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Abstract

Introduction:Web-based platforms are used increasingly to assess cognitive function

in unsupervised settings. Theutility of cognitive data arising fromunsupervised assess-

ments remains unclear. We examined the acceptability, usability, and validity of unsu-

pervised cognitive testing in middle-aged adults enrolled in the Healthy Brain Project.

Methods: A total of 1594 participants completed unsupervised assessments of the

Cogstate Brief Battery. Acceptability was defined by the amount of missing data, and

usability by examining error of test performance and the time taken to read task

instructions and complete tests (learnability).

Results:Overall, we observed high acceptability (98% complete data) and high usabil-

ity (95% met criteria for low error rates and high learnability). Test validity was con-

firmed by observation of expected inverse relationships between performance and

increasing test difficulty and age.

Conclusion: Consideration of test design paired with acceptability and usability crite-

ria can provide valid indices of cognition in the unsupervised settings used to develop

registries of individuals at risk for Alzheimer’s disease.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and nomodifications or adaptations aremade.

© 2020 the Alzheimer’s Association

Alzheimer’s Dement. 2020;6:e12043. wileyonlinelibrary.com/journal/trc2 1 of 11

https://doi.org/10.1002/trc2.12043

mailto:yenying.lim@monash.edu
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://wileyonlinelibrary.com/journal/trc2
https://doi.org/10.1002/trc2.12043


2 of 11 PERIN ET AL.

KEYWORDS

acceptability, Alzheimer’s disease, neuropsychological test, neuropsychology, neuroscience,
online systems, psychological test, usability, validity

1 INTRODUCTION

Over the past decade, studies of Alzheimer’s disease (AD) patho-

genesis have examined relationships between cognitive dysfunction

and AD biomarkers, which has enabled the characterization of very

early stages of the disease (eg, preclinical AD).1–3 One key theme

arising from these prospective clinicopathological studies is that

very large samples are required to detect these subtle but impor-

tant interrelationships in preclinical AD or in individuals at risk of

developing AD.4,5 Conventional approaches to identifying early

AD-related cognitive dysfunction have required individuals to attend

medical research facilities at regular (eg, annual) intervals and undergo

detailed assessments.6,7 However, such approaches are expensive,

time consuming, and can be burdensome to participants.8,9 These

limitations have prompted development of cognitive tests relevant

to preclinical AD which can be administered remotely and in an

unsupervised manner, for example, using online platforms to develop

registries of people who may be at increased risk of dementia.10,11

Unsupervised cognitive testing allows for the rapid recruitment of

large samples in a cost-effective manner, a reduction in administrator

bias, automated scoring by computerized algorithms, and the ability

to maximize sample generalizability by facilitating the inclusion of

participants who reside in remote locations.8,10–12

While unsupervised cognitive testing facilitates the collection of

large-scale data, the quality of this data may be impacted by variables

that canotherwisebe controlled in supervised settings such as external

disruptions to testing.13 The absence of an assessor to establish rap-

port may also cause the unsupervised assessment to become imper-

sonal and thereby reduce levels of motivation or engagement leading

to sample attrition.9,10 Additionally, it cannot be presumed that cogni-

tive tests applied in unsupervised settings are equivalent psychometri-

cally to the same tests used in supervised settings.8 In particular, with-

out a supervisor it is difficult to determine whether poor performance

reflects that the individual did not understand or complywith the rules

or response requirements of the cognitive test, or whether it reflects a

true reduction in the aspect of cognitionmeasured by that test.10 Thus,

in unsupervised cognitive testing there is a need for indices of perfor-

mance that may provide guidance on this decision.

Human Computer Interaction (HCI) is a field of research which

explores the interaction between humans and computerized

technology.14 In particular, HCI research looks to study the user’s

experience (ie, usability and acceptability) of the computerized plat-

form in question.15 HCImodels, therefore, provide a useful framework

for examining the development of unsupervised tests administered

remotely using technology.16,17 The HCI concepts of acceptability

and usability have been applied in experimental studies of supervised

computerized cognitive tests.18–20 In these studies, HCI acceptability

was operationalized as the amount and nature of missing data, by

determining whether particular tests were more likely to demonstrate

missing data.21 HCI usability was operationalized as the amount of

time taken to read the test instructions and to complete each test

(learnability) and participants’ ability to adhere to the requirements

of each test (error).17,22 These same concepts can be applied to

understand the quality of data from unsupervised cognitive tests

administered through web-based platforms in large and unselected

samples of individuals at risk of AD. It is then possible to investigate

their validity using standard psychological approaches.

The first aim was to apply an HCI framework to determine the HCI

acceptability and usability of unsupervised cognitive tests conducted

on participants enrolled in the Healthy Brain Project (HBP), an online

study of at-risk middle-aged adults with high rates of first-degree fam-

ily history of dementia.23 The first hypothesis was that unsupervised

cognitive tests conducted via a web-based platform would have high

HCI acceptability (low rates of missing data), and high HCI usability

(high learnability; low error rates). The second aim was to deter-

mine the validity of unsupervised cognitive tests by examining the

relationships between performance and test difficulty, and between

performance and age.24 The second hypothesis was that decreasing

performance would be associated with increasing test difficulty, and

that participants would show also expected age-related decreases in

test performance. The third aim was to explore the effects of testing

environment (eg, home/work alone, home/work with others around,

public space), and first-degree family history of dementia on cognitive

performance. The third hypothesiswas that participantswho complete

testing in environments with higher levels of distraction (eg, with oth-

ers present, or in a public space), and participants with a first-degree

family history of dementia, will show worse cognitive performance

than those who complete testing in a quiet environment (eg, at home,

or alone), and those without a first-degree family history of dementia.

2 METHODS

2.1 Participants

The sample consisted of 1594 participants who had completed

unsupervised cognitive testing as part of their enrollment in the

HBP (healthybrainproject.org.au). Participants were aged 40 to

65 years, lived in the community, and self-reported family history

of dementia. Participants were excluded from enrolment in HBP

if they self-reported any of the following: history of major trau-

matic brain injury; diagnosis of AD, Parkinson’s disease, Lewy body

dementia, or any other type of dementia; previous use of medica-

tions for the treatment of AD; current use of narcotics or antipsychotic
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medications; uncontrolledmajor depression, schizophrenia, or another

Axis I psychiatric disorder described in the Diagnostic and Statistical

Manual of Mental Disorders-Fourth Edition (DSM-IV) within the past

year; or a history of alcohol or substance abuse or dependence within

the past two years. Participants were recruited through a series of

media appeals, community-based and scientific organizations (eg,

Dementia Australia and the Florey Institute of Neuroscience andMen-

tal Health), traditional word of mouth, and social media. Participants

self-referred to the study. Further details regarding the inclusion and

exclusion criteria and recruitment process for the HBP have been

described elsewhere.23 As recruitment into the HBP is ongoing, the

current report only includes data that have been collected up to the

first formal DataFreeze (August 2018).23

The HBP platform was designed to allow participants to complete

the study questionnaires and surveys overmultiple sessions, and in any

order. However, participantswere required to complete their cognitive

testing in one sitting. Further, the cognitive tests are administered in a

pre-specified order which the participant must follow. The aim of this

approach was to reduce participant burden and to allow participants’

maximum flexibility to participate in the study in their own time, while

ensuring consistency in the administration of the cognitive tests. We

have previously reported that participants typically complete all HBP

assessments across a month.23 The HBP was approved by the human

research ethics committee ofMelbourne Health.

2.2 Cognitive tests

Unsupervised cognitive testing was carried out using the Cogstate

Brief Battery (CBB) forwhich instructions anddelivery havebeenmod-

ified for online assessment.19,25 The CBB has to be completed on a

web browser (Internet Explorer, Google Chrome, or Safari), and as

such, participants were required to complete their cognitive testing on

a desktop or laptop. Participants were directed to the CBB platform

via the HBP website. Upon launching the CBB platform, participants

were required to complete the test battery in one sitting. The approx-

imate completion time for the entire CBB is 20 minutes. CBB tests are

downloaded onto the browser, completed locally, and then uploaded.

This allowed for the minimization of the impact of internet connec-

tivity on test performance. The CBB has a game-like interface which

uses playing card stimuli and requires participants to provide “Yes”

or “No” responses. The CBB consists of four tests: Detection (DET),

Identification (IDN), One Card Learning (OCL), and One-Back (OBK).

These tests have been described in detail previously,26 and Figure 1

illustrates an example of the unsupervised assessment training proce-

dure for the IDN test. Briefly, DET assesses psychomotor function, and

IDN assesses visual attention. The primary outcome for both DET and

IDN was reaction time in milliseconds (speed), which was normalized

using a log10 transformation.27 OCL assesses visual learning, and OBK

assesses working memory and attention. The primary outcome mea-

sure for OCL and OBK was proportion of correct answers (accuracy),

which was normalized using an arcsine square-root transformation.27

The four different tests in the CBB were designed to use identical

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the literature

using traditional (eg, PubMed) sources,meetingabstracts,

andpresentations. Studies that reportedon the remoteor

unsupervised assessment of cognitive tests using online

or web-based platforms were included. Studies relating

to theHumanComputer Interface (HCI) frameworkwere

also reviewed.

2. Interpretation: Our findings suggest that HCI criteria for

acceptability and usability provide a sound framework for

the design and administration of cognitive tests in unsu-

pervised settings. With this context operating, the psy-

chometric characteristics of the cognitive data collected

inunsupervised settingswereequivalent to that collected

from supervised assessment.

3. Future directions:We provide a framework for the evalu-

ation of cognitive tests and surveys that are administered

via online or web-based platforms. Further studies will

be required to determine participant retention and attri-

tion, as well as the test-retest reliability, and sensitivity of

unsupervised cognitive assessments to detecting future

dementia risk.

stimulus material, stimulus displays, and response requirements. With

this consistency, the demands of thebattery increase as each test in the

battery is completed successfully. The CBB begins with the DET test,

which requires a single button press in response to a stimulus change.

The IDN test is presented second and this requires that in addition to

detecting the stimulus change, individuals must also discriminate stim-

uli based on their color (red or black). The OBK is the third test and

requires that discrimination decisions be based on color and number

information held inworkingmemory. TheOCL is the final andmost dif-

ficult test on the basis that it requires decisions be based on stimulus

information learned and retained throughout the test itself. Consistent

with Sternberg additive factors logic,27 this increase in the complex-

ity of cognitive operations required for optimal performance on the

different CBB tests, manifests in performance as increasing response

times and decreasing accuracy. Such relationships are observed reli-

ably in supervised studies of cognitively normal younger28 and older

adults,20 as well as in patients with AD in the preclinical, prodromal,

and dementia stages.27,29,30 As such, the examination of the same test

difficulty/performance relationships would provide a sound criterion

for determining test validity in unsupervised performance.

2.3 Testing environment survey

Participants were asked to indicate (1) never, (2) rarely, (3) often, or (4)

all the time to the following questions: type of environment typically
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F IGURE 1 Example of training procedure interface for the
Identification (IDN) test in the Cogstate Brief Battery (CBB)

in while doing the tests and surveys on the HBP, (1) at home without

other people present, (2) at home with other people present (but are

quiet), (3) at homewith other people present (but are noisy), (4) atwork

without other people present, (5) at work with other people present

(but are quiet), (6) atworkwith other people present (but are noisy), (7)

during your commute, (8) in a public space (eg, public park, restaurant,

café) that was quiet, and (9) in a public space (eg, public park, restau-

rant, café) that was noisy.

2.4 Data analysis

All analyseswere conducted using R Statistical Computing Software (R

version3.5.0).Given the largenumberof comparisons, statistical signif-

icance was adjusted using the false-discovery rate (FDR) correction.31

For each cognitive outcome, HCI acceptability was defined as

participants’ ability to complete tests in an unsupervised context

and determined by examining the amount and nature of missing

data, by determining whether particular tests in the CBB were more

likely to demonstrate missing data. Missing data was defined as the

non-completion of a test, or failure to provide responses to at least

75% of trials within a test. HCI usability was defined as (1) HCI error,

operationalized by examining the nature and number of tests that do

not meet the established error criterion, and (2) HCI learnability, oper-

ationalized by examining the mean and standard deviation (SD) of the

time taken to read test instructions and complete each test, and also

the number of participants who exceeded 2 SD from the average time

taken to read test instructions and complete each test. The HCI error

criterion for each test has been established previously20,32 as an index

of effort, motivation, and potential distraction, and is defined as: (1)

80% accuracy for the DET and IDN tests, (2) 50% accuracy for theOCL

test, and (3) 70% accuracy for the OBK test. HCI error was considered

to have occurred systematically for participantswhomet pre-specified

error criteria on at least two cognitive tests. The validity of each

cognitive test was determined by examining associations between

(1) test performance and test difficulty, and (2) test performance and

age. Participant age was treated both as a continuous and categorical

variable, where participants were grouped into (1) 40 to 49 years, (2)

50 to 59 years, and (3) 60 to 70 years.

Finally, in a subgroup of participants who also responded to a sur-

vey of their testing environment (n = 827), we explored whether cog-

nitive performance varied across different testing environments. To

achieve this, we grouped participants into (1) “alone” (ie, those who

responded “all the time” or “often” to completing tests at home or at

work without other people present), (2) “with others (quiet)” (ie, those

who responded “all the time” or “often” to completing tests at home or

at work with other people present but are quiet), and (3) “with others

(noisy)”(ie, those who responded “all the time” or “often” to complet-

ing tests at home, work, public spaces, or during their commute where

other people are present and are noisy).

3 RESULTS

3.1 Sample overview

The demographic characteristics of our sample are provided in Table 1.

Older age groupswere associatedwith lower levels of education, lower

annual income, and fewer symptoms of depression and anxiety. Older

age groups were alsomore likely to report a first-degree family history

of dementia, and postcodes from rural/regional locations.

3.2 HCI acceptability of unsupervised cognitive
testing

Analyses of HCI acceptability indicated that 30 (1.9%) cases of missing

data occurred forDET, and10 (0.6%) cases ofmissing data occurred for

IDN. Nomissing data occurred for theOCL or OBK.

3.3 HCI usability of unsupervised cognitive
testing

Analyses of HCI error indicated that the proportion of completed cog-

nitive tests that did not exceed pre-specified error criteria were 93.4%

for DET (n = 1488), 89.5% for IDN (n = 1427), 94.6% for OCL (n =

1508), and 94.7% for OBK (n = 1510). When this analysis was consid-

ered for the four cognitive tests simultaneously, 19.6% (n=313) of par-

ticipants exceeded error criteria for one cognitive test, 4.6% (n = 73)

for two cognitive tests, 2.0% (n=32) for three cognitive tests, and1.6%

(n = 25) on all four cognitive tests. Examination of the demographic

characteristics of participants who did and did not meet HCI error cri-

teria indicated that participants who did not meet error criteria on at

least two cognitive tests were more likely to be male and required sig-

nificantly longer time to complete all cognitive tests (Table 2).

Results from the analysis of HCI learnability (ie, time taken to read

instructions and complete tests) are summarized in Table 3. As a sig-

nificant difference in the amount of time taken to complete tests

was observed between participants who passed or failed HCI error



PERIN ET AL. 5 of 11

TABLE 1 Sample demographic characteristics

Overall 40 to 49 years 50 to 59 years 60 to 70 years

N 1594 321 745 528 P

N (%) females 1184 (74.3%) 232 (72.3%) 575 (77.2%) 377 (71.4%) .106

N (%) rural/regional location 399 (25.0%) 60 (18.7%) 173 (23.2%) 166 (31.4%) <.001

N (%) white 1135 (71.2%) 231 (72.0%) 512 (68.7%) 392 (74.2%) .106

N (%) first-degree dementia family history 737 (46.2%) 107 (33.3%) 361 (48.5%) 269 (50.9%) <.001

Age 56.23 (6.60) 46.05 (2.82) 55.69 (2.76) 63.19 (2.07) <.001

Education (y) 11.87 (3.40) 12.50 (3.24) 11.61 (3.40) 11.85 (3.47) <.001

Annual income (self) (‘000s) 65.56 (34.88) 76.22 (36.41) 67.46 (35.09) 56.20 (31.13) <.001

HADS depression 2.56 (3.09) 3.05 (3.42) 2.58 (3.25) 2.23 (2.58) .003

HADS anxiety 4.21 (3.30) 4.69 (3.57) 4.24 (3.36) 3.86 (2.98) .004

No. of days between enrollment and test completion 42.39 (81.26) 47.93 (80.64) 44.10 (84.99) 36.63 (75.87) .106

Note: All values for continuous variables (age, education, annual income, HADS depression, HADS anxiety, and no. of days between enrollment and test com-

pletion) presented as mean (standard deviation); chi-square was used to test differences between groups for categorical variables, and analysis of variance

was used to test differences between groups for continuous variables; FDR corrections have been applied to all P values.
Abbreviations: FDR, false-discovery rate; HADS, Hospital Anxiety andDepression scale.

TABLE 2 Demographic characteristics of overall sample, and of participants who did and did not meet error criteria on at least two cognitive
tests

Overall Failed error
a

Passed error

N 1594 73 1521 P

N (%) females 1184 (74.3%) 48 (65.8%) 1136 (74.7%) <.001

N (%) rural/regional location 399 (25.0%) 16 (21.9%) 383 (25.2%) .606

N (%) whtie 1135 (71.2%) 47 (64.4%) 1088 (71.5%) .301

Age 56.23 (6.60) 57.74 (6.59) 56.16 (6.60) .120

Education 11.87 (3.40) 11.03 (3.21) 11.91 (3.41) .120

Annual income (self) (‘000s) 65.56 (34.88) 60.07 (32.35) 65.82 (34.99) .301

HADS depression 2.56 (3.09) 2.71 (3.62) 2.55 (3.07) .680

HADS anxiety 4.21 (3.30) 4.59 (3.77) 4.19 (3.27) .467

Time taken to read instructions (s)

DET 11.17 (12.84) 12.69 (8.17) 11.10 (13.02) .546

IDN 8.02 (21.82) 10.02 (11.17) 7.92 (22.20) .546

OBK 6.79 (5.46) 7.15 (41.68) .941

OCL 11.70 (35.11) 8.74 (6.43) 11.85 (35.91) .575

Time taken to complete tests (s)

DET 72.37 (19.90) 127.17 (54.31) 69.74 (11.15) <.001

IDN 66.53 (17.18) 113.01 (53.86) 64.30 (7.95) <.001

OBK 82.64 (19.96) 128.05 (45.05) 80.46 (14.75) <.001

OCL 213.55 (24.88) 219.27 (37.79) 213.27 (24.07) .044

Note: Chi-squarewas used to test differences between groups for categorical variables, and analysis of variancewas used to test differences between groups
for continuous variables; FDR corrections have been applied to all P values.
Abbreviations:DET,Detection test; FDR, false-discovery rate;HADS,HospitalAnxiety andDepression scale; IDN, Identification test;OCL,OneCardLearning

test; OBK, One-Back test.
aFailed error= participants did not meet pre-specified error criteria on at least two cognitive tests.
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TABLE 3 Amount of time spent on instruction screen, and time taken to complete each cognitive test

Overall (n= 1594)

40 to 49 years

(n= 321)

50 to 59 years

(n= 745)

60 to 70 years

(n= 528)

Mean (SD) Mean (SD) Mean (SD) Mean (SD) P1 P2

Time spent on instruction screen (s)

DET 11.17 (12.84) 9.73 (6.20) 11.47 (16.49) 11.64 (9.44) .215 .090

IDN 8.02 (21.82) 6.50 (7.72) 8.74 (30.94) 7.93 (7.05) .260 .352

OBK 7.13 (40.73) 4.93 (8.47) 5.73 (7.37) 10.45 (69.84) .766 .092

OCL 11.70 (35.11) 10.36 (15.85) 11.30 (34.63) 13.09 (43.34) .766 .339

Total CBB 38.03 (60.65) 31.51 (23.97) 37.24 (50.87) 43.12 (84.04) .260 .035

N (%) who did not meet HCI learnability criteria for time spent on instruction screen

DET 24 (1.5%) 3 (0.9%) 8 (1.1%) 13 (2.5%) .903 .448

IDN 7 (0.4%) 2 (0.6%) 3 (0.4%) 2 (0.4%) .903 .614

OBK 6 (0.4%) 1 (0.3%) 2 (0.3%) 3 (0.6%) .903 .614

OCL 11 (0.7%) 4 (1.2%) 3 (0.4%) 4 (0.8%) .472 .614

Time taken to complete cognitive test (s)

DET 72.37 (19.90) 70.05 (16.42) 72.65 (20.40) 73.39 (21.01) .064 .018

IDN 66.53 (17.18) 64.16 (10.16) 66.51 (17.50) 67.99 (19.79) .064 .003

OBK 82.64 (19.96) 80.03 (15.98) 82.32 (20.09) 84.66 (21.69) .085 .003

OCL 213.55 (24.88) 209.84 (22.02) 214.59 (27.93) 214.34 (21.55) .010 .014

Total CBB 435.08 (58.78) 424.09 (44.97) 436.06 (60.87) 440.38 (62.29) .010 .001

N (%) who did not meet HCI learnability criteria for time spent completing test

DET 72 (4.5%) 8 (2.5%) 38 (5.1%) 26 (4.9%) .128 .107

IDN 49 (3.1%) 4 (1.2%) 24 (3.2%) 21 (4.0%) .128 .072

OBK 82 (5.1%) 11 (3.4%) 35 (4.7%) 36 (6.8%) .349 .072

OCL 61 (3.8%) 10 (3.1%) 35 (4.7%) 16 (3.0%) .317 .944

Note: FDR corrections have been applied to all P values; P1 = 40 to 49 years versus 50 to 59 years; P2 = 40 to 49 years versus 60 to 70 years; learnability

cut-off was computed as 2 SDs above themean time taken for individuals who passed error criteria, for test instruction: DET (37.1 s), IDN (52.3 s), OCL (83.7

s) andOBK (90.5 s); and for time spent completing each test: DET (92.0 s), IDN (80.2 s), OCL (261.4 s), andOBK (110.0 s).

Abbreviations: CBB, Cogstate Brief Battery; DET, Detection test; FDR, false-discovery rate; HADS, Hospital Anxiety andDepression scale; HCI, human com-

puter interaction; IDN, Identification test; OCL, One Card Learning test; OBK, One-Back test.

(Table 2), we specified that HCI learnability was considered to have

occurred if participants who exceeded 2 SDs from the average time

taken to read the instruction screen or to complete tests based on

the estimates of the group of participants who passed HCI error

criteria.

We observed age-related increases in the amount of time taken to

read test instructions, but only for the DET test (Table 3). Similarly, we

observed age-related increases in the amount of time taken to com-

plete all cognitive tests. Over 90% of participants met HCI learnability

criteria for the test instruction screen, and for time taken to complete

each cognitive test, with no differences across age groups (Table 3).

3.4 Validity of unsupervised cognitive testing:
relationship with test difficulty and age

For participants whose data satisfiedHCI acceptability andHCI usabil-

ity criteria, group mean (SD) performance on each cognitive test is

summarized in Table 4 for the overall group and for each age-group. As

predicted, speed of performance varied as a function of test difficulty.

Paired samples t tests of the overall group performance indicated that

average performance on the OCL test was significantly slower than on

theOBK test, t(1520)= 56.92, P< .001, which in turn was significantly

slower than the IDN test, t(1520) = 101.22, P < .001, which in turn

was significantly slower than the DET test, t(1520)= 75.006, P< .001.

Similarly, accuracy of performance on the DET test was significantly

better than the IDN test, t(1520) = 12.84, P < .001, which in turn was

significantly than the OBK test, t(1520) = 5.62, P < .001, and in turn

was significantly between than theOCL test, t(1520)= 87.55, P< .001

(Table 4).

After adjusting for participants’ years of education, we observed

that speed of performance across most cognitive tests was signifi-

cantly slower in older age groups (Table 4).When participants’ age was

considered continuously (and adjusting for years of education), speed

of performanceon all testswas significantly slowerwith older age;DET

(β[standard error (SE)]= 0.19[0.03], P< .001), IDN (β[SE]= 0.23[0.03],
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TABLE 4 Average speed and accuracy of performance for each cognitive test

Overall

(n= 1521)

40 to 49

years

(n= 311)

50 to 59 years

(n= 710)

60 to 70 years

(n= 500)

Mean (SD) Mean (SD) Mean (SD) Mean (SD) P1 P2

DET speed 2.55 (0.10) 2.52 (0.09) 2.55 (0.10) 2.57 (0.09) <.001 <.001

IDN speed 2.70 (0.06) 2.67 (0.07) 2.69 (0.05) 2.71 (0.07) <.001 <.001

OBK speed 2.89 (0.09) 2.88 (0.09) 2.89 (0.11) 2.91 (0.09) .055 <.001

OCL speed 3.01 (0.08) 2.99 (0.09) 3.01 (0.08) 3.01 (0.09) <.001 .001

DET accuracy 1.48 (0.14) 1.48 (0.16) 1.48 (0.16) 1.48 (0.16) .999 .999

IDN accuracy 1.42 (0.14) 1.42 (0.12) 1.42 (0.13) 1.41 (0.13) .999 .463

OBK accuracy 1.39 (0.15) 1.40 (0.16) 1.39 (0.16) 1.38 (0.16) .972 .267

OCL accuracy 1.00 (0.11) 1.01 (0.11) 1.01 (0.11) 0.99 (0.11) .968 .056

Note: FDR corrections have been applied to all P values; all values have been adjusted for years of education; P1 = 49 to 49 years versus 50 to 59 years; P2 =
40 to 49 years versus 60 to 70 years.

Abbreviations: DET, Detection test; FDR, false-discovery rate; IDN, Identification test; OCL, One Card Learning test; OBK, One-Back test.

TABLE 5 Demographic characteristics of participants who completed tests in each testing environment

Alone

With others

(quiet)

With others

(noisy)

N 340 433 54 P

N (%) females 270 (79.4%) 323 (74.6%) 43 (79.6%) .743

N (%) rural/regional location 91 (26.8%) 96 (22.2%) 10 (18.5%) .685

N (%) white 258 (75.9%) 341 (78.8%) 43 (79.6%) .745

Age 57.66 (6.29) 55.92 (6.84) 53.41 (6.78) <.001

Education 12.00 (3.42) 11.96 (3.32) 11.43 (3.44) .743

Annual income (self) (‘000s) 62.99 (34.78) 66.38 (34.95) 69.34 (31.47) .685

HADS depression 2.57 (3.27) 2.36 (3.00) 2.81 (3.37) .743

HADS anxiety 3.98 (3.51) 3.95 (3.00) 4.35 (3.23) .788

Total time to complete CBB (min) 7.15 (0.77) 7.11 (0.62) 6.95 (0.37) .685

N (%)met overall HCI error criteria 321 (94.4%) 413 (95.4%) 51 (94.4%) .819

N (%)met HCI learnability (DET) 322 (94.7%) 414 (95.6%) 52 (96.3%) .787

N (%)met HCI learnability (IDN) 330 (97.1%) 418 (96.5%) 51 (94.4%) .787

N (%)met HCI learnability (OBK) 317 (93.2%) 413 (95.4%) 52 (96.3%) .720

N (%)met HCI learnability (OCL) 322 (94.7%) 414 (95.6%) 54 (100%) .720

Note: FDR corrections have been applied to all P values.
Abbreviations: CBB, Cogstate Brief Battery; DET, Detection test; FDR, false-discovery rate; HADS, Hospital Anxiety andDepression scale; HCI, Human com-

puter interaction; IDN, Identification test; OBK, One-Back test; OCL, One Card Learning test.

P < .001), OBK (β[SE] = 0.13[0.03], P < .001), OCL (β[SE] = 0.12[0.03],

P< .001). Accuracy of performance did not differ significantly between

age groups on any tests (Table 4). However, when age was considered

continuously, and after accounting for education, increasing age was

significantly associated with poorer accuracy for the OBK (β[SE] =
−0.06[0.0303], P = .045) and OCL (β[SE] = −0.07[0.0303], P = .021)

tests, although these associations were, by convention, very small in

magnitude.

3.5 Effect of testing environment, and
first-degree family history of dementia on cognitive
performance

A subsample of participants (n = 827; 62%) who completed cogni-

tive tests also completed a survey of their usual testing environment.

Table 5 provides the demographic characteristics of this subset of par-

ticipants. Most participants completed cognitive tests at home/work
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TABLE 6 Effect of testing environment, and first-degree family history of dementia, on the primary outcome of each cognitive test

Effect of testing environment

Age Education Group

Alone

(n= 340)

With others

(quiet) (n= 433)

With others

(noisy) (n= 54)

(df) F P (df) F P (df) F P Mean (SD) Mean (SD) Mean (SD)

DET speed (1760) 37.01 <.001 (1760) 5.64 .018 (2760) 0.37 .691 2.54 (0.005) 2.55 (0.004) 2.55 (0.013)

IDN speed (1760) 54.62 <.001 (1760) 2.73 .100 (2760) 0.001 .999 2.69 (0.004) 2.70 (0.003) 2.70 (0.009)

OBK accuracy (1760) 2.83 .093 (1760) 10.57 .001 (2760) 0.10 .903 1.39 (0.009) 1.39 (0.007) 1.40 (0.021)

OCL accuracy (1760) 4.33 .038 (1760) 20.49 <.001 (2760) 0.85 .427 1.01 (0.006) 1.00 (0.005) 1.02 (0.016)

Effect of first-degree family history of dementia

Age Education Group

1◦ family hx (n

= 674)

Without 1◦ family

hx (n= 704)

(df) F P (df) F P (df) F P Mean (SD) Mean (SD)

DET speed (11,358) 10.84 <.001 (11,358) 45.90 <.001 (11,358) 10.21 .001 2.56 (0.104) 2.54 (0.106)

IDN speed (11,358) 75.25 <.001 (11,358) 9.76 .002 (11,358) 9.26 .002 2.70 (0.052) 2.69 (0.053)

OBK accuracy (11,358) 5.52 .019 (11,358) 8.81 .003 (11,358) 0.17 .684 1.39 (0.156) 1.39 (0.159)

OCL accuracy (11,358) 7.08 .008 (11,358) 24.43 <.001 (11,358) 0.02 .901 1.00 (0.104) 1.00 (0.106)

Note: FDR corrections have been applied to all P values.
Abbreviations: DET, Detection test; FDR, false-discovery rate; IDN, Identification test; OBK, One-Back test; OCL, One Card Learning test.

without other people present (41.1%) or at home/work where other

people are present but are quiet (52.4%). Participants in the “with oth-

ers (noisy)” group were significantly younger than those in the “with

others (quiet)” group (P = .011, d = 0.37), who were in turn younger

than participants in the “alone” group (P < .001, d = 0.26). Error and

learnability did not vary significantly across each of the testing envi-

ronments (Table 5).

The effect of testing environment on the primary outcomemeasure

of each cognitive test, after accounting for the effects of age and edu-

cation, are summarized in Table 6. Age- and education-adjusted perfor-

mance mean (SD) of each testing environment group are also provided

in Table 6.We observed no overall effect of testing environment on any

cognitive outcome measure. However, post-hoc comparison suggests

that participants in the “with others (quiet)” group performed signifi-

cantly slower than those in the “alone” group on the IDN test, but the

magnitude of differencewas very small, d(95%confidence interval [CI])

= 0.15 (0.01, 0.29). No other between-group comparisons were signifi-

cant, all P’s> .35, all d’s< 0.10.

Table 6 also summarizes the effect of first-degree family history of

dementia on cognitive function, accounting for the effects of age and

education. We observed an overall effect of first-degree family history

of dementia only on the DET and IDN tests, and the magnitude of dif-

ference between groups was very small and identical for both tests,

d(95% CI) = 0.19 (0.08, 0.30; Table 6). No other between-group com-

parisons were significant, all P’s> .900.

4 DISCUSSION

The aim of this study was to determine the acceptability and usabil-

ity of unsupervised cognitive testing. With those characteristics

established, we also aimed to determine the validity of unsupervised

cognitive testing in middle-aged adults enrolled in a large online study

of AD risk. A large group of adults from metropolitan, regional, and

rural Australia enrolled in the HBP completed an online battery of

computerized cognitive tests. In this group, we showed that with

appropriate design, a battery of unsupervised cognitive tests showed

high acceptability and usability. Low rates of missing data were

observed (1.9%), which occurred only for the first and second tests

in the battery. This pattern suggests that missing data are more likely

to occur in earlier tasks, when participants are less familiar with the

battery, and indicates that as participants became more comfortable

with the battery as the tests progressed they were able to complete

the battery successfully. The current study sample also demonstrated

high levels of understanding and adherencewith the rules and require-

ments of each test, as measured by the extent to which performance

on each test fell within expected normative limits. Limits of accuracy

of performance were obtained from normative data for the same tests

administered to healthy adults in supervised settings.20,32 Using these

criteria, we observed that error rates were consistently low across all

tests (∼10%), andwhen considering all tests,<5%of participants failed

error criteria on two or more tests. Individuals in the HBP sample

required∼10 seconds to read the instructions for each test, and except

for the first test presented (DET), the average amount of time taken

to read these test instructions did not increase with age. Participants

also demonstrated high rates of learnability across all test instructions

(∼99%) and cognitive tests (∼95%), and this did not vary with age

(Table 3). As expected, the time required to complete each test varied

with test difficulty and length, and this time requirement increased

slightly with age. Together, these data suggest that the unsupervised

cognitive tests applied in the HBP are acceptable and usable in the
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samples sought. They also provide a guide for the development and

application of automated analyses to identify low quality test data and

differentiate this from data that reflects true cognitive performance.

The second hypothesis, that expected test difficulty–related, and

age-relateddecreases inperformancewouldbedemonstratedwasalso

supported. First, we observed that speed and accuracy of performance

worsened as test complexity increased across the simple reaction time

(DET), choice reaction time (IDN), workingmemory (OBK), and the pat-

tern separation learning (OCL) tests. This influence of test difficulty on

performance is well known in the psychological literature and has been

observed many times in the context of supervised assessments using

these same cognitive tests.18–20 The presence of these relationships in

the HBP sample, therefore, provides strong support that these tests

are measuring those aspects of cognition they were designed to mea-

sure evenwhen given in an unsupervised context. The second aspect of

validity demonstrated was that older age was associated with slower

reaction time on all tests, and with poorer accuracy of performance on

the OBK and OCL tests. Age-related decline in cognition, even in the

absence of neurodegenerative disease, has been well described,33–36

including in unsupervised settings.25 While these effects are small,

they do indicate that data arising from the application of these tests in

unsupervised settings did retain their validity.

Finally, in a subset of participants, we sought to explore the impact

of participants’ self-reported testing environment on cognitive per-

formance. Of the 1594 participants who completed cognitive testing,

∼65% (n= 827) completed a survey of their usual testing environment

(defined as either: alone;with others [quiet];with others [noisy]).When

accounting for the effects of age, no general influence of testing envi-

ronment was found for any of the cognitive outcome measures in this

study, except for a small (d = 0.14) effect of reduced speed of perfor-

mance in those who completed testing in the “alone” group compared

to “with others [quiet].” These findings contrast with those of the exist-

ing literature, which suggests performance on unsupervised neuropsy-

chological tests may be particularly sensitive to test environment.13

For example, background music and noise has been reported to impair

performance on cognitive tests.37,38 When considered along with the

observation that aspects of error and learnability did not vary as a

result of testing environment, our findings do provide further support

for the use of the CBB in unsupervised cognitive testing.18 However,

future research comparing the performance of the same individual

across different testing environments in both unsupervised and super-

vised contexts is required to further support this conclusion.

An important limitation to our study is that it is cross-sectional in

design, and as such, information about participant retention and attri-

tion were not available. Additionally, as this study was administered

completely online, we did not obtain any data related to the supervised

(in-person) administration of theCBB. A direct comparison of unsuper-

vised and supervised CBB testing may have strengthened the impact

of the findings of this study by providing further information regarding

the acceptability and validity of unsupervised assessment. We also

acknowledge that our comparison of performance across varied test-

ing environments may be limited by both power (large differences in

sample size between the “noisy” [n=54], “with others [quiet]” [n=433]

and “alone” [n=340] groups) and thatwedid not experimentally deter-

mine performance of the same individual in different testing environ-

ments. It should, however, be noted that the testing environment sur-

vey was designed to reflect the flexibility of the HBP testing schedule

(ie, participantswerenot required to complete all surveys in a single sit-

ting). Consequently, theremay be some disconnect between the actual

environment in which the CBB was completed and where the partic-

ipant completed the majority of their assessments. Finally, it is impor-

tant to note that the HBP does not randomly sample the population.

Family history was used as a proxy for AD or dementia risk, and while

having a family history is not a very strong predictor of AD, this strat-

egy has resulted in higher proportions of apolipoprotein E ε4 carriers in
the study sample compared to the general population (35% vs 18%).23

While we have established the internal validity of these tests, we

need to nowdetermine the external validity by using an established cri-

terion for abnormality. For example, future studies will need to exam-

ine the acceptability, usability, and validity of performance of individu-

alswith clinically diagnosedmild cognitive impairment (MCI). Recently,

poorer performance across all CBB testswas observed in self-reported

MCI patients and self-reported ADpatients compared to self-reported

healthy controlswhocompletedunsupervised testing.25 While promis-

ing, additional studies are needed to determine the utility of unsuper-

vised cognitive tests in detecting cognitive impairment in clinically con-

firmedMCI and AD patients.

These caveats notwithstanding, the data in this study show how

the HCI approach can provide a suitable foundation for development

and refinement of unsupervised cognitive tests.With acceptability and

usability,we showed that psychometric characteristics of cognitive test

data generated in unsupervised contexts can be challenged using con-

ventional psychometric approaches. We also examined the validity of

unsupervised cognitive tests by determining the extent to which the

expected effects of age and test difficulty manifest in performance.

However, other psychometric approaches such as examination of fac-

tor structure, differential item function, as well as the more crucial

characteristics such as sensitivity to AD related risk factors or to AD

related cognitive change, can also be applied to understand data gen-

erated in unsupervised settings. With these factors considered, the

data collected in this study do appear to retain similar psychomet-

ric characteristics as those collected from supervised testing of the

same tests. As such, these results support the acceptability, usability,

and validity of the CBB in the unsupervised assessment of cognition

in individuals at risk of dementia. The approach used here can also be

applied to other cognitive tests and surveys administered via online or

web-based platforms for the unsupervised assessment of individuals

with self-reported cognitive impairment25 or those who are at risk of

dementia.23
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