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SUMMARY

Proteins that fail to correctly fold or assemble into oligomeric complexes in the endoplasmic 

reticulum (ER) are degraded by a ubiquitin and proteasome dependent process known as ER-

associated degradation (ERAD). Although many individual components of the ERAD system have 

been identified, how these proteins are organised into a functional network that coordinates 

recognition, ubiquitination, and dislocation of substrates across the ER membrane is not well 

understood. We have investigated the functional organisation of the mammalian ERAD system 

using a systems-level strategy that integrates proteomics, functional genomics, and the 

transcriptional response to ER stress. This analysis supports an adaptive organisation for the 

mammalian ERAD machinery and reveals a number of metazoan-specific genes not previously 

linked to ERAD.

Keywords

ER-associated degradation (ERAD); Hrd1; FAM8A1; UBAC2; mammalian EMC; CompPASS 
analysis; interaction network

Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

Correspondence should be address to R.R.K. Phone: 650-723-7581, FAX: 650-724-4927, kopito@stanford.edu.
5current address: Division of Biological Sciences, UC San Diego, La Jolla, California 92093
6These authors contributed equally to this work

AUTHOR CONTRIBUTIONS
The manuscript was written collectively by J.C.C., J.A.O., and R.R.K. Experiments and data analysis were performed by J.A.O. and 
J.C.C. with assistance from C.M.B, R.E.T., and E.J.G. LC-MS/MS analysis was carried out by T.A.S. CompPASS analysis was 
performed by M.E.S. and E.J.B with support from J.W.H.

HHS Public Access
Author manuscript
Nat Cell Biol. Author manuscript; available in PMC 2012 July 01.

Published in final edited form as:
Nat Cell Biol. ; 14(1): 93–105. doi:10.1038/ncb2383.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



INTRODUCTION

Approximately one-third of the eukaryotic proteome consists of secreted and integral 

membrane proteins that are synthesised and inserted into the endoplasmic reticulum (ER), 

where they must correctly fold and assemble in order to reach functional maturity1. ER 

quality control (ERQC) refers to the processes simultaneously monitoring deployment of 

correctly folded proteins and assembled complexes to distal compartments, while diverting 

folding-incompetent, mutant or unassembled polypeptides for proteasomal degradation via 

the process of ER-associated degradation (ERAD, reviewed in2–4). An ever growing list of 

sporadic and genetic human disorders have been associated with ERQC, illustrating the 

pivotal role these processes play in governance of protein trafficking5.

Many of the individual components thought to underlie ERAD have been identified through 

genetic and biochemical analyses in S. cerevisiae and mammals4,6 and point toward a 

mechanism mediated by a network of topologically and compartmentally restricted, partially 

redundant protein complexes2,4,7–9. ERAD is a vectorial process whereby coordination of 

ERAD components across three subcellular compartments (ER lumen, lipid bilayer, and 

cytoplasm) must occur in order to effectively distinguish, target, and deliver misfolded 

substrates for degradation. Exclusion of the ubiquitin (Ub)-proteasome system (UPS) from 

the ER lumen necessitates that substrates traverse the ER membrane in order to be degraded, 

yet the molecular identity and mechanism of the required dislocation apparatus remains 

controversial7,10,11.

Ub E3 ligases play central functional and organisational roles in ERAD9. In yeast, the E3s 

Hrd1p and Doa10p, which contain cytoplasmically oriented RING domains that recruit 

distinct Ub-conjugating enzymes and form functional complexes by scaffolding shared 

ERAD-related factors12–16, appear to be sufficient to degrade all ERAD substrates16,17. 

ERAD substrates with luminal (ERAD-L) or membrane (ERAD-M) folding lesions utilise 

Hrd1p16,18, while those with cytoplasmic lesions (ERAD-C) rely on Doa10p16,17,19. In 

contrast to yeast, at least 10 different E3s have been implicated in mammalian ERAD20, 

possibly reflecting an evolutionary adaptation to the broader substrate range imposed by the 

more complex metazoan proteome. Three mammalian E3s, gp78, Hrd1, and TEB4, share 

similar domain and topological organisation, but scant sequence homology, with their yeast 

orthologs Hrd1p (ortholog of gp78 and Hrd1) and Doa10p (ortholog of TEB4). Uncovering 

how the organisation of E3-containing membrane complexes allows them to access 

substrates in the ER lumen/membrane and recruit the cytoplasmic dislocation/extraction 

apparatus is crucial to establishing a comprehensive understanding of ERAD.

In this work we have employed a systematic, multi-layered approach that integrates high-

content proteomics, functional genomics, and gene expression to elucidate the 

interconnectivity and organisation of ERAD in mammals (Supplementary Fig. S1). These 

studies have allowed us to generate the first integrated physical and functional map of the 

ERAD system in the mammalian ER.
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RESULTS

Mapping the mammalian ERAD interaction network

We employed a high-content proteomics strategy to map the mammalian ERAD interaction 

network, starting with 15 S-tagged baits consisting of proteins previously identified as 

ERAD pathway components in biochemical studies or by orthology to components 

identified in yeast (Supplementary Table S1, PRIMARY). After confirming ER localisation 

in HeLa cells (Supplementary Fig. S2) and stable expression of each full-length S-tagged 

bait in HEK293s (data not shown), protein complexes captured by S-protein affinity 

purification from detergent-solubilised lysates were analysed by liquid chromatography/

tandem mass spectrometry (LC-MS/MS). Interactions were initially assessed for all baits by 

independently analysing pull-downs from cells lysed in digitonin (DIG; Supplementary 

Table S2) or the more stringent detergent Triton X-100 (TX-100; Supplementary Table S3). 

Total spectral counts for each captured protein were subsequently evaluated with the 

Comparative Proteomics Analysis Software Suite (CompPASS; Supplementary 

Methods)21,22. CompPASS employs a database of interacting proteins (including data from 

baits in this study and 102 unrelated proteins described previously21) and comparative 

metrics to determine the likelihood of validity of interactors. The CompPASS parameter 

WDN-score22, which integrates the abundance, uniqueness, and reproducibility of an 

interacting protein, was used to identify High-confidence Candidate Interacting Proteins 

(HCIPs) for the ERAD network. Previous studies demonstrated that >68% of identified 

HCIPs were validated in subsequent biochemical analyses21, a rate of validation that is well 

above other high throughput approaches to study protein-protein interactions23. In our study, 

interacting proteins surpassing a stringent threshold score of WDN > 1.0 were designated as 

HCIPs (Supplementary Tables S2a and S3a). Interacting proteins scoring below this cut-off 

may still represent bona fide interactions (full list in Supplementary Tables S2b and S3b).

In addition to revealing interconnections among primary baits, this analysis uncovered 10 

HCIPs with no prior relationship to ERAD. Seven (FAM8A1, UBAC2, KIAA0090, TTC35, 

C15orf24, TMEM111, and COX4NB) are functionally uncharacterised open reading frames 

(ORFs) and two (E-Syt1 and MMGT1) are implicated in cellular processes unrelated to 

quality control. The HCIP TXD16 (also known as ERp90) was recently suggested to be 

involved in ERAD24. Based on their identification as HCIPs with multiple ERAD 

components in both DIG and TX-100, high spectral counts, and predicted ER localisation 

(criteria described in Methods), these 10 HCIPs were introduced into the proteomic 

workflow to iteratively expand and validate the network (Supplementary Fig. S1, 

SECONDARY). Three proteins previously implicated in mammalian ERAD (TEB4, RNF5, 

and HERP) could not be sufficiently expressed and were omitted. Ultimately, our ERAD 

network analysis included 25 baits, of which 9 appear to be unique to metazoans. No 

correlation was observed between bait abundance and the total number of interactions and 

HCIPs identified (Supplementary Fig. S3a). From 3,325 individual proteins identified by 

MASCOT in DIG and 2,971 in TX-100 (Supplementary Tables S2b and S3b), CompPASS 

identified 320 and 202 HCIPs, respectively for the 25 baits (Supplementary Tables S2a and 

S3a). These HCIPs correspond to 143 and 97 non-redundant proteins with 71 HCIPs of 

interest, previously uncharacterised for a role in ERAD (see Online Methods for selection 
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criteria, Supplementary Table S4 and Fig. S3b). Over 50% of HCIPs are ER/membrane 

localised, and gene ontology (GO) analysis indicates diverse functionality with significant 

overrepresentation in folding, Ub and catabolic processes (Supplementary Fig. S3c and d).

Overview of the mammalian ERAD interaction network

Unbiased hierarchical clustering of all HCIPs identified for each bait in both detergents was 

used to assemble interaction data into a coherent network (Fig. 1). Four of the DIG clusters 

define subnetworks organised around the E3s Hrd1 (clusters 1D and 6D) and gp78 (clusters 

3D and 8D), indicating a central role in organisation of the mammalian ERAD system. Both 

Hrd1 and gp78 clustered with established integral membrane, luminal, and cytoplasmic 

ERAD components (clusters 1D and 8D) as well as, separately, with most 26S proteasome 

subunits (clusters 3D and 6D). Cluster 2D defines a macromolecular complex of previously 

uncharacterised proteins that we have designated the mammalian ER Membrane Complex 

(mEMC, discussed below) to reflect its orthology to a complex associated with the unfolded 

protein response (UPR) in yeast25. Cluster 4D confirms the previously reported interactions 

of the AAA+ ATPase VCP/p97 with an integral membrane binding partner VIMP26,27 and 

cytosolic NGly128, while revealing novel interactions of VIMP and UBXD2 with the 

VCP/p97 accessory protein UBE4A, a Ufd2 ortholog implicated in Ub chain extension29. In 

addition to confirming the ERFAD-SEL1L interaction30, cluster 5D validated the recently 

reported interaction of ERFAD with TXD16/ERp9024, reinforcing the connection between 

ERAD and oxidative protein folding/unfolding. Cluster 7D contains several novel HCIPs in 

complex with Derlin-1 and Derlin-2, including the Ca2+-sensing protein extended-

synaptotagmin 1 (E-Syt1)31, the Ras superfamily member ARL6IP and YIF1B, both 

implicated in protein trafficking32,33.

Of the 8 prominent clusters identified in DIG-solubilised cells, only cluster 2 remained 

intact with TX-100 lysis. Four clusters (1, 3, 5, 8) were fragmented into discrete sub-

clusters, and three (4, 6, 7) were fully disrupted. Based on these clusters (Fig. 1), we merged 

individual interactomes (Supplementary Fig. S4) to construct a topologically rendered, 

detailed interaction map of the mammalian ERAD network in DIG and TX-100 (Fig. 2). The 

Interaction Network for ER-Associated Degradation (INfERAD) was arranged around 

clusters identified for Hrd1-SEL1L, gp78, and the mEMC subnetworks, with those 

components located centrally reflecting shared interactions between clusters.

As with any systems-based analysis of interaction networks, our analysis was not 

exhaustive, and therefore we sought to integrate data from public protein-protein interaction 

resources (STRING). However, as ERAD components are poorly represented in this 

database (Supplementary Table S5) and other online resources (BIOGRID and MINT), 

interactions identified in this study were instead mapped together with pair-wise interactions 

reported previously (Supplementary Table S5, Supplementary Fig. S5). These combined 

datasets contain over 250 interactions, reflecting the organisational complexity of the 

mammalian ERAD system.
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The Hrd1-SEL1L subnetwork

Our proteomic analysis confirmed the E3 Hrd1 and its established cofactor SEL1L as a 

prominent nexus for ERAD. Nearly all previously reported interactions of the Hrd1-SEL1L 

complex (Supplementary Table S5) were validated by our dataset, which also uncovered 

several previously uncharacterised proteins including FAM8A1, LONP2, a putative Lon-

protease (with OS-9); CPVL, a putative carboxypeptidase (with XTP3-B), the stress-

inducible hemeoxygenase HMOX1/HO1 and two components of the sterol biosynthetic 

pathway, HMG-CoA reductase (HMGCR) and squalene synthetase (FDFT1). The rate-

limiting enzyme in cholesterol synthesis, HMGCR, is subject to strict feedback regulation 

whereby sterol end products induce its degradation by ERAD12,34,35. Although evidence 

supports a role for gp78 in the degradation of HMGCR in mammalian cells36, the Hrd1 

pathway degrades HMGCR in both yeast (Hmg2p)12 and Drosophila37. Identification of 

HMGCR as a Hrd1 HCIP lends strength to the possibility that Hrd1 also plays a role in 

HMGCR degradation in mammals38.

The integrity of the Hrd1-SEL1L subnetwork was strongly influenced by solubilisation 

conditions. All Hrd1 HCIPs apart from FAM8A1 (Fig. 1a, cluster 1Ta) were lost in TX-100, 

while the complexes containing SEL1L, OS-9, and other luminal components were 

preserved (Fig. 1a, cluster 1Tb), consistent with all upstream (luminal) interactions being 

mediated via SEL1L, which is linked to Hrd1 by a TX-100-labile association39.

The gp78 subnetwork

Cluster analysis exposed a reciprocally co-precipitating complex consisting of the E3 gp78, 

an uncharacterised UBA domain-containing polytopic protein UBAC2, the membrane-

embedded, VCP/p97-binding protein UBXD8, and Derlins-1 and -2. The high degree of 

interconnectivity suggests that gp78 together with its cognate E2 (UBE2G2) and UBAC2, 

comprise a transmembrane pathway for ERAD that shares essential cytoplasmic (e.g. 

VCP/p97 and 26S proteasomes) and integral membrane components (UBXD8 and Derlin-2) 

with the Hrd1-SEL1L cluster. The recently described protein TMUB140 was found in the 

gp78 cluster, as was BRI3BP, hitherto unlinked to ER. Signal peptide peptidase (HM13/

SPP) and a number of poorly characterised integral membrane proteins (TMEM201, 

TMEM43, LRRC59 and CLPTM1) were also linked via UBAC2. In contrast to the Hrd1-

SEL1L cluster, most HCIPs associated with the gp78 subnetwork were stable in both 

detergents (Supplementary Table S2, S3, and S6). Disruption of the Hrd1-SEL1L cluster in 

TX-100 caused the shared cytoplasmic interactors VCP/p97 and UBE2G2 to cluster with 

gp78, likely reflecting their direct binding to the C-terminal cytoplasmic domain of 

gp7841,42. These data establish gp78 as the core of a detergent-stable E3 subnetwork that 

shares several components with the Hrd1 complex, and identify UBAC2 as a central element 

in the gp78 complex.

ERAD E3s are associated with the 26S proteasome

Strikingly, nearly all subunits of the 26S proteasome were captured with Hrd1 and gp78 in 

DIG lysates. Although not all of these interactions reached our stringent criteria to qualify as 

HCIPs (19/32 for gp78; 15/31 for Hrd1; Supplementary Table S6), the fact that gp78 

captured all subunits of the 20S core particle and most subunits of the 19S regulatoryparticle 
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indicates a significant connection between the ERAD E3s and 26S proteasomes 

(Supplementary Table S6, and Fig. S6). Persistence of these interactions in TX-100 together 

with the observation that proteasome subunits were not identified as HCIPs of other ERAD 

interaction network components, suggests an intimate, perhaps direct interaction of gp78 

(and possibly Hrd1) with the 26S proteasome. The excess of 20S core particle over 19S 

regulatory subunits captured with gp78 and Hrd1 (Fig S6) raises the possibility that E3-

proteasome connections may be linked independently of the 19S regulatory particle, perhaps 

via direct interactions with 20S or via alternative adaptors.

The gp78 HCIP PSME4/PA200 was identified in a screen for 26S proteasome activators and 

originally reported as a nuclear protein with a possible role in DNA repair 45. PA200 can 

assemble with 20S and 19S subunits to form hybrid 26S proteasomes46 and a crystal 

structure of the apparent yeast ortholog Blm10 suggests that it interacts directly with 

proteasome α-subunits47. The functional significance of the PA200 interaction is unclear, 

yet its presence in gp78 (but not Hrd1) complexes suggests there may be heterogeneous 26S 

proteasome populations associated with the ER membrane and ERAD.

The mammalian EMC subnetwork

The detergent-stable mEMC (Fig. 1, cluster 2) was initially identified through KIAA0090, 

an uncharacterised, putative type I integral membrane glycoprotein detected as a Derlin-1/2 

HCIP (Fig. 1 and Supplementary Table S2). With KIAA0090 as bait, we identified 5 

additional HCIPs (TTC35, TMEM32/MMGT1, TMEM85, C15orf24 and COX4NB), which 

reciprocally co-precipitated each other, and 4 additional proteins (TMEM111, C19orf63, 

C14orf122, and TMEM93; Supplementary Fig. S4). The mEMC is comprised of 10 unique 

subunits, while its yeast counterpart appears to contain 6 (Fig. 2). Although the function of 

the mEMC is unknown, 3 subunits (KIAA0090, TMEM111 and TTC35) were identified as 

HCIPs of UBAC2 and Derlin-2, suggesting a close link between this complex and ERAD 

components implicated in Ub recognition and protein dislocation.

Deconvolving the ERAD interaction network with RNA interference

To begin to decipher the organisation within the mammalian ERAD interaction network, we 

systematically analysed the Hrd1-SEL1L and gp78 subnetworks. Coexpression of S-tagged 

proteins with shRNAs targeting central subnetwork nodes was used to ascertain the 

requirement of each component to maintain individual interactions (Fig. 3). Following 

SEL1L knockdown, XTP3-B interactions with Hrd1 (Fig. 3a), UBE2J1 (Fig. 3b), and 

FAM8A1 (Fig. 3c) were abolished, while OS-9 lost its connection to Hrd1 (Fig. 3d). LC-

MS/MS analyses confirmed that XTP3-B and OS-9 affinity-purified complexes from cells 

lacking SEL1L lost their interactions with all downstream membrane and cytosolic 

components (e.g. Hrd1, data not shown). These data verify the essential role that SEL1L 

plays in scaffolding luminal, substrate-recognition elements to the Hrd1 transmembrane 

complex30,39,48,49, and reveal the independent interactions of XTP3-B and OS-9 with the 

Hrd1-SEL1L node (Fig. 3e).

Hrd1-SEL1L subnetwork connections to integral membrane and cytosolic ERAD 

components differed in that SEL1L knockdown did not affect the Hrd1-FAM8A1 (Fig. 3f) 
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or Hrd1-UBE2J1 interactions (Fig. 3g). Similarly, loss of Hrd1 failed to sever the 

connections between SEL1L-UBE2J1 (Fig. 3h), SEL1L-AUP1 (Fig. 3i), or AUP1-UBE2G2 

(Fig. 3j). Thus, both Hrd1 and SEL1L bind to UBE2J1, either directly or through a factor 

not identified in our proteomic analysis. Hrd1 knockdown abolished the SEL1L-FAM8A1 

interaction (Fig. 3f), indicating that SEL1L and FAM8A1 independently bind to Hrd1. This 

conclusion is reinforced by the maintenance of the Hrd1-FAM8A1 interaction in TX-100 

where SEL1L is lost (Fig 1). These data refine the molecular topology of the Hrd1-SEL1L 

complex, and identify FAM8A1, as an obligate, SEL1L-independent partner of Hrd1 (Fig. 

3k).

A second prominent, highly interconnected subnetwork is composed of gp78, Derlin-2, 

UBAC2, and UBXD8 (Fig. 2). Knockdown of UBXD8 did not disrupt the gp78-UBAC2 

interaction (Fig. 3l), nor did knockdown of gp78 affect UBXD8-UBAC2 (Fig. 3m and n). 

And while gp78 binding was lost, maintenance of the UBXD8-UBAC2 interaction in 

TX-100 indicates that their organisation occurs independently of gp78 (Fig. 1). However, 

the UBXD8-gp78 interaction was abrogated by knockdown of UBAC2 (Fig. 3o) but not 

Derlin-2 (Fig. 3p). These data allow refinement of the gp78 subnetwork topology (Fig. 3q) 

and identify a role for UBAC2 in the recruitment of UBXD8 to the gp78 complex.

Functional genomic analysis of ERAD components

To assess their functional roles in substrate degradation, we monitored the effect of RNAi-

mediated knockdown of individual ERAD components on steady-state fluorescence levels 

of fluorescent ERAD substrate reporters21,50–53. Cell lines stably expressing GFP fusions 

representing three major topological classes of ERAD substrates: luminal-glycosylated (null 

Hong Kong variant of α1-antitrypsin (NHK)), luminal-non-glycosylated (NHK-QQQ and 

mutant transthyretin TTR(D18G)), and integral membrane-glycosylated (CFTRΔF508) (Fig. 

4a) were employed. We also included the AMPA-type glutamate receptor subunit GluR1 as 

it is retained in the ER and degraded in a UPS-dependent manner (Supplementary Fig. S7). 

Cell lines expressing the cytosolic proteasome substrate GFPu54 and GFP served as controls 

for ERAD-independent effects that might alter UPS function, reporter gene expression, or 

GFP fluorescence.

All substrate reporter lines responded to proteasome inhibition with time-dependent 

increases in mean GFP fluorescence (Fig. 4b). Expression of a dominant negative VCP/p97 

mutant (H317A)52 severely impaired degradation of only the ERAD substrates, but not 

GFPu (Fig. 4c), in agreement with the strong dependence of ERAD pathways on VCP/p97 

and 26S proteasomes. The mannosidase inhibitor kifunensine (KIF) selectively inhibited the 

degradation of NHK (Fig. 4c), consistent with an established requirement for mannose 

trimming of this glycoprotein for ERAD55,56. GluR1 and CFTR F508 are also glycoproteins 

(Supplementary Fig. S7c), but were unaffected by KIF (Fig. 4c), indicating that mannose 

trimming is unlikely to be the dominant signal committing them to degradation, or to the 

existence of redundant, glycan-independent targeting for these polytopic proteins. These 

data reflect an implicit requirement for multiple, substrate-specific recognition elements 

within the ERAD interaction network to deliver substrates to shared degradation machinery.
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To identify the individual factors required for substrate degradation, we generated an 

shRNA library targeting genes implicated in ERAD (Fig. 4d; Supplementary Table S5) and 

monitored their impact on the mean GFP fluorescence of reporter cell lines (Fig. 4e; 

Supplementary Table S7). Any shRNA that significantly stabilised an ERAD reporter was 

selected for further validation by rescreening through all other reporter lines and 

confirmation of knockdown (See Methods and Supplementary Fig. S8). Each substrate 

appeared to rely on a unique set of individual ERAD components for degradation 

(Supplementary Table S7), which is illustrated as a hierarchically clustered heat map for 

comparison (Fig. 4f). Of the 59 components our library targeted, only the non-ATPase 

subunit of the 19S regulatory particle PSMD2 and VCP/p97 were essential for all ERAD 

substrates (Fig. 4f). GFPu was stabilised by knockdown of PSMD2, but not VCP/p97, 

mimicking the effects of MG132 and VCP/p97(H317A) (Fig. 4b and c) and validating the 

strategy of using shRNA-mediated gene silencing with ERAD reporters to interrogate the 

contribution of individual components to the overall degradation process. Hierarchical 

cluster analysis demonstrated that substrates were segregated by topology (luminal vs. 

integral membrane), but not by glycosylation (Fig. 4f). Moreover, a surprising degree of 

heterogeneity within each substrate’s requirement profile was observed, especially for 

substrates utilising the same central ERAD components (e.g. Hrd1, discussed below). These 

characteristic patterns suggest that the ERAD system operates largely as an adaptive 

network, in which unique combinations of common components process individual 

substrates. Such an adaptive mechanism could be explained by the formation of substrate-

specific subcomplexes or by a multisubunit complex that utilises discrete sets of components 

to achieve substrate-specific degradation.

An adaptive mechanism for Hrd1-dependent degradation

We merged the heat map of shRNA-mediated impairment for each substrate (Fig. 4f) with 

the comprehensive ERAD interaction network (Supplementary Fig. S5) in order to generate 

integrated substrate-specific snapshots of the physical and functional networks responsible 

for degradation (Supplementary Fig. S9–11). Loss of either E3 in the network impacted 

degradation in a substrate-specific manner. Hrd1 knockdown stabilised topologically 

disparate substrates including NHK, NHK-QQQ, TTR(D18G) and GluR1, but had little 

effect on GFPu or CFTRΔF508 (Fig. 4f and g). Instead, CFTRΔF508 was stabilised 

following gp78 knockdown, as previously reported57. Substrates utilising Hrd1 did not share 

a common dependence on Hrd1-SEL1L subnetwork components. While FAM8A1 and 

SEL1L were essential for degradation of NHK and TTR(D18G) and dispensable for GluR1, 

the converse was true for AUP1 and UBE2G2 (Fig. 4f and g). And despite sharing a 

common requirement for VCP/p97, ERAD substrates were differentially dependent on VCP/

p97-interacting proteins such as SVIP, UBE4A and VCIP135 (Fig. 4f), perhaps indicating 

additional heterogeneity among the VCP/p97-containing complexes employed for 

dislocation.

Coordinate regulation of ERAD genes by the unfolded protein response

Expression of more than half of the ERAD genes in our network, including the Hrd1-SEL1L 

subnetwork (Fig. 5) and other known UPR targets (e.g. BiP and HERP), were induced by 

tunicamycin (Fig. 5). By contrast, gp78 and other ER-resident E3s responded only weakly 
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(Fig. 5). All but one of the mEMC components were transcriptionally upregulated by 

tunicamycin (Fig. 5); in yeast, only EMC3 is upregulated by the UPR25,58. The selective 

response to ER stress indicates a previously unrecognised, coordinate transcriptional 

regulation of this physically and functionally integrated network and suggests that the Hrd1-

SEL1L and mEMC subnetworks contribute to the cellular response to ER stress and 

underscore an important role of ERAD in this process.

ERAD components identified within the Hrd1-SEL1L and gp78 subnetworks

FAM8A1 was identified as a previously uncharacterised component of the Hrd1-SEL1L 

subnetwork (Fig. 6a). Immunoprecipitation of endogenous FAM8A1 captured Hrd1 and 

SEL1L (Fig. 6b), confirming that FAM8A1 is a bona fide interactor of both components. 

Resistance to extraction from purified microsomes by high salt or pH support predictions for 

FAM8A1 as an integral membrane protein with 3 membrane-spanning domains 

(TOPCONS, Fig. 6c and d), while limited proteolysis of FAM8A1-containing microsomes 

(data not shown) and immunodetection of an N-terminal epitope tag in semipermeablised 

cells (Fig. 6e) established the cytoplasmic localisation of the N-terminus. A complex 

isolated with Stagged Hrd1 contained both FAM8A1 and SEL1L, confirming FAM8A1 as a 

component of this E3 ligase complex (Fig. 6f).

Disrupting the stoichiometry of the Hrd1 E3 complex by FAM8A1 knockdown (Fig. 3f) or 

wildtype Hrd1 overexpression (Fig. 6g) impaired degradation of TTR(D18G) while 

enhancing that of GluR1. TTR(D18G) degradation was restored or enhanced when Hrd1 

was coexpressed with SEL1L (Fig. 6g). Similarly, FAM8A1 overexpression (or its RDD 

domain, a.a. 230–413) impaired TTR(D18G) but not GluR1 degradation, while a 

cytoplasmic N-terminal fragment (FAM8A1(Δ230–413)) affected neither (Fig. 6g). The 

dominant-negative effect of FAM8A1(Δ1–229) on TTR(D18G) stability implies that Hrd1 

interacts with FAM8A1 via its RDD domain and that its cytoplasmic N-terminal region is 

required for Hrd1-mediated degradation of luminal substrates. Collectively, our results 

establish FAM8A1 as a binding partner and potential regulator of Hrd1-dependent ERAD.

UBAC2, identified as a UBXD8 interaction partner (Fig. 7a), is predicted to be a rhomboid 

family pseudoprotease similar to the Derlins59 that also contains a putative C-terminal UBA 

domain. A native interaction between the two was validated by endogenous coprecipitation 

(Fig. 7b). Functionally, UBAC2 knockdown stabilised the Hrd1 substrate TTR(D18G)-GFP 

(Fig. 7c), suggesting potential coordination between the two Ub ligase complexes. Both the 

UBAC2 C-terminus (a.a. 304–344) and the N-terminus of UBXD8 (2–52) display a high 

degree of conservation with residues essential for Ub binding in UBA domains (Fig. 7d), 

and their predicted cytosolic localisation position them appropriately for Ub binding (Fig. 

7e). While a recombinant UBAC2 C-terminal fragment (a.a. 293–344) was sufficient to 

capture polyUb chains from HEK293 cell lysates at a level comparable to the well-

characterised hPlic2 UBA60, under these conditions the UBXD8 UBA domain was not (Fig. 

7f). Thus, it is UBAC2 rather than UBXD8 that adds polyUb-binding capabilities to the 

gp78 subnetwork.
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DISCUSSION

The application of high-content proteomics to identify interconnectivity within defined 

functional networks has been used with success to map high-resolution interaction 

landscapes for several complex mammalian protein networks21,22,61. In this study, we have 

integrated the mammalian ERAD interaction landscape with gene expression data and 

substrate-specific functional “fingerprints” of the mapped components to generate a 

multidimensional view of this dynamic and complex network. Our data suggest that the 

mammalian ERAD system accommodates the diverse array of potential substrates by using 

combinatorial interactions of the two central E3s, Hrd1 and gp78, with a palette of accessory 

factors (Fig. 8).

Although many individual components of the mammalian ERAD system have been 

previously identified, to date there has been no systematic effort to place them into an 

integrated interaction landscape. Our study confirmed many of the interactions previously 

reported in mammals62 and those inferred from yeast16,63 (shown in Fig. 8; black lines), 

validating our approach and allowing us to arrange components into a topologically and 

functionally coherent model (Fig. 8). This analysis also identified 71 HCIPs that are either 

uncharacterised or have not previously been linked to ERAD (Fig. 8, only selected nodes 

and interactions shown), illustrating the ability of focused proteomic strategies to uncover 

novel components. Our analysis integrates interaction and functional data from the present 

study into a framework consisting of 6 functional modules that execute the principal ERAD 

activities: substrate recognition, dislocation, extraction, ubiquitination, and degradation 

(proteasome), as well as the EMC whose function is currently unknown. Sub-modules are 

grouped together based on predicted structural and topological features, and on an unbiased 

analysis of network interconnectivity of the proteins represented in each group. The ERAD 

system can thus be viewed as a distributed network, organised around central Ubiquitin 

Ligase modules for Hrd1 and gp78 that cooperate with components of the membrane-

embedded Dislocation and the cytoplasmically-oriented Substrate Extraction modules. 

These interconnections are likely to ensure secure coupling between substrate dislocation/

extraction and Ub conjugation. The Hrd1 and gp78 complexes contain sub-module-specific 

factors and share interactions with ERLIN1/2 and UBE2G2. The Hrd1 sub-module has four 

major connections to other modules. Three are mediated through SEL1L, which connects 

Hrd1 to the upstream luminal Substrate Recognition machinery, as well as to the 

downstream Dislocation module through Derlin-2 and the Substrate Extraction module via 

UBXD8. Direct interactions between the latter two proteins and VCP/p97 provide an 

extended pathway from the luminal substrate-binding lectins OS-9 and XTP3-B to 

cytoplasmic VCP/p97. The third connection is a direct link between this E3 and the 26S 

proteasome.

The gp78 sub-module appears to connect to the ERAD network via UBAC2. This protein 

interacts with UBXD8 and Derlin-1/2, and has a functional polyUb-binding domain, 

suggesting it may function as a membrane nexus integrating Ub conjugation, dislocation, 

and extraction. A VCP/p97-binding site within the cytoplasmic domain of gp7842 means 

that this complex can associate with VCP/p97 in at least two ways. VCP/p97 interacts 

directly with multiple components of the ERAD machinery including Derlin-1 and 
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Derlin-227,59,64, VIMP26,27, gp7842, UBXD265, and UBXD866,67. With at least 6 different 

recruitment sites for VCP/p97 within the ERAD network, it is not surprising that disruption 

or silencing of this cytoplasmic AAA+ ATPase has a more universal effect on the 

degradation of diverse ERAD substrates compared to the loss of an individual factor (Fig. 

4f). Multiple recruitment avenues at the ER membrane may reflect an acquired adaptability 

of VCP/p97 to accommodate and engage the diverse substrates it encounters. Moreover, 

VCP/p97 accessory factors (e.g. UBE4A, VCIP135, and SVIP), functionally essential for 

specific substrates (Fig. 4f), could confer an added level of specificity or may reflect a 

requirement for different VCP/p97 configurations at different steps of the dislocation and 

membrane extraction processes.

“Input” of luminal substrates into the Hrd1 sub-module occurs via the well-established 

interaction with SEL1L. A capacity of the Hrd1 sub-module to engage substrates 

independently of SEL1L is also suggested by several observations: 1) SEL1L is dispensable 

for GluR1 degradation (Fig. 4f); 2) Hrd1 overexpression enhanced GluR1 degradation while 

stabilising TTR(D18G) (Fig. 6g) and 3) co-expression of SEL1L with Hrd1 resulted in 

enhanced degradation of both substrates (Fig. 6g). One hypothesis is that Hrd1 recognises 

substrates directly through its membrane-spanning region, as suggested from studies in 

yeast68. We speculate that, given its close interaction with Hrd1, FAM8A1 may regulate the 

partitioning of Hrd1 between SEL1L-dependent and -independent modes of substrate 

recognition. This model for FAM8A1 regulation of Hrd1 partitioning is supported by the 

opposing effects that FAM8A1 depletion has on SEL1L-dependent (A1AT(NHK), 

A1AT(NHK-QQQ), TTR(D18G)) and SEL1L-independent (GluR1) substrates.

How substrates are directed to the gp78 sub-module is less clear, as no high confidence 

interactions between components of this E3 sub-module and components of the Substrate 

Recognition module were detected in our study or have been reported. Given the large 

number of common components within the Dislocation and Substrate Extraction modules 

that interact with both E3 submodules, it is possible that these two principal ERAD E3s 

cooperate to degrade substrates, consistent with some ERAD substrates being partially 

stabilised by knockdown of either Hrd1 or gp78. Indeed several examples of cooperative 

function by pairs of mammalian ERAD-associated E3s have been reported, including 

RMA1-CHIP and RMA1-gp78 in the ubiquitination of CFTR57,69 and also Hrd1-gp7870.

Our data support an organisational model for ERAD where a dynamic network of interacting 

functional modules facilitate the recognition, recruitment, dislocation, extraction, 

ubiquitination, and degradation of the diverse classes of secretory pathway proteins. This 

work should provide a resource for future analysis of this cellular quality control system.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by grants from the NIH to R.R.K. and J.W.H. J.C.C. was supported by funding from the 
Ludwig Institute for Cancer Research, Ltd. J.A.O. and R.E.T were supported by NRSA fellowships from NIH. 

Christianson et al. Page 11

Nat Cell Biol. Author manuscript; available in PMC 2012 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



E.J.B. was supported by a fellowship from the Damon Runyon Cancer Research Foundation (DRG 1974-08). We 
thank the members of the Kopito lab for helpful discussion, and M. Pearce, J. Hwang, and C. Beveridge for critical 
reading of the manuscript.

References

1. Ghaemmaghami S, et al. Global analysis of protein expression in yeast. Nature. 2003; 425:737–741. 
[PubMed: 14562106] 

2. Hebert DN, Bernasconi R, Molinari M. ERAD substrates: which way out? Semin Cell Dev Biol. 
2010; 21:526–532. [PubMed: 20026414] 

3. Buchberger A, Bukau B, Sommer T. Protein quality control in the cytosol and the endoplasmic 
reticulum: brothers in arms. Mol Cell. 2010; 40:238–252. [PubMed: 20965419] 

4. Vembar SS, Brodsky JL. One step at a time: endoplasmic reticulum-associated degradation. Nat Rev 
Mol Cell Biol. 2008; 9:944–957. [PubMed: 19002207] 

5. Aridor M. Visiting the ER: the endoplasmic reticulum as a target for therapeutics in traffic related 
diseases. Adv Drug Deliv Rev. 2007; 59:759–781. [PubMed: 17681635] 

6. Xie W, Ng DT. ERAD substrate recognition in budding yeast. Semin Cell Dev Biol. 2010; 21:533–
539. [PubMed: 20178855] 

7. Bagola K, Mehnert M, Jarosch E, Sommer T. Protein dislocation from the ER. Biochim Biophys 
Acta. 2011; 1808:925–936. [PubMed: 20599420] 

8. Hoseki J, Ushioda R, Nagata K. Mechanism and components of endoplasmic reticulum-associated 
degradation. J Biochem. 2010; 147:19–25. [PubMed: 19923195] 

9. Kostova Z, Tsai YC, Weissman AM. Ubiquitin ligases, critical mediators of endoplasmic reticulum-
associated degradation. Semin Cell Dev Biol. 2007; 18:770–779. [PubMed: 17950636] 

10. Carvalho P, Stanley AM, Rapoport TA. Retrotranslocation of a misfolded luminal ER protein by 
the ubiquitin-ligase Hrd1p. Cell. 2010; 143:579–591. [PubMed: 21074049] 

11. Ploegh HL. A lipid-based model for the creation of an escape hatch from the endoplasmic 
reticulum. Nature. 2007; 448:435–438. [PubMed: 17653186] 

12. Hampton RY, Gardner RG, Rine J. Role of 26S proteasome and HRD genes in the degradation of 
3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. 
Mol Biol Cell. 1996; 7:2029–2044. [PubMed: 8970163] 

13. Bordallo J, Plemper RK, Finger A, Wolf DH. Der3p/Hrd1p is required for endoplasmic reticulum-
associated degradation of misfolded lumenal and integral membrane proteins. Mol Biol Cell. 1998; 
9(1):209–222. [PubMed: 9437001] 

14. Bays NW, Gardner RG, Seelig LP, Joazeiro CA, Hampton RY. Hrd1p/Der3p is a membrane-
anchored ubiquitin ligase required for ER-associated degradation. Nat Cell Biol. 2001; 3(1):24–29. 
[PubMed: 11146622] 

15. Swanson R, Locher M, Hochstrasser M. A conserved ubiquitin ligase of the nuclear envelope/
endoplasmic reticulum that functions in both ER-associated and Matalpha2 repressor degradation. 
Genes Dev. 2001; 15:2660–2674. [PubMed: 11641273] 

16. Carvalho P, Goder V, Rapoport TA. Distinct ubiquitin-ligase complexes define convergent 
pathways for the degradation of ER proteins. Cell. 2006; 126:361–373. [PubMed: 16873066] 

17. Ravid T, Kreft SG, Hochstrasser M. Membrane and soluble substrates of the Doa10 ubiquitin 
ligase are degraded by distinct pathways. EMBO J. 2006; 25:533–543. [PubMed: 16437165] 

18. Vashist S, Ng DT. Misfolded proteins are sorted by a sequential checkpoint mechanism of ER 
quality control. J Cell Biol. 2004; 165:41–52. [PubMed: 15078901] 

19. Deng M, Hochstrasser M. Spatially regulated ubiquitin ligation by an ER/nuclear membrane ligase. 
Nature. 2006; 443:827–831. [PubMed: 17051211] 

20. Mehnert M, Sommer T, Jarosch E. ERAD ubiquitin ligases: multifunctional tools for protein 
quality control and waste disposal in the endoplasmic reticulum. Bioessays. 2010; 32:905–913. 
[PubMed: 20806269] 

21. Sowa ME, Bennett EJ, Gygi SP, Harper JW. Defining the human deubiquitinating enzyme 
interaction landscape. Cell. 2009; 138:389–403. [PubMed: 19615732] 

Christianson et al. Page 12

Nat Cell Biol. Author manuscript; available in PMC 2012 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



22. Behrends C, Sowa ME, Gygi SP, Harper JW. Network organization of the human autophagy 
system. Nature. 2010; 466:68–76. [PubMed: 20562859] 

23. Braun P, et al. An experimentally derived confidence score for binary protein-protein interactions. 
Nat Methods. 2009; 6:91–97. [PubMed: 19060903] 

24. Riemer J, Hansen HG, Appenzeller-Herzog C, Johansson L, Ellgaard L. Identification of the PDI-
family member ERp90 as an interaction partner of ERFAD. PLoS One. 2011; 6:e17037. [PubMed: 
21359175] 

25. Jonikas MC, et al. Comprehensive characterization of genes required for protein folding in the 
endoplasmic reticulum. Science. 2009; 323:1693–1697. [PubMed: 19325107] 

26. Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA. A membrane protein complex mediates retro-
translocation from the ER lumen into the cytosol. Nature. 2004; 429:841–847. [PubMed: 
15215856] 

27. Lilley BN, Ploegh HL. Multiprotein complexes that link dislocation, ubiquitination, and extraction 
of misfolded proteins from the endoplasmic reticulum membrane. Proc Natl Acad Sci U S A. 
2005; 102:14296–14301. [PubMed: 16186509] 

28. Li G, Zhao G, Zhou X, Schindelin H, Lennarz WJ. The AAA ATPase p97 links peptide N-
glycanase to the endoplasmic reticulum-associated E3 ligase autocrine motility factor receptor. 
Proc Natl Acad Sci USA. 2006; 103:8348–8353. [PubMed: 16709668] 

29. Koegl M, et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. 
Cell. 1999; 96:635–644. [PubMed: 10089879] 

30. Riemer J, et al. A luminal flavoprotein in endoplasmic reticulum-associated degradation. Proc Natl 
Acad Sci USA. 2009

31. Min SW, Chang WP, Sudhof TC. E-Syts, a family of membranous Ca2+-sensor proteins with 
multiple C2 domains. Proc Natl Acad Sci U S A. 2007; 104:3823–3828. [PubMed: 17360437] 

32. Pettersson M, Bessonova M, Gu HF, Groop LC, Jonsson JI. Characterization, chromosomal 
localization, and expression during hematopoietic differentiation of the gene encoding Arl6ip, 
ADP-ribosylation-like factor-6 interacting protein (ARL6). Genomics. 2000; 68:351–354. 
[PubMed: 10995579] 

33. Carrel D, et al. Targeting of the 5-HT1A serotonin receptor to neuronal dendrites is mediated by 
Yif1B. J Neurosci. 2008; 28:8063–8073. [PubMed: 18685031] 

34. Goldstein JL, Brown MS. Regulation of the mevalonate pathway. Nature. 1990; 343:425–430. 
[PubMed: 1967820] 

35. Ravid T, Doolman R, Avner R, Harats D, Roitelman J. The ubiquitin-proteasome pathway 
mediates the regulated degradation of mammalian 3-hydroxy-3-methylglutaryl-coenzyme A 
reductase. J Biol Chem. 2000; 275:35840–35847. [PubMed: 10964918] 

36. Song BL, Sever N, DeBose-Boyd RA. Gp78, a membrane-anchored ubiquitin ligase, associates 
with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. 
Mol Cell. 2005; 19:829–840. [PubMed: 16168377] 

37. Nguyen AD, Lee SH, DeBose-Boyd RA. Insig-mediated, sterol-accelerated degradation of the 
membrane domain of hamster 3-hydroxy-3-methylglutaryl-coenzyme A reductase in insect cells. J 
Biol Chem. 2009; 284:26778–26788. [PubMed: 19638338] 

38. Kikkert M, et al. Human HRD1 is an E3 ubiquitin ligase involved in degradation of proteins from 
the endoplasmic reticulum. J Biol Chem. 2004; 279:3525–3534. [PubMed: 14593114] 

39. Christianson JC, Shaler TA, Tyler RE, Kopito RR. OS-9 and GRP94 deliver mutant alpha1-
antitrypsin to the Hrd1-SEL1L ubiquitin ligase complex for ERAD. Nat Cell Biol. 2008; 10:272–
282. [PubMed: 18264092] 

40. Jo Y, Sguigna PV, DeBose-Boyd RA. Membrane-associated ubiquitin ligase complex containing 
gp78 mediates sterol-accelerated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A 
reductase. J Biol Chem. 2011; 286:15022–15031. [PubMed: 21343306] 

41. Chen B, et al. The activity of a human endoplasmic reticulum-associated degradation E3, gp78, 
requires its Cue domain, RING finger, and an E2-binding site. Proc Natl Acad Sci U S A. 2006; 
103:341–346. [PubMed: 16407162] 

Christianson et al. Page 13

Nat Cell Biol. Author manuscript; available in PMC 2012 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



42. Ballar P, Shen Y, Yang H, Fang S. The role of a novel p97/valosin-containing protein-interacting 
motif of gp78 in endoplasmic reticulum-associated degradation. J Biol Chem. 2006; 281:35359–
35368. [PubMed: 16987818] 

43. Glickman MH, Rubin DM, Fried VA, Finley D. The regulatory particle of the Saccharomyces 
cerevisiae proteasome. Mol Cell Biol. 1998; 18:3149–3162. [PubMed: 9584156] 

44. Verma R, et al. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-
interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol Biol 
Cell. 2000; 11:3425–3439. [PubMed: 11029046] 

45. Ustrell V, Hoffman L, Pratt G, Rechsteiner M. PA200, a nuclear proteasome activator involved in 
DNA repair. EMBO J. 2002; 21:3516–3525. [PubMed: 12093752] 

46. Blickwedehl J, et al. Role for proteasome activator PA200 and postglutamyl proteasome activity in 
genomic stability. Proc Natl Acad Sci U S A. 2008; 105:16165–16170. [PubMed: 18845680] 

47. Sadre-Bazzaz K, Whitby FG, Robinson H, Formosa T, Hill CP. Structure of a Blm10 complex 
reveals common mechanisms for proteasome binding and gate opening. Mol Cell. 2010; 37:728–
735. [PubMed: 20227375] 

48. Hosokawa N, et al. Human XTP3-B forms an endoplasmic reticulum quality control scaffold with 
the HRD1-SEL1L ubiquitin ligase complex and BiP. J Biol Chem. 2008; 283:20914–20924. 
[PubMed: 18502753] 

49. Cormier JH, Tamura T, Sunryd JC, Hebert DN. EDEM1 recognition and delivery of misfolded 
proteins to the SEL1L-containing ERAD complex. Mol Cell. 2009; 34:627–633. [PubMed: 
19524542] 

50. Hampton RY, Koning A, Wright R, Rine J. In vivo examination of membrane protein localization 
and degradation with green fluorescent protein. Proc Natl Acad Sci U S A. 1996; 93:828–833. 
[PubMed: 8570643] 

51. Fiebiger E, et al. Dissection of the dislocation pathway for type I membrane proteins with a new 
small molecule inhibitor, eeyarestatin. Mol Biol Cell. 2004; 15:1635–1646. [PubMed: 14767067] 

52. Delabarre B, Christianson J, Kopito R, Brunger A. Central Pore Residues Mediate the p97/VCP 
Activity Required for ERAD. Mol Cell. 2006; 22:451–462. [PubMed: 16713576] 

53. Stagg HR, et al. The TRC8 E3 ligase ubiquitinates MHC class I molecules before dislocation from 
the ER. J Cell Biol. 2009; 186:685–692. [PubMed: 19720873] 

54. Bence NF, Sampat RM, Kopito RR. Impairment of the ubiquitin-proteasome system by protein 
aggregation. Science. 2001; 292:1552–1555. [PubMed: 11375494] 

55. Hosokawa N, et al. Enhancement of endoplasmic reticulum (ER) degradation of misfolded Null 
Hong Kong alpha1-antitrypsin by human ER mannosidase I. J Biol Chem. 2003; 278:26287–
26294. [PubMed: 12736254] 

56. Liu Y, Choudhury P, Cabral CM, Sifers RN. Intracellular disposal of incompletely folded human 
alpha1-antitrypsin involves release from calnexin and post-translational trimming of asparagine-
linked oligosaccharides. J Biol Chem. 1997; 272:7946–7951. [PubMed: 9065464] 

57. Morito D, et al. Gp78 cooperates with RMA1 in endoplasmic reticulum-associated degradation of 
CFTRDeltaF508. Mol Biol Cell. 2008; 19:1328–1336. [PubMed: 18216283] 

58. Travers KJ, et al. Functional and genomic analyses reveal an essential coordination between the 
unfolded protein response and ER-associated degradation. Cell. 2000; 101:249–258. [PubMed: 
10847680] 

59. Greenblatt EJ, Olzmann JA, Kopito RR. Derlin-1 is a rhomboid pseudoprotease required for the 
dislocation of mutant alpha-1 antitrypsin from the endoplasmic reticulum. Nat Struct Mol Biol. 
2011; 18:1147–1152. [PubMed: 21909096] 

60. Bennett EJ, et al. Global changes to the ubiquitin system in Huntington’s disease. Nature. 2007; 
448:704–708. [PubMed: 17687326] 

61. Bennett EJ, Rush J, Gygi SP, Harper JW. Dynamics of Cullin-RING Ubiquitin Ligase Network 
Revealed by Systematic Quantitative Proteomics. Cell. 2010; 143:951–965. [PubMed: 21145461] 

62. Mueller B, Klemm EJ, Spooner E, Claessen JH, Ploegh HL. SEL1L nucleates a protein complex 
required for dislocation of misfolded glycoproteins. Proc Natl Acad Sci U S A. 2008; 105:12325–
12330. [PubMed: 18711132] 

Christianson et al. Page 14

Nat Cell Biol. Author manuscript; available in PMC 2012 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



63. Goder V, Carvalho P, Rapoport TA. The ER-associated degradation component Der1p and its 
homolog Dfm1p are contained in complexes with distinct cofactors of the ATPase Cdc48p. FEBS 
Lett. 2008; 582:1575–1580. [PubMed: 18407841] 

64. Oda Y, et al. Derlin-2 and Derlin-3 are regulated by the mammalian unfolded protein response and 
are required for ER-associated degradation. J Cell Biol. 2006; 172:383–393. [PubMed: 16449189] 

65. Liang J, et al. Characterization of erasin (UBXD2): a new ER protein that promotes ER-associated 
protein degradation. J Cell Sci. 2006; 119:4011–4024. [PubMed: 16968747] 

66. Lee JN, Zhang X, Feramisco JD, Gong Y, Ye J. Unsaturated fatty acids inhibit proteasomal 
degradation of Insig-1 at a postubiquitination step. J Biol Chem. 2008; 283:33772–33783. 
[PubMed: 18835813] 

67. Alexandru G, et al. UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1alpha 
turnover. Cell. 2008; 134:804–816. [PubMed: 18775313] 

68. Sato BK, Schulz D, Do PH, Hampton RY. Misfolded membrane proteins are specifically 
recognized by the transmembrane domain of the Hrd1p ubiquitin ligase. Mol Cell. 2009; 34:212–
222. [PubMed: 19394298] 

69. Younger JM, et al. Sequential quality-control checkpoints triage misfolded cystic fibrosis 
transmembrane conductance regulator. Cell. 2006; 126:571–582. [PubMed: 16901789] 

70. Bernardi KM, et al. The E3 ubiquitin ligases Hrd1 and gp78 bind to and promote cholera toxin 
retro-translocation. Mol Biol Cell. 2010; 21:140–151. [PubMed: 19864457] 

71. Ward CL, Omura S, Kopito RR. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell. 
1995; 83:121–127. [PubMed: 7553863] 

Christianson et al. Page 15

Nat Cell Biol. Author manuscript; available in PMC 2012 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Hierarchical cluster analysis of CompPASS-identified HCIPs. Hierarchical clustering of 

HCIPs for interactions present in DIG (left) and TX-100 (right). Prominent HCIP clusters 

identified in DIG (1–8D) and TX-100 (1–3, 5 and 8T) were manually selected and are 

highlighted below. Box colour indicates the WDN-score.
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Figure 2. 
The Interaction Network for ERAD (INfERAD). Interaction network for ERAD isolated in 

DIG and TX-100 represented by baits (squares) and their HCIPs (circles). Unidirectional 

(short dash, single arrow) and reciprocal (solid black, double arrows) interactions are shown. 

Each bait protein is rendered in a unique colour and line colour reflects the bait protein used 

to identify the interaction with the HCIP. Short dashed lines marked with a circle indicate 

interactions detected in both DIG and TX-100, while long dashed lines represent those 

found only in TX-100. The inset table lists the determined constituents of the mEMC, their 

size, cellular localisation, and corresponding yeast orthologs (SC) and ID in the 

Saccharomyces Genome Database (SGD). For clarity, a selection of additional DIG HCIPs 

not included in the map is shown on the bottom, with a circle’s colour corresponding to the 

bait for which the HCIP was observed and asterisks denoting an HCIP also detected in 

TX-100.
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Figure 3. 
shRNA-mediated refinement of Hrd1 complex interactions. (a–q) S-tagged ERAD baits 

were transiently coexpressed with the indicated shRNAs in HEK293 cells. All complexes 

were affinity-purified (AP) in 1% DIG and analysed by immunoblotting. (a) XTP3-B-S 

expression, probe for Hrd1 & SEL1L simultaneously; (b) Coexpression of myc-UBE2J1 and 

XTP3-B-S, probe for myc & SEL1L; (c) XTP3-B-S expression, probe for FAM8A1 & 

SEL1L; (d) S-OS-9 expression, probe for Hrd1 & SEL1L simultaneously; (e) Incorporation 

of refinements (a–d) to the Hrd1 complex; (f) S-FAM8A1 expression, probe for Hrd1 & 

SEL1L; (g) Coexpression of myc-UBE2J1 and Hrd1-S, probe for myc & SEL1L; (h) 

Coexpression of myc-UBE2J1 and S-SEL1L, probe for myc & Hrd1; (i) AUP1-S 

expression, probe for Hrd1 & SEL1L; (j) Coexpression of myc-UBE2G2, AUP1-S 

pulldown, probe for myc & Hrd1; (k) Refined interaction map for Hrd1 complex. (l) 
UBAC2-S expression with UBXD8 knockdown, probe for gp78; (m) UBAC2-S expression 

with gp78 knockdown, probe for UBXD8; (n) UBXD8-S expression with gp78 knockdown, 

probe for UBAC2; (o) UBXD8-S expression with UBAC2 knockdown, probe for Derlin-2, 

UBAC2, & gp78; (p) UBXD8-S expression with Derlin-2 knockdown, probe for gp78; (q) 

Refined interaction map for gp78 complex.
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Figure 4. 
Functional genomic screen to identify essential substrate-specific ERAD components. (a) 

Localisation and topology of GFP reporters; TTR(D18G)-GFP, A1AT(NHK)-GFP, 

A1AT(NHKQQQ)-GFP, GFP-GluR1, GFP-CFTR(ΔF508), and GFPu, and GFP. (b) Time 

course of relative mean GFP fluorescence levels for each ERAD reporter cell line treated 

with MG132 (10 μM). (c) Heat maps reflecting the normalised fold change in mean GFP 

fluorescence of ERAD reporter lines transfected with wild type or dominant-negative 

VCP/p97 (WT or H317A, top panel) and time course of treatment with kifunensine (30 μM, 

bottom panel). Fold change in mean GFP fluorescence was normalised to the levels 

measured for each reporter at the 3 hr time point of MG132 treatment, and thus a 

degradation score of 3 is equivalent to the impairment induced by 3 hr MG132 treatment. 

(d) Target composition of the shRNA library. (e) Overview of the functional genomic 

screen. (f) Hierarchically clustered heat map of the normalised fold change in mean GFP 

fluorescence of ERAD reporter lines in response to shRNA-mediated knockdown of ERAD 

components. The normalisation and colour scale are the same as in panel (c). (g) Functional 

data from the heat map shown in panel F were mapped onto the refined Hrd1 physical 
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interaction network (Fig. 3k) to provide an integrated snapshot of substrate-specific 

functional requirements for Hrd1 network components.
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Figure 5. 
Coordinated ER stress response of ERAD genes. qRT-PCR results for validated and 

suspected ERAD components upon treatment of HEK293 cells with TUNIC (10μg/mL, 6 

hr). Data are presented as fold induction (log2) normalised to β-Actin. TUNIC-induced 

expression changes in ERAD genes plotted as groups according to: (a) Fold induction of 

gene expression represented by functional category. (c) Fold induction of gene expression 

from panel (b) mapped onto the ERAD interactome from Fig. 2b. Additional genes of 

interest are presented alongside the induction map.
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Figure 6. 
Characterisation of the novel Hrd1-binding partner FAM8A1. (a) Domain structure and 

interaction network of FAM8A1. (b) Immunoprecipitation with anti-FAM8A1 from 

HEK293 DIG soluble lysates were analysed by immunoblotting with the indicated 

antibodies. (c) Consensus TOPCONS prediction of FAM8A1 membrane orientation (http://

topcons.cbr.su.se). Reliability index indicates the likelihood for consensus prediction at each 

position using a sliding 21 amino acid window. (d) HEK293 membrane fractions incubated 

with 1 M NaCl, 0.1 M Na2CO3 pH 12, or 1% SDS. Following 100,000xg centrifugation, 

equal volumes of soluble (S) and pellet (P) were analysed by Western blot with anti-

FAM8A1. (e) HeLa cells expressing S-FAM8A1 or Hrd1-S were permeabilised with DIG or 

TX-100 to allow antibody access to cytosolic epitopes or cytosolic and luminal epitopes, 

respectively, immunostained and analysed by fluorescence microscopy. Scale bar = 10 μm. 

(f) Hrd1-S expressing HEK293 cell lysates separated on a continuous 10–40% sucrose 

gradient. S-tagged Hrd1 protein complexes were affinity-purified from each 1 mL fraction 

(fractions 1–12) or from 150 mg whole cell lysate (10% AP), and analysed by Western 

blotting for Hrd1 (S-tag), SEL1L, and FAM8A1. (g) Heat map representing the normalised 

change in mean GFP fluorescence (20,000 cells, n=3) of the indicated ERAD reporter cell 

lines to transfection with the indicated Hrd1, SEL1L, and FAM8A1 plasmids. DFP indicates 

dead fluorescent protein, a non-fluorescent GFP variant. Data is represented as a normalised 

heat map as in Fig. 4c.
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Figure 7. 
Characterisation of UBAC2, a novel ubiquitin-binding ERAD component. (a) Predicted 

domain structure and interaction network of UBAC2. (b) Immunoprecipitation with anti-

UBXD8 from HEK293 DIG soluble lysates were analysed by Western blotting with the 

indicated antibodies. (c) Analysis of muliple UBAC2 targeting shRNAs on the Hrd1 

substrate TTR(D18G)-GFP by flow cytometry. (d) Sequence alignment of the predicted 

UBA domains from UBAC2 (304–344) and UBXD8 (8–53) with characterised human and 

yeast UBA domains. (e) HeLa cells expressing C-terminally S-tagged UBAC2 or gp78 were 

permeablised, immunostained, and analysed by fluorescence microscopy as in Figure 1e. (f) 
Recombinantly expressed UBA domains of hPlic2, UBXD8, and UBAC2 were coupled to 

Affigel and incubated with HEK293 cell lysates (−/+ 10 μM MG132, 6 hr). Samples were 

separated by SDS-PAGE, and ubiquitin binding was determined by immunoblotting with 

anti-Ub.
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Figure 8. 
Functional integration of mammalian ERAD networks. The schematic model of the ERAD 

protein interaction network is topologically organised with respect to the ER membrane and 

arranged as an array of 6 colour-coded functional modules. Individual components from this 

study (baits or HCIPs) are indicated as nodes with reported components (black) and novel 

components (red). Similarly, reported interactions confirmed in this study (black) and novel 

interactions (red) are shown. Symbols for protein-protein interactions, UPR induction, and 

functional requirements are indicated in the legend. Intermodule interactions represented 

terminate either at the specific node within a module that establishes the link with the 

module periphery or at the module itself (where there are interactions with multiple 

components and that module is a single complex, (e.g. the mEMC or proteasome)). 

Asterisks indicate components that were identified by proteomics, but exhibited a 

subthreshold CompPASS score (WDN-score < 1.0).
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