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Viruses that infect bacteria are the 
most abundant biological agents 

on the planet and bacteria have evolved 
diverse defense mechanisms to combat 
these genetic parasites. One of these bac-
terial defense systems relies on a repetitive 
locus, referred to as a CRISPR (clusters of 
regularly interspaced short palindromic 
repeats). Bacteria and archaea acquire 
resistance to invading viruses and plas-
mids by integrating short fragments of 
foreign nucleic acids at one end of the 
CRISPR locus. CRISPR loci are tran-
scribed and the long primary CRISPR 
transcript is processed into a library of 
small RNAs that guide the immune 
system to invading nucleic acids, which 
are subsequently degraded by dedicated 
nucleases. However, the development 
of CRISPR-mediated immune systems 
has not eradicated phages, suggesting 
that viruses have evolved mechanisms to 
subvert CRISPR-mediated protection. 
Recently, Bondy-Denomy and colleagues 
discovered several phage-encoded anti-
CRISPR proteins that offer new insight 
into the ongoing molecular arms race 
between viral parasites and the immune 
systems of their hosts.

Introduction

In many environments, viruses that infect 
bacteria (referred to as phages) are esti-
mated to outnumber their hosts 10 to 
one, and these pervasive predators impose 
strong selective pressures on microbial 
populations. In response to these selec-
tive pressures, bacteria have evolved a 
diverse repertoire of phage defense mecha-
nisms that target each stage of the viral 
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life cycle.1 Historically, our understand-
ing of immune systems in bacteria has 
been limited to innate defense systems 
such as receptor switching, restriction-
modification and abortive-phage phe-
notypes. However, more recent studies 
have revealed that organisms from both 
the bacterial and archaeal domains of 
life have evolved RNA-guided adaptive 
immune systems that share conceptual 
similarity to RNA-interference (RNAi) 
systems in eukaryotes (Fig. 1).2-6 In both 
systems, long RNAs are processed into 
small non-coding RNAs that serve as 
sequence-specific guides for the detection 
and degradation of foreign nucleic acids 
(Fig. 1). These anti-viral defense systems 
impose strong selective pressures on phage 
populations, resulting in the emergence 
of mutant viruses capable of immune sys-
tem evasion. This perpetual cycle of host 
adaptation and reciprocal counter adapta-
tion by virus results in a rapid antagonistic 
co-evolution that has been likened to an 
escalating “arms race.”7,8

Eukaryotic RNA-Interference

In eukaryotes, the term “RNA silencing” 
refers to a group of mechanistically related 
pathways that produce short non-coding 
RNAs for sequence-specific gene regula-
tion. This is an evolutionarily conserved 
process that may have originally evolved as 
a defense mechanism against viruses and 
other foreign nucleic acids.9-12 Long dou-
ble-stranded RNAs (dsRNAs) produced 
during a viral infection are recognized as 
antigens, and the dsRNA is processed into 
21-nt small interfering RNAs (siRNAs) 
by a dedicated RNase III enzyme called 
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crRNA is bound by one or more CRISPR-
associated proteins (Cas) and the result-
ing ribonucleoprotein complexes serve as 
surveillance systems that patrol the intra-
cellular environment for foreign nucleic 
acid targets that are complementary to 
the crRNA-guide sequence.19-24 Viruses 
with mutations in specific regions of the 
target sequence escape detection by the 
crRNA-guided surveillance systems,25-28 
and as a consequence of this selective 
pressure, CRISPR may play an influential 
role in maintaining sequence diversity in 
phage genomes.29-32 However, mutations 
are often associated with a fitness cost 
and alternative escape mechanisms are 
anticipated.

Viral Suppressers of  
CRISPR-Mediated Defense

To identify alternative phage escape 
strategies, Bondy-Denomy et al. recently 

immune systems that are widespread 
in bacteria and archaea (Fig. 1). Each 
CRISPR locus consists of a series of 
short direct repeats that are separated 
by non-repetitive “spacer” sequences 
derived from foreign genetic elements. 
In response to viral or plasmid chal-
lenge, new spacer sequences are added 
to one end of the CRISPR locus and in 
this way CRISPR loci serve as molecu-
lar “vaccination cards” that maintain 
a chronological genetic record of prior 
encounters with foreign nucleic acid 
invaders. New sequence acquisition is 
the first step toward adaptive immunity, 
but acquisition alone does not provide 
long-term protection. CRISPR loci are 
transcribed, and the long primary tran-
script is processed into a library of short 
CRISPR-derived RNAs (crRNAs) that 
each contains a short sequence that was 
derived from and is complementary to 
a previously encountered invader. Each 

Dicer.13,14 One strand of the siRNA is 
loaded into an Argonaute protein (AGO)-
containing regulatory complex, where the 
siRNA serves as a sequence-specific guide 
that delivers the AGO nuclease to invad-
ing viral nucleic acids.15 To subvert this 
immune system, many viruses have evolved 
counter defensive strategies that suppress 
RNAi.16-18 Viral suppressors of RNAi 
(VSRs) are diverse in sequence and in their 
mechanism of immune system attenua-
tion.16 Many VSRs circumvent antiviral 
RNAi by coating dsRNA and prevent-
ing it from coming into contact with the 
host’s RNAi machinery (dsRNA binding 
proteins), while other VSRs target steps 
downstream of dsRNA detection (Fig. 1).

CRISPR RNA-Guided  
Adaptive Immune Systems

CRISPRs are essential components 
of diverse nucleic-acid-based adaptive 

Figure 1. Each stage of RNA-guided immunity is a potential target for viral suppressors. Organisms from all domains of life (bacteria, archaea and 
eukaryotes) use small RNAs to target invading parasites, but the source of these RNAs, and the processing pathways that generate them are diverse. 
Viruses that infect eukaryotes have evolved a battery of counter defense mechanisms that target every stage of the RNAi pathway. Many viruses 
have evolved dsRNA-binding proteins (dsRNA BPs) that protect the dsRNA (e.g., B2 protein from Flock house virus) from degradation by Dicer. Al-
though dsRNA BPs are probably the most common suppressor discovered so far, other viruses encode for proteins that selectively bind siRNAs (e.g., 
P19) and prevent them from being assembled into holo-RISC.40 The P38 protein from turnip crinkle virus contains two GW repeats and interacts di-
rectly with the AGO1 protein.41 In contrast to viral suppressors in eukaryotic systems, relatively little is known about suppressors of CRISPR-mediated 
defense. While the anti-CRISPR (α-CRISPR) proteins discovered by Bondy-Denomy et al. appear to block the immune system at a stage downstream 
of CRISPR RNA processing step, we anticipate that viruses infecting both bacteria and archaea have evolved suppression strategies that intervene at 
each stage of this process. For simplicity, this figure only depicts type I CRISPR-systems, though there are likely VSCs that target type II and III CRISPR 
systems as well.
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phage to shut the door on subsequent 
infections and, thus, selfishly preserve 
the cellular resources for the replication 
of its own genome. For phages that main-
tain a lysogenic lifestyle, this relation-
ship can serve the interests of both the 
virus and the host by protecting the host 
from superinfection by related phage. 
However, the viral suppressors described 
by Bondy-Denomy et al. effectively prop 
the door open by disarming the immune 
system and allowing for superinfections 
by specific phages, while simultaneously 
attenuating the plaquing efficiency of 
others.33 This strategy raises some inter-
esting questions about the evolutionary 
benefit of a CRISPR suppression mecha-
nism that disarms the immune system 
in ways that render the cell susceptible 
to superinfection by some phages, while 
inhibiting infection of others. This com-
plex relationship may contribute to the 
selective pressures between different 
viruses, which, like their hosts, are also 
competing for common resources.

Cease Fire?

It is unlikely viruses and their hosts will 
lay down their arms. In fact, the recent 
discovery of these VSCs may offer an 
explanation for the extreme diversity of 
CRISPR and cas genes.35-37 The suppres-
sors identified by Bondy-Denomy et al. 
only block the immune system in PA14 
(a type I-F immune system), while they 
have no effect on the immune system in 
E. coli K12 (a type I-E CRISPR system). 
The type I immune systems are all antici-
pated to function via similar mechanisms, 
but the phylogenetic and mechanistic dis-
tinction between these different immune 
systems is highlighted by viral suppressors 
that distinguish between these systems. In 
fact, the remarkable diversity of CRISPRs 
and cas genes may be a direct reflection 
of the selective pressures imposed on these 
immune systems by phages. We anticipate 
that viral suppressors have evolved to 
target-specific elements in each of the dif-
ferent CRISPR-systems, and that under-
standing the mechanisms of suppression 
will reveal unforeseen aspects of CRISPR 
biology. The discovery of these sup-
pressors is evidence of an ongoing arms 
race that is being waged at the interface 

PA14,25 the phage was no longer sensitive 
to CRISPR-mediated suppression. This 
may indicate that the suppressor protein 
is packaged and delivered to the cell along 
with the viral genome, or that the suppres-
sor is transcribed and translated with effi-
ciencies capable of rapidly neutralizing the 
immune system.

Mechanism of  
CRISPR-System Suppression

CRISPR-mediated adaptive immunity 
proceeds in three distinct stages: acqui-
sition of foreign DNA into the CRISPR 
locus, CRISPR RNA biogenesis and 
CRISPR RNA-guided target interference 
(Fig. 1).34 Conceivably, a viral suppres-
sor that interrupts any one of these stages 
could neutralize the immune system. To 
determine at what stage the viral sup-
pressor is disarming the system, Bondy-
Denomy et al. determined expression 
levels of the cas genes and the CRISPR 
loci in the lysogenic strains of PA14 that 
are sensitive to infections. Their results 
indicated that neither cas gene expression 
nor CRISPR RNA processing are affected 
by the suppressor.33 While the precise 
mechanism of these suppressors remains 
undetermined, these data suggest that 
the immune system is derailed at a stage 
downstream of CRISPR RNA processing. 
Possible mechanisms of the suppression 
include, but are not limited to: bind-
ing the mature crRNA and preventing it 
from being incorporated into the crRNA-
guide surveillance complex, binding to 
the assembled crRNA-guided surveillance 
complex and preventing this complex 
from interacting with target substrates, 
binding to Cas3 and blocking nuclease 
activity or preventing Cas3 recruitment 
to the target-bound surveillance complex 
(Fig. 1).

Ecological Implications of  
CRISPR-System Suppression

Viruses are obligate intracellular para-
sites that all compete for common cellu-
lar resources. These resources are limited, 
so many phages encode superinfection 
exclusion (Sie) systems that block sub-
sequent infection by the same or related 
phages.1 These systems allow a founding 

screened a collection of 44 lysogens of 
P. aeruginosa PA14 for their susceptibil-
ity to infection by three different phages 
(JBD18, JBD25 and JBD67).33 These 
three phages are effectively eliminated by 
the CRISPR-mediated immune system 
in P. aeruginosa PA14 cells and are only 
able to replicate in PA14 strains where 
the CRISPR loci (ΔCRISPR) or cas genes 
(Δcas) have been deleted. By challeng-
ing P. aeruginosa PA14 lysogens (lyso-
gens are bacterial strains that contain an 
integrated copy of a phage genome) with 
these phages, the authors identified three 
different lysogenic strains (PA14JBD24, 
PA14MP29 and PA14JBD30) that are sensi-
tive to infection by phage that were previ-
ously blocked by the CRISPR system. In 
fact, the PA14JDB30 strain (a PA14 strain 
lysogenized by phage JDB30) is as sensi-
tive to infection by JBD18, JBD25 and 
JBD67 phages as the PA14 strain with a 
deleted CRISPR and cas locus.33 These 
results indicated that the integrated phage 
genome (i.e., prophage) might be interfer-
ing with the CRISPR-mediated defense 
system. To identify the putative immune 
system suppressor, the authors aligned the 
three different prophage genomes with 
related viral genomes. These genomes 
share high-sequence similarity and gene 
synteny; however, the prophage genomes 
associated with immunocompromised 
lysogens all contained several short open 
reading frames in one particular genomic 
region that were not found in prophage 
genomes associated with immunocompe-
tent strains. These genes were suspected 
to be viral suppressors of the CRISPR-
mediated defense system (VSC). To 
test this hypothesis, they cloned 17 of 
these genes and overexpressed the pro-
teins in immunocompetent PA14 cells. 
Remarkably, seven of these genes convert 
phage-resistant PA14 cells to a phage-sensi-
tive phenotype, but not all the suppressors 
were equally potent. Gene 35 from phage 
JBD30 encodes for a small (9 kDa) basic 
protein (pI = 8.1) that results in phage sen-
sitivities similar to the CRISPR/cas dele-
tion stain. Rigorous mutational studies 
confirmed that the suppressor is a protein 
rather than a non-coding RNA, and when 
this gene was cloned into the genome of 
a phage that was previously shown to 
be eliminated by the CRISPR system in 
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between adaptive immunity and viral 
persistence.

The Rise of Antibiotic Resistance 
and the Return of Phage Therapy

The evolutionary arms race between 
phages and their bacterial hosts may 
have medically relevant implications. 
Bacteriophages were originally discovered 
by Ernest Hanbury Hankin in the late 
1800s, and the potential of these bacte-
rial antagonists in treating human disease 
was almost immediately recognized.38 In 
1919, Felix d’Herelle first demonstrated 
that phages could be used to cure patients 
suffering from dysentery, and in the years 
that followed, phages were used with 
remarkable success to treat a range of bac-
terial diseases (reviewed by Keen, E.C.39). 
However, the early success of phage ther-
apy coincided with Aexander Flemming’s 
discovery of Penicillin, and antibiotics 
became medicine’s new wonder drugs. 
Antibiotics were rapidly commercialized, 
mass-produced and overused, contribut-
ing to the widespread proliferation of anti-
biotic resistance in bacteria.

As the “chemical shield” of our antibiotic 
repertoire becomes increasingly fractured, 
the medical field is again considering the 
power of phages for treating bacterial infec-
tions. The anti-CRISPR proteins described 
by Bondy-Denomy et al. are likely to be the 
first of many VSCs with diverse modes of 
action and these suppressors may prove to 
be valuable in augmenting phage therapy 
by enabling targeted suppression of bacte-
rial immune systems.
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