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Abstract: The study aims to communicate the current status regarding the development and
management of the databases on dietary lignans; within the phytochemicals, the class of the lignan
compounds is of increasing interest because of their potential beneficial properties, i.e., anticancerogenic,
antioxidant, estrogenic, and antiestrogenic activities. Furthermore, an introductory overview of the
main characteristics of the lignans is described here. In addition to the importance of the general
databases, the role and function of a food composition database is explained. The occurrence of lignans
in food groups is described; the initial construction of the first lignan databases and their inclusion in
harmonized databases at national and/or European level is presented. In this context, some examples
of utilization of specific databases to evaluate the intake of lignans are reported and described.
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1. Introduction

Within phytochemicals, phenolic compounds called lignans have attracted the interest of food
chemists and nutrition researchers over the years. Lignans are vascular plant secondary metabolites,
with widespread occurrence in the plant kingdom, and which are ascribed a wide range of physiological
functions, positively affecting human health [1]. They are a class of secondary plant metabolites that
belong to the group of diphenolic compounds derived from the combination of two phenylpropanoid
C6–C3 units at the β and β’ carbon, and can be linked to additional ether, lactone, or carbon bonds;
they have a chemical structure like the 1,4-diarylbutan [2]. The range of their structures and biological
activities is broad. They are derived from the shikimic acid biosynthetic pathway [3]. The range relative
to structurally different forms of lignans and biological activities is broad [4,5]. The main commonly
studied and reported compounds are secoisolariciresinol, lariciresinol, matairesinol, pinoresinol,
medioresinol, and syringaresinol (shown in Figure 1), while, recently, the isolation and structure
elucidation of new lignan compounds have been carried out [6–8] and the spectrum of their attributing
properties has been widened [9–11].
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Figure 1. The chemical structure of main dietary lignans, (a) secoisolariciresinol, (b) matairesinol, (c) 
lariciresinol, (d) pinoresinol, (e) medioresinol, and (f) syringaresinol. 

Plant lignans give rise to metabolites, enterodiol, and enterolactone [12], generally called 
enterolignans due to their colonic origin (named also mammalian lignans) (shown in Figure 2). 

Figure 1. The chemical structure of main dietary lignans, (a) secoisolariciresinol, (b) matairesinol,
(c) lariciresinol, (d) pinoresinol, (e) medioresinol, and (f) syringaresinol.

Plant lignans give rise to metabolites, enterodiol, and enterolactone [12], generally called
enterolignans due to their colonic origin (named also mammalian lignans) (shown in Figure 2).
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Figure 2. The chemical structure of enterolignans, (a) enterodiol and (b) enterolactone. 

Enterolignans, and some of their plant precursors, are reported to have several biological 
activities—antitumorigenic [13], anticarcinogenic [14], estrogenic or anti-estrogenic [15,16], as well 
as antioxidant properties [17]. 

Lignans, in line with other natural compounds, contribute in disease prevention and health 
promotion [18,19]; several studies have showed the potential of lignan-rich diets against the 
development of various diseases, particularly hormone-dependent cancer, cardiovascular diseases, 
and diabetes [20–27].  

Lignans are the basis for novel perspectives for health promotion and disease prevention as 
nutraceuticals and functional foods [28–32]. Currently, Pilkington, [33], by using a chemometric 
approach, have analyzed the physicochemical properties of classical lignans, neolignans, 
flavonolignans, and carbohydrate–lignan conjugates to assess their absorption, distribution, 
metabolism, excretion and toxic (ADMET) profiles, and establish if these compounds are 
lead-like/drug-like and, thus, have potential to be, or act as, a driver in the development of future 
therapeutics; the results showed how carbohydrate–lignan conjugates and flavonolignans are less 
drug-like, while lignans showed a particularly high level of drug-likeness [33].  

Nowadays, lignan species and their quantity in food products are determined. Different 
methodologies have been defined for the extraction and identification of lignans [34–40]. The 
extraction procedure from the food matrix represents a key issue and, in particular, the type of 
hydrolysis step (alkaline, acid hydrolysis, enzymatic hydrolysis, or a mixture of them). The 
expanding demand for lignans are stimulating the interest in identification of new sources and in 
improvement of analytical and purification procedures. Analytical values using HPLC, as well as 
either gas or liquid chromatography–-mass spectrometry, were developed and carried out [41,42]. 
The development and the assessment of methodologies for the extraction, identification, and 
determination of lignans are achieved [17,43,44]. Also, the “new” emerging lignans, due to LC 
combined with HR-MS/MS, have been, and will continue, broadening the view regarding dietary 
lignans [45]; simultaneously, the synthesis [46,47] and the design [48] of new compounds are being 
carried out.  

The complex relationship between food, nutrition, and health [49] is explored via nutrients and 
bioactive compounds, i.e., beneficial food components [50], and via non-beneficial food components 
[51]. In this direction, a directory of information about bioactive component databases, specialized, 
at a national and European level, is being developed, and will be useful for the planning and 
evaluation of clinical and epidemiological research studies on bioactive components. Databases of 
lignans in food products are being creating in several countries (Finland, Netherlands, United States, 
Canada, United Kingdom, Japan, and Spain), and represent the first step for establishing 
comprehensive and harmonized dietary databases, including all or nearly all bioactive compounds 
[1]. Reliable methods of exposure measurement are essential for understanding the potential 
benefits of lignans [52]. 
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Figure 2. The chemical structure of enterolignans, (a) enterodiol and (b) enterolactone.

Enterolignans, and some of their plant precursors, are reported to have several biological
activities—antitumorigenic [13], anticarcinogenic [14], estrogenic or anti-estrogenic [15,16], as well as
antioxidant properties [17].

Lignans, in line with other natural compounds, contribute in disease prevention and health
promotion [18,19]; several studies have showed the potential of lignan-rich diets against the
development of various diseases, particularly hormone-dependent cancer, cardiovascular diseases,
and diabetes [20–27].

Lignans are the basis for novel perspectives for health promotion and disease prevention as
nutraceuticals and functional foods [28–32]. Currently, Pilkington, [33], by using a chemometric
approach, have analyzed the physicochemical properties of classical lignans, neolignans, flavonolignans,
and carbohydrate–lignan conjugates to assess their absorption, distribution, metabolism, excretion
and toxic (ADMET) profiles, and establish if these compounds are lead-like/drug-like and, thus,
have potential to be, or act as, a driver in the development of future therapeutics; the results showed
how carbohydrate–lignan conjugates and flavonolignans are less drug-like, while lignans showed a
particularly high level of drug-likeness [33].

Nowadays, lignan species and their quantity in food products are determined. Different
methodologies have been defined for the extraction and identification of lignans [34–40]. The extraction
procedure from the food matrix represents a key issue and, in particular, the type of hydrolysis step
(alkaline, acid hydrolysis, enzymatic hydrolysis, or a mixture of them). The expanding demand
for lignans are stimulating the interest in identification of new sources and in improvement of
analytical and purification procedures. Analytical values using HPLC, as well as either gas or liquid
chromatography–mass spectrometry, were developed and carried out [41,42]. The development
and the assessment of methodologies for the extraction, identification, and determination of lignans
are achieved [17,43,44]. Also, the “new” emerging lignans, due to LC combined with HR-MS/MS,
have been, and will continue, broadening the view regarding dietary lignans [45]; simultaneously,
the synthesis [46,47] and the design [48] of new compounds are being carried out.

The complex relationship between food, nutrition, and health [49] is explored via nutrients
and bioactive compounds, i.e., beneficial food components [50], and via non-beneficial food
components [51]. In this direction, a directory of information about bioactive component databases,
specialized, at a national and European level, is being developed, and will be useful for the planning
and evaluation of clinical and epidemiological research studies on bioactive components. Databases
of lignans in food products are being creating in several countries (Finland, Netherlands, United
States, Canada, United Kingdom, Japan, and Spain), and represent the first step for establishing
comprehensive and harmonized dietary databases, including all or nearly all bioactive compounds [1].
Reliable methods of exposure measurement are essential for understanding the potential benefits of
lignans [52].
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2. Databases: Significance, Principles and Common Criteria/Measures

Databases, also called electronic databases, represent a system to generate and collect any data,
information, and documentation specially organized for rapid search and retrieval by a computer [53].
Databases are tools constructed to facilitate the storage, retrieval, modification, and deletion of data in
conjunction with various data-processing operations [54].

A comprehensive food composition database (FCDB) should be a repository of all numeric,
descriptive, and graphical information on the nutrient characteristics of foods [55]; the term food
composition data indicates all information referring to the description and identification of foods
and their food components (nutrient values, number of sample collections and analyses, analytical
methods, descriptive coding, photos, data source, value documentation, etc.) and include various
steps in the production, generation, compilation, and publication of data [55].

The EuroFIR project (European Food Information Resource Network of Excellence) was born
to develop and integrate a comprehensive, coherent, and validated network of databanks providing
a single, authoritative source of food composition data for Europe [56,57]. In this project, efforts in
developing procedures for defining and establishing a standardized approach of study have been
carried out from the various European partners within their FCDB [56,57].

The establishment of the “Project Committee—Food composition data” (CEN/TC 387,
2008–2013) [58] was an important milestone for the EuroFIR Network of Excellence to reach this
objective. A common European standard, established within the CEN-European Committee for
Standardization framework, represents a key tool enabling unambiguous identification and description
of food composition data and its quality in e.g. databases, for dissemination and interchange [58].

Generally, the use of database management system allows the administration of large volumes of
information and data by providing epidemiological research to store large varieties of food consumed
for each individual subject and the comparability of data, representing a basic tool for obtaining
reliable information on the relationship between nutrients and foods [59,60].

The utilization made by different users requires that FCDBs follow very specific compilation
criteria, such as representativeness, accuracy in the production and selection of analytical values,
traceability of data taken from other sources at the nutrient level, and clarity in the designation and
description of the food [60].

In this context, the food grouping systems in food composition databases represent a key tool.
Currently, Durazzo et al. [60] summarized and discussed how the food grouping systems of the
various international food composition databases (FCDBs), in terms of number, type and class of
consumed foods (e.g., ingredients, commercial products, cooked food, recipes, mixed dishes, etc.) vary
between different countries (usually, 10 and 25 food groups), and are constantly evolving according
to their changes and updates; the authors marked how these groupings are structured according to
the convenience of using the nutritional composition of specific foods and, therefore, there is not an
internationally standardized approach.

3. Distribution of Lignans in Food: Occurrence

Lignans are in a wide variety of plants from different origins, including the major edible plants.
Amongst the latter, flaxseed and sesame seeds represent rich sources of lignans [40,61–65], whereas
wood knots in coniferous trees, particularly Norway spruce, are identified as the most concentrated
lignan sources known so far [66].

The main sources of dietary lignans are oilseeds (i.e., flax, soy, rapeseed, and sesame), whole-grain
cereals (i.e., wheat, oats, rye, and barley), legumes, various vegetables and fruit (particularly berries),
as well as beverages, such as coffee, tea, and wine, and, recently, lignans are also reported in
dairy products, meat, and fish [64,65,67–84]. The types and amounts vary from one source to
another. The content of some lignans, as well as the degree of esterification of their glycosides,
could vary with different growing conditions, geographic location, climate, and genetic characteristics.
Some examples of profile and distribution of lignans in common food groups are here reported,
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from research in the literature applying different methodological approaches. As concluded by
Durazzo et al. [17], in a systematized assessment of lignans in cereals and cereal-based products for
grains studied in [65,73,76], the total average values in grains ranged between 23 and 401 µg/100 g
dry weight, with lariciresinol the most representative. As, for instance, for vegetables, Milder et al. [64]
reported a content of total lignans (as the sum of secoisolariciresinol, matairesinol, lariciresinol, and
pinoresinol, and expressed as µg/100 g fresh edible weight) of 1325 for broccoli, 185 for cauliflower,
787 for white cabbage, 171 for carrot, 58 for tomato, and 48 for chicory. Another example was given
by Penalvo et al. [65] that described, for asparagus, a following profile of lignan concentrations:
secoisolariciresinol 183 µg/100 g wet basis, syringaresinol 58 µg/100 g wet basis, pinoresinol
49 µg/100 g wet basis, lariciresinol 47 µg/100 g wet basis, medioresinol 5 µg/100 g wet basis,
matairesinol 2 µg/100 g wet basis whereas, for eggplant, tomato, and radish, the most representative
was lariciresinol [65]. For the fruit group, as reported in a work of Kuhnle [75] secoisolariciresinol
and matairesinol were identified, respectively, in orange (peel and pith removed, 21 and <1 µg/100 g
wet weight), nectarine (stoned, 24 and <1 µg/100 g wet weight), apricot (stoned, 51 and <1 µg/100 g
wet weight), mango (skinned and stoned, 17 and 1 µg/100 g wet weight), melon (cantaloupe, skin
and seeds removed, 16 and <1 µg/100 g wet weight), and others [75]. Moreover, Penalvo et al. [70]
showed for avocado, a profile of decreasing concentration of lignans, syringaresinol > pinoresinol
> medioresinol > secoisolariciresinol > lariciresinol > matairesinol and for pineapple, syringaresinol
> lariciresinol > matairesinol > secoisolariciresinol > pinoresinol > medioresinol, whereas, the most
representative lignan for navel orange was lariciresinol, and secoisolariciresinol for kiwifruit. In berries,
as reported by Smeds et al. [78], the most representative lignans among those studied were lariciresinol
for cloudberries (5008 µg/100 g dry weight); secoisolariciresinol for blackberries (2902 µg/100 g
dry weight), lingoberries (2319 µg/100 g dry weight), blackcurrants (446 µg/100 g dry weight);
syringaresinol for cranberries (2578 µg/100 g dry weight), sea buckthorns (1177 µg/100 g dry weight),
bilberries (801 µg/100 g dry weight), and red gooseberries (498 µg/100 g dry weight); and pinoresinol
for strawberries (1403 µg/100 g dry weight); for raspberries the most representatives were lariciresinol
(406 µg/100 g dry weight), syringaresinol (388 µg/100 g dry weight) and pinoresinol (377 µg/100 g
dry weight).

Within the beverage group, a recent work of Angeloni et al. [84] reported, for coffee samples from
different Countries, secoisolariciresinol from 27.9 to 52.0 µg L−1 and lariciresinol from 5.3 to 27.8 µg
L−1 respectively, contrary to matairesinol, that was not possible to detect it in each type of coffee.

For foods of animal origin, Kuhnle et al. [72] reported the content of lignans for the first
time; in milk and its derived products, the content of dietary lignans was reported (as the sum
of secoisolariciresinol, matairesinol, and shonanin) as follows: about 1 µg/100 g wet weight for
skimmed, semi-skimmed, or whole milk; in the cheese group, from <1 µg/100 g wet weight for feta
cheese derived from ewe’s and goat’s milk, to 4 µg/100 g wet weight for mascarpone, 5 µg/100 g wet
weight for parmesan, 6 µg/100 g wet weight for mozzarella (derived from buffalo milk), 13 µg/100 g
wet weight for soft Philadelphia cheese (full fat), and to 25 µg/100 g wet weight for Wensleydale
cheese. Moreover, cow milk, also condensed and evaporated, showed a content of enterolactone in a
range of 3–9 µg/100 g wet weight, and cheese in a range of 3–23 µg/100 g wet weight.

The same authors [72] reported a dietary lignan content for meat (including different meat cuts
and offal) at various cooking of 1–2 µg/100 g wet weight in chicken, 3–9 µg/100 g wet weight in
pork, 4–16 µg/100 g wet weight in beef, 4–17 µg/100 g wet weight in lamb; whereas, for eggs,
2–3 µg/100 g wet weight for egg whites and 6–10 µg/100 g wet weight for egg yolks. Small quantities
of enterolignans (<6 µg/100 g wet weight) were detected in some type of eggs and meat cuts.

Most of the foods are consumed after cooking or processing, depending on the type of food matrices
and the eating habits of the consumers, indeed, researches are moving in this direction [72,85,86]; indeed,
the evaluation of the effects of all type of factors on lignan content in different food matrices increase
the reliability of lignan intake estimations.
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At the same time, procedures to improve the content of lignans such as milling, parboiling,
or supplementation diet in animals [86–88] were optimized.

Nowadays, attention is paid to less common species and agro-industrial side streams [89–91],
in order to continually explore new sources of lignans.

4. Lignans and Databases: The Current Workflow

Studies that examine the relationship between diet and health have led to increased interest in
all biologically active constituents that are present together with nutrients in food, and data on these,
as well as other compounds, are increasingly required in the database system.

A complete and comprehensive harmonized databases on the content of lignans in foods are useful
in dietary assessment and in the evaluation of formulated diet, in order to be used in observational
studies as key elements for healthy nutritional patterns [92]. Knowledge of the dietary intake of lignans
is needed for understanding the relationship between a lignan-rich diet and the potential lower risk
of development of various diseases, that is, hormone-related cancers, heart diseases, menopausal
symptoms, and osteoporosis.

Detailed and accurate information on the lignans in foods is crucial in determining exposure and
to investigate health effects in vivo.

To reach this objective, limitations were given by numerous existing factors—from one side, the
diversity of the chemical features of compounds, the great number of dietary sources, and the large
variability in content from a specified source, to the other side, the different extraction procedures
and analytical techniques and methodologies [93]. Additional factors, in some cases, are given by the
fact that several studies have been focused only on few compounds within a class, and by the lack of
appropriate analytical methods.

In the last decade, researchers are addressing the identification and determination of lignan
profiles in main food groups and in food chain products; when a new dataset for nutritional values is
used, it is very important to evaluate the quality of the analytical information [55]. New experimental
and analytical data on lignan content are now available for updating and expanding food composition
databases [64,65,67–84]. In Table 1 the main national databases of lignans are described.

Table 1. National databases of lignans.

Country Type of
Database

Main/Common
Lignan

Compounds

N◦ Total
Foods

Food Groups and
Subgroups References

Finland
Phytoestrogen

Database
including lignans

Secoisolariciresinol
Matairesinol 180

Vegetables,
Herbs and spices,

Mushrooms,
Fruits,

Miscellaneous

[67]

Netherland Lignan Database

Secoisolariciresinol
Matairesinol
Lariciresinol
Pinoresinol

109

Oilseeds and nuts,
Grain products,
Vegetables and

legumes,
Fruits,

Vegetable oils and fats,
Other solid foods,

Alcoholic beverages,
Non-alcoholic

beverages,
Juices,

Other beverages,

[64]
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Table 1. Cont.

Country Type of
Database

Main/Common
Lignan

Compounds

N◦ Total
Foods

Food Groups and
Subgroups References

Canada
Phytoestrogen

Database
including lignans

Secoisolariciresinol
Matairesinol
Lariciresinol
Pinoresinol

121

Soy products.
Legumes.

Nuts and oil seeds.
Vegetables.

Fruits.
Cereals and bread.
Meat products and

other processed foods.
Non-alcoholic

beverages.
Alcoholic beverages

[69]

Japan Lignan Database

Secoisolariciresinol
Matairesinol
Lariciresinol
Pinoresinol

Syringaresinol
Medioresinol

86

Vegetables.
Tubers and roots.

Mushrooms.
Fruits.

Legumes.
Soybean-based

products.
Cereal-based

products.
Animal-derived

products

[70]

Spain
Alkylresorcinols

and Lignans
Database

Secoisolariciresinol
Matairesinol
Lariciresinol
Pinoresinol

Syringaresinol
Medioresinol

593

Vegetables.
Grains.
Animal.

Fats.
Drinks

[77]

United
Kingdom

Phytoestrogen
Database

including lignans

Secoisolariciresinol
Matairesinol

(and Shonanin)
496

Cereal and
cereal-based foods,

Fresh and processed
fruit

and vegetables
including soya-based
foods and legumes,

Nuts and seeds,
Oils.

Alcoholic beverages.
Tea and coffee.
Dairy products,

Eggs,
Meat,

Fish and seafood

[71,72,74,75]

The first examples of databases including lignans were movements toward the development
of phytoestrogen databases [67,94]. Valsta et al. [67] reported on expansion of the Finnish
National Food Composition Database (Fineli®), compiling values for plant lignans, matairesinol,
and secoisolariciresinol (shown in Figure 1), and the isoflavones, daidzein and genistein.

Further, Milder et al. [64] developed a lignan database for 83 solid foods and 26 beverages
commonly consumed in the Netherlands: the amount of lignans in plant foods varied widely, from 0
to 301,129 µg/100 g fresh weight; in detail, the lignan values varied from 10 to 30,129 µg/100 g fresh
edible weight of oilseeds and nuts, from 7 to 12,474 µg/100 g fresh edible weight of grain products,
from 0 to 2321 µg/100 g fresh edible weight of vegetables, from 0 to 450 µg/100 g fresh edible weight
of fruits, from 26 to 37 µg/100 g fresh edible weight of legumes, and in beverages ranged from 0 to
91 µg/100 mL. Only five of the studied foods did not contain a measurable amount of lignans and,
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in most cases, the amount of lariciresinol and pinoresinol was larger than that of secoisolariciresinol
and matairesinol.

On the basis of above mentioned lignan databases, in another work, Milder et al. [68] have
assessed the lignan intake in a representative sample of 4660 Dutch adults (Dutch Food Consumption
Survey, carried out in 1997–1998), reporting the following contribution percentages to lignan intake:
lariciresinol and pinoresinol contributed 75%, whereas secoisolariciresinol and matairesinol contributed
25%; and the major food sources of lignans were beverages (37%), followed by vegetables (24%),
nuts and seeds (14%), bread (9%), and fruits (7%) [68].

Thompson et al. [69] developed a lignan database of foods consumed in Canada: nine
phytoestrogens were identified in 121 food products of Canada by GC–MS, including lignans;
decreasing amounts (on wet weight, µg per 100 g) of total lignans are reported in the following
order: nuts and oilseeds (25–379012), cereals and breads (2.0–7239.3), legumes (1.8–979.4), fruits
(0.3–61.8), vegetables (1.2–583.2), soy products (2.2–269.2), meat products and other processed foods
(0.2–415.1), alcoholic beverages (1.1–37.3), and non-alcoholic beverages (0.9–12). Matairesinol was
the least-concentrated lignan in most studied foods, whereas secoisolariciresinol reached the highest
concentration in 63 foods, lariciresinol in 44 foods, and pinoresinol in 14 foods [69].

Peñalvo et al. [70] have reported the content of six plant lignans (shown in Figure 1) in 86 food
items commonly consumed in Japan: the amount of plant lignans ranged from 0 to 1724 µg/100 g
(wet basis); in details, as for instance, considering the food group of vegetables, most of the lignans were
in the stems and leaves of Japanese parsley, asparagus, Japanese spinach, bitter oranges, and Chinese
citrus, and related concentrations in vegetables ranged from 19 to 1724 µg/100 g wet basis.

Moreno-Franco et al. [77] have developed the Aligna databases, by collecting data from scientific
publications for alkylresorcinols and lignans in common foods and beverages, and by analyzing foods
particularly consumed in Spain; moreover, the assess of lignans intake in Spain was evaluated and
reported as follows: 0.76 mg/day, with the major contributors, i.e. oils and fats (33 percent), fruits and
vegetables (30 percent), bread (14 percent), and wine and beer (10 percent) [77].

In several works, Kuhnle et al. [71,72,74,75] reported the content of secoisolariciresinol and
matairesinol in 115 foods of animal origin, 240 different foods based on fresh and processed fruit
and vegetables, 101 cereal and cereal-based foods including bread, breakfast cereals, biscuits, pasta,
and rice, and about 40 beverages, nuts, seeds, and oils. The study of Mulligan et al. [81] estimates
the average intakes of isoflavones, lignans, enterolignans, and coumestrol in the Norfolk arm of the
European Prospective Investigation into Cancer and Nutrition (EPIC-Norfolk) from 7-days food diaries,
and provides data on total isoflavone, lignan, and phytoestrogen consumption by food group—the
mean daily total lignan intake was 361 (SD 230) µg in soya-consuming men, and 311 (SD 178) µg in
non-soya-consuming men; the mean daily total lignans intake was 318 (SD 212) µg in soya-consuming
women and 251 (SD 141) µg in non-soya-consuming women [81].

It is worth mentioning the work of Tetens et al. [95] which estimated and evaluated the scale
of consumption and the main food sources of lignans in five European countries using the Finnish
databases [67], including lignans and Dutch lignan databases [64], respectively; in detail, 42 food groups
known to contribute to the total lignan intake were selected and a value attributed for secoisolariciresinol
and matairesinol from the Finnish lignan database (Fineli®) or for secoisolariciresinol, matairesinol,
lariciresinol, and pinoresinol from the Dutch database. The total intake of lignans was estimated from
food consumption data for adult men and women (19–79 years) from Denmark, Finland, Italy, Sweden,
United Kingdom, and the contribution of aggregated food groups calculated using the Dutch lignan
database [75]. The authors showed that, compared to the total lignan intakes among Dutch men and
women, the total lignan intakes were higher in Denmark and Sweden, and within similar range in
Finland, Italy, and United Kingdom [75].

Here, also, are some examples of utilization of lignan databases to investigate the association
between lignan intake and prevention of some chronic pathologies.
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A recent study was undertaken by Witkowska et al. [96] that examined the total and individual
lignan intakes and their dietary sources in postmenopausal Polish women: for lignan content, the Dutch
lignan database was used [64]; for beverages, nuts, seeds, and oils, data from Kuhnle et al. [71] were
taken, and when data on lignan content were missing, values were taken from Thompson et al. [69];
in women with cardiovascular disease (CVD), secoisolariciresinol accounted for 50.15% lignan intake
from plant foods, as compared to 44.8% in the control. Pinoresinol, lariciresinol, and matairesinol
contributed to the total lignan intakes of CVD and non-CVD women in 24.0% vs. 26.1%, 22.7% vs.
26.1%, and 3.1% vs. 2.9%, respectively [96].

Nowadays, the major core public databases that gather extensive data on the polyphenol
content of foods and beverages include lignans—Phenol-Explorer [97], the first comprehensive
database on polyphenol content in foods [98] and eBASIS (Bioactive Substances in Food Information
Systems) [99–101], published through the EuroFIR project.

Phenol-Explorer was the first comprehensive web-based database on polyphenol content in
foods and an open-access database and, now, throughout several updates [102,103], includes new
data on pharmacokinetic and metabolites, the effect of food processing and cooking and, in the
last update (version 3.6), 1451 new content values for lignans have been added (to the database).
The development of the Phenol-Explorer database included five main steps: literature search, data
compilation, data evaluation, data aggregation, and final data exportation to the MySQL database
which is used by the web interface. Composition data were collected from peer-reviewed scientific
publications, and evaluated before they were aggregated to produce final representative mean
content values.

The eBASIS database contains composition data and biological effects of over 300 major European
plant foods of 24 compound classes, such as glucosinolates, phytosterols, polyphenols, isoflavones,
glycoalkaloids, and xanthine alkaloids in 15 EU languages. EuroFIR eBASIS resource is a compilation of
expert critically evaluated data extracted from peer-reviewed literature as raw data. This could be seen
and considered as the first effort to establish a harmonized food composition information system in EU.
Indeed, eBASIS should be defined as the first EU harmonized food composition database. Currently,
2695 data points for lignans were inserted in eBASIS, in detail, 658 values for secoisolariciresinol,
550 values for matairesinol, 313 values for lariciresinol, 276 values for pinoresinol, 93 values for
medioresinol, and 86 values for syringaresinol [99,101].

Indeed, considering the importance of metabolic pathways and the benefits of bioactive
compounds in humans, it is worth mentioning the Human Metabolome Database or HMDB 4.0 [104],
a web metabolomic database on human metabolites including lignans and their metabolites [105],
as well as PhytoHub [106], a freely electronic database containing detailed information about all
phytochemicals and their metabolites commonly ingested in diets [107].
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