflect the combination of the conditioning effects of the

first pulse on the second one and vice versa. Then the interpretation is

not as straight forward than a unique activation of GABAAR.

To our knowledge, there are only four studies investigating the

EEG correlates of SICI in M1 (Cash et al., 2017; Ferreri et al., 2011; Paus

et al., 2001; Premoli et al., 2018) and one in the DLPFC (Cash et al.,

2017). These few studies, however, reported inconsistent results in

terms of changes in components amplitude. While Paus et al. did not

report any change, Ferreri et al., as well as Cash et al. found a reduction

of the early components (P30, N45, and P60), and Premoli et al. found a

reduction rather in the late components (N100, P180). Similarly, we

found a significant reduction of the N100 and P300 compared to single

pulse TMS at 120% rMT. Interestingly, SICI induced an opposite effect

in the superior occipital lobule with an increase of the P60 and the

N145 but a decrease in the P30 and no effect in the DLPFC. This last

finding is incongruent with the results obtained by Cash et al., who

found a reduction in P60. These discrepancies can be explained by dif-

ferent stimulation parameters (monophasic pulses vs. biphasic pulses),

data analysis (here, we focused on the LSA) or study design (double

sample size, or neuronavigation).

4.3.2 | Region-specific spectral properties of SICI

SICI applied over M1 induced significant oscillatory activities distinct

from those induced by single pulse TMS at other intensities. SICI

abolished the mu rhythm over M1, which is tightly associated with

the sensorimotor system. Mu activity is suppressed during the execu-

tion of movements, representations of movements, and on activation

of afferent influences associated with muscle activity (Sabate, Llanos,

Enriquez, & Rodriguez, 2012). This result was thus expected, since

SICI is known to level down the activation of the corticospinal track

through the activation of intracortical inhibitory circuits, leading to a

decrease in the induced muscle contraction. In the occipital cortex,

the spectral properties of SICI were explained by a mixture of compo-

nents including low gamma, alpha, and beta activity. This reflected a

complex oscillatory signature mainly shared by 100 and 120% rMT

conditions. In the DLPFC, the neural activity evoked by SICI stimula-

tion shared common spectral properties with the conditions 120, 100,

and 60% rMT. The spectral signature of SICI and 120% SICI were

really close confirming the lack of effect of SICI on the EEG signal,

associated with early broadband gamma activity and late alpha.

4.3.3 | TEP linear regression quality of SICI

When the SICI condition was included in the linear regression analy-

sis, it overall confirmed the original dynamical signature of SICI in M1

because SICI trials were better regressed by its own TEP. When all

conditions were entered, the quality of the regression was weaker for

SICI than for 120% rMT only for M1. This might be due to the lesser

recruitment of the neuronal populations responsible for the activation

of the corticospinal tract (PYR V neurons). The fact that we did not

find the same patterns of results for the two other regions, suggests

that neurotransmitters density are different across regions (Tiwari,

Ambadipudi, & Patel, 2013). However, in a recent pharmacological

TMS–EEG study targeting M1, the authors tested two different drugs

(diazepam, baclofen) sensitive to GABAAR and GABABR mediated

inhibitory neurotransmission, respectively. While SICI induced an

amplitude reduction of late TEP components (i.e., N100 and P180)

compared to single-pulse responses, diazepam and baclofen modu-

lated SICI of N100 in opposite directions (Premoli et al., 2018), similar

to earlier findings related to LICI (Premoli et al., 2014). Because SICI

has distinct impacts depending on the stimulated area, TMS–EEG

could provide a new regional readout for drug testing specifically

targeting GABAergic mechanisms in predefined brain areas.

4.4 | Potential experimental confounds

Our comparison of the EEG effects induced by the different intensi-

ties is inevitably confounded by TMS-induced muscular, auditory and

somatosensory responses, as called peripheral evoked potentials

(PEPs). Below, we will discuss how our data and our new analysis

approach might add new insights concerning the contribution of these
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multisensory costimulations into the TMS-induced EEG response,

with respect to the classical sham procedure and the realistic sham

experiment we conducted. Several recent lines of evidence suggest

that realistic sham stimulation induces a cortical response pattern

close to the one evoked by real TMS over the scalp [Biabani et al.,

2019; Conde et al., 2019]. The current debate on this topic

(Belardinelli et al., 2019; Siebner et al., 2019) prompted us to better

disentangle the multisensory temporal and spatial response patterns

from the real transcranial evoked brain response to TMS.

First, the TMS-induced auditory sound may have contributed to

the TMS intensity-dependent changes of components' amplitude in

the three tested regions, contaminating the early components

(i.e., P30, P60) and the late components (i.e., the N100 and P200).

Indeed, the “click” sound of TMS increases with intensity (Dhamne

et al., 2014) producing an increase in AEP (Juckel et al., 1996). Addi-

tionally, intensity-dependent artifact can result from cranial muscle

activity related to direct depolarization of muscle fibers by the TMS

pulse or from activation of the nerves innervating the muscles

(Mutanen, Mäki, & Ilmoniemi, 2013). Finally, there are additional

regional sources of artifacts. For example, over M1, the presence of

intensity-dependent muscle reafferent inputs to S1 induced by sup-

rathreshold TMS over M1 results in sensory-evoked potentials in the

EEG, which can contaminate the TEP (Fecchio et al., 2017). In the

same line, TMS over the DLPFC can be uncomfortable and this feeling

of discomfort is proportional to TMS intensity. One way to quantify

the weight of these nonneuronal signals in the various TEPs would be

to systematically rate the discomfort and pain induced by all the stim-

ulation conditions and relate it to the associated TEPs.

A further development of our cortical mapping would be to sys-

tematically and online fine-tune TMS parameters (angle, intensity,

position) to minimize artifacts and maximize cortical responses before

starting the acquisition [see, e.g., Casarotto et al., 2016]. This

approach would allow a better comparison of interregional signals and

a less extensive use of postprocessing computations. However, we

tried in the present work to minimize confound effects both during

acquisition and EEG processing steps. First, we used a realistic sham

condition consisting in a TMS sham coil able to mimic the TMS multi-

sensory effects without directly stimulating the brain (Smith & Pete-

rchev, 2018). We also used state-of-the-art methods to reduce the

auditory component (plastic form under the coil and sound-protective

headphones playing white noise). Then, we applied state-of-the-art

methods to process TMS–EEG data by using the methodology devel-

oped in 2014 by Rogasch et al., which rely on systematic and meticu-

lous data cleaning steps using two ICA rounds. Such a method

allowed us to remove any residual muscular or auditory artifacts from

our data, and to compute clean TEPs showing significant early neuro-

nal activations (Belardinelli et al., 2019).

Despite all these measures, it is still impossible to dissociate the

multiple sources of multisensory stimulations induced by TMS. Then the

resulting input–output patterns are partly ambiguous and cannot be

definitively attributed to direct local cortical TEP profiles. However, the

results of our realistic sham experiment clearly stated that no significant

information can be drawn locally from the early components of PEPs

(<80 ms) using our methodology, contrary to its late central components.

The quality of regression of the realistic sham conditions on early com-

ponents never significantly differed from noise, as quantified with the

classical sham procedure used in the first experiment. This is in line with

recent findings suggesting that only late components appear to contain

significant PEPs (Biabani et al., 2019; Freedberg et al., 2020). In contrast,

recruitment curves drawn from active stimulation differed from noise

and showed different patterns across sites, possibly revealing different

input–output properties of the cortical tissue. Additionally, both our LSA

modes and regression quality analyses enabled us to link one stimulation

intensity with one specific dynamical signature, distinct from each other,

which was not the case with realistic sham data. Using simulated data,

we also demonstrated that these results were in contradiction with the

hypothesis of a simple scaling effect of evoked temporal or spectral

components, which would be the case for increasing auditory or

somatosensory stimulation (Juckel et al., 1996; Shiga et al., 2016; Tsuji

et al., 1984). Interestingly, this latter hypothesis is partially confirmed on

late central components, since our complementary analysis revealed that

no specific dynamic signature can be drawn across (or between) stimula-

tion intensities at such latencies. However, further analyses of these

components have to be performed. Several pieces of evidence, such as

the different spatial and temporal features of the late electrical fields

across conditions, the main effect of site for the regression quality score,

and the presence of late components induced by intracranial stimula-

tions (e.g., Keller et al., 2018; Kunieda et al., 2015) support the idea that

relevant information might be contained at such latencies.

5 | CONCLUSION

In this article, we examined the TMS intensity dependent effects on

the EEG signals from a temporal and spectral perspective, and used a

new analytic approach to derive regional input–output profiles of the

EEG responses to TMS. We reported complex dynamical responses in

three distant regions in terms of components' amplitude and oscilla-

tory signatures. These complex properties of the local neuronal

responses to TMS largely depend on the intrinsic cytoarchitecture and

connectivity patterns of the stimulated area. Then, the systematic

description of their intrinsic dynamical properties brings important

knowledge into cortical physiology. Furthermore, our data have impli-

cation in clinical research. This new assessment of regional cortical

excitability will help resolving new challenges especially in the context

of pharmacological or brain stimulation induced modulations of corti-

cal excitability (Devergnas & Wichmann, 2011; Karabanov et al.,

2015; Nitsche et al., 2003). The primary motor cortex has been largely

used as the experimental model to study brain reactivity to TMS and

to normalize stimulation parameters when targeting nonmotor areas.

Our data show that the local EEG response may be highly specific,

and should not be extrapolated to other brain regions. Then using the

rMT as a basis to define stimulation intensities in rTMS protocols

might contribute to the large variability reported by clinical rTMS tri-

als. Based on linear regressions, a realistic regional threshold could be

derived and could serve as a basis for to set stimulation parameters at
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the group level or even on an individual basis. Hence, the develop-

ment of more accurate control strategies of TMS-induced changes in

cortical excitability will eventually facilitate predicting the effect of

rTMS applied to nonmotor brain areas.
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