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Abstract: Early detection of obstructive sleep apnea (OSA) is needed to reduce cardiovascular
sequelae and mortality. Full-night polysomnography has been used for diagnosing OSA, but it is too
expensive and inconvenient for patients to handle. Metabolome-wide analyses were performed to
find and validate surrogate markers for OSA. We further investigated the mechanism underlying
hypoxic induction of the markers in human cells and mice. Arachidonic acid derivatives 5-HETE and
5-oxoETE were detected in urine samples. The levels (mean ± SD, ng per mg creatinine) of 5-HETE
and 5-oxoETE were 56.4± 26.2 and 46.9± 18.4 in OSA patients, respectively, which were significantly
higher than those in controls (22.5 ± 4.6 and 18.7 ± 3.6). Both levels correlated with the apnea-
hypopnea index and the lowest oxygen saturation on polysomnography. After the treatment with the
continuous positive airway pressure, the metabolite levels were significantly reduced compared with
those before the treatment. In human mononuclear cells subjected to intermittent hypoxia, 5-HETE
and 5-oxoETE productions were induced by hypoxia-inducible factor 1 and glutathione peroxidase.
When mice were exposed to intermittent hypoxia, 5-HETE and 5-oxoETE were excreted more in
urine. They were identified and verified as new OSA markers reflecting hypoxic stress. The OSA
markers could be used for OSA diagnosis and therapeutic evaluation.

Keywords: obstructive sleep apnea; hypoxia; urine biomarker; metabolomics; 5-HETE; 5-oxoETE

1. Introduction

Obstructive sleep apnea syndrome (OSA), which is characterized by repetitive episodes
of upper airway obstructions during sleep, provokes surges in blood pressure and cardiac
arrhythmias due to sympathetic activation [1–3]. It is also associated with hypercoagula-
bility, vascular oxidative stress, endothelial dysfunction, and systemic inflammation [4].
Thus, OSA patients have life-threatening co-morbidities including strokes and myocardial
ischemia. These complications are known to be caused by intermittent hypoxic insult,
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which is a hallmark of OSA. Therefore, the early detection of OSA is needed to prevent
OSA patients from the hypoxia-related complications.

Horrendously, OSA is highly prevalent to affect 17 to 24 percent of the adult population
and costs the tremendous economic burden for its diagnosis and treatment [5]. The gold
standard for OSA diagnosis is in-laboratory full-night polysomnography. However, as
polysomnography is quite expensive and time-consuming, easily applicable tools should
be developed to solve the accumulation of patients who require sleep studies [6,7]. Portable
monitoring devices have been developed over last few decades, but their benefits in
OSA management have been in question. The discovery of diagnostic markers reflecting
intermittent hypoxic damages has been a most compelling subject in the OSA research
field. Although several candidates from human specimens including serum, urine, saliva,
and exhaled breath were suggested [8–10], it is unclear whether they are ideal biomarker
reflecting hypoxic stress per se independently of accompanying diseases, such as obesity
and diabetes [11].

Metabolomic analysis is a powerful method that offers the unbiased identification
and state-specific quantification of metabolites. It has developed rapidly into one of the
keystones of post-genomic techniques for analyzing molecular signatures, and recently
provided a promising solution to uncover the systems of interest at a systems biology level
in an unbiased way [12–16]. In this study, we aimed to search and identify OSA markers
reflecting the severity of intermittent hypoxic stress.

2. Materials and Methods
2.1. Pilot, Verification, and Validation Cohorts

We collected the urine samples from male OSA patients at Seoul National University
Hospital (SNUH, a tertiary referral center) as a pilot cohort and at Seoul Sleep Clinic
(SSC, a local specialized clinic) as a verification cohort (Figures S1 and S2). The control
group included healthy volunteers, simple snorers, and insomnia patients. All patients
and controls were subjected to full-night in-laboratory polysomnography at the accredited
sleep facilities and assisted by certified sleep technicians, and urine samples were collected
7 AM at the end of the polysomnographic recordings and used for metabolomics analysis.
In addition, the urine metabolites were rechecked for OSA patients who had been treated
with the continuous positive airway pressure (CPAP) in the verification cohort (Table S1,
Figure S3). The validation cohort consisted of all patients who were newly diagnosed in
four different hospitals (Hanyang University Hospital, Kyoung Hee University Hospital,
Seoul National University Bundang Hospital, and Seoul Sleep Clinic) for five months
(Figure S4).

2.2. Patients and Exclusion Criteria in the Pilot and Verification Cohorts

We collected the urine samples from male OSA patients at Seoul National University
Hospital (SNUH, a tertiary referral center) as a pilot cohort and at Seoul Sleep Clinic (SSC, a
local specialized clinic) as a verification cohort (Table 1). Newly diagnosed patients between
April 2010 and March 2013 were prospectively included in the pilot and verification
cohorts. The control group in the pilot and verification cohorts included healthy volunteers,
simple snorers, and insomnia patients. All patients and controls underwent full-night
in-laboratory polysomnography. Urine samples were collected 7 AM at the end of the
nocturnal polysomnographic recordings and were stored at −80 ◦C for metabolomic
analysis. In addition, the urine metabolites were rechecked for OSA patients who were
included in the verification cohort and used CPAP during sleep (Table S1). Of eighty
OSA patients, 22 were treated with CPAP, 14 with surgery, 11 with oral appliances, 16
with lifestyle modification +/−medication, and 17 refused any treatment. Of 22 patients
treated with CPAP, only 11 accepted our proposal for rechecking polysomnography and
urine metabolomic analysis as adherents. Adherence to CPAP was defined as CPAP use
for 4 h or more daily [17]. According to the CPAP records, the selected patients daily
used CPAP for 4.5 h (median) per night (range, 4.0–6.5 h) over the median duration of
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34 months (range, 13–37 months). In these cohorts, the subjects were excluded if they
had known hypertension, diseases potentially affecting blood pressure control (renal or
cardiac transplantation, severe cardiac heart failure), arrhythmia including atrial fibrillation
or frequent premature beats (>10/min), smoking, shift work, diabetes mellitus, asthma,
chronic obstructive pulmonary disease, history of stroke or myocardial infarction, allergic
rhinitis, arthritis, oral appliances or maxillofacial surgery, or pharmacologic treatment
that could affect arachidonic derivatives concentration, including aspirin, non-steroidal
anti-inflammatory drugs, corticosteroids, and any leukotriene receptor antagonists. This
study has not been supported by commercial sponsors. Five of the authors hold a patent
application for intellectual property derived from this study.

Table 1. Baseline characteristics of patients with the obstructive sleep apnea syndrome and controls *.

Pilot Cohort Verification Cohort

Characteristic Control Patients with
OSA p Value Control Patients with

OSA p Value

n 38 20 - 25 60 -

Age (yrs) 32.0 ± 10.9 39.4 ± 13.5 0.040 36.4 ± 10.3 38.8 ± 7.4 0.067

BMI (kg/m2) † 21.9 ± 3.1 25.1 ± 3.0 <0.001 24.8 ± 1.9 25.9 ± 2.8 0.068

Neck circumference (cm) 34.7 ± 3.2 38.0 ± 3.1 <0.001 38.4 ± 1.9 39.0 ± 2.3 0.240

Waist Hip Ratio 0.84 ± 0.05 0.93 ± 0.07 <0.001 0.89 ± 0.05 0.92 ± 0.05 0.083

Systolic blood pressure
(mmHg) 123.0 ± 16.1 126.0 ± 15.5 0.413 128.7 ± 18.8 135.7 ± 20.1 0.291

Diastolic blood pressure
(mmHg) 79.1 ± 10.5 80.3 ± 10.5 0.313 81.8 ± 13.9 87.6 ± 16.1 0.060

Epworth sleepiness scale 7.4 ± 4.4 11.0 ± 4.1 0.006 7.4 ± 4.6 10.6 ± 4.6 0.010

Apnea-hypopnea index
(events/h) 1.4 ± 1.6 43.7 ± 24.1 <0.001 1.4 ± 1.5 32.8 ± 22.5 <0.001

RDI (events/h) 7.9 ± 5.9 54.3 ± 22.1 <0.001 8.6 ± 6.8 32.8 ± 22.5 <0.001

Mean SaO2 (%) 96.7 ± 0.8 94.7 ± 1.6 <0.001 96.6 ± 1.1 94.3 ± 2.1 <0.001

Minimal SaO2 (%) 92.7 ± 2.5 80.0 ± 9.0 <0.001 92.3 ± 2.5 79.3 ± 8.5 <0.001

SaO2 < 90%
(% Total Sleep Time) 0.01 ± 0.03 6.32 ± 9.2 <0.001 0.01 ± 0.03 10.7 ± 16.8 <0.001

Oxygen desaturation index
(events/hr) 4.2 ± 12.8 41.4 ± 25.1 <0.001 3.0 ± 3.0 37.3 ± 22.6 <0.001

* All patients and controls are male; plus-minus values are means ± SD. † The body-mass index is the weight in kilograms divided by the
square of the height in meters.

2.3. Patients in the Validation Cohorts

The validation cohort consisted of 18 controls and 102 OSA patients from 4 different
hospitals (Hanyang University Hospital [Seoul, Korea], Kyoung Hee University Hospital
[Seoul, Korea], Seoul National University Bundang Hospital [Seongnam, Korea] and Seoul
Sleep Clinic [Seoul, Korea]) between December 2014 and April 2015 (Table 2). Controls
were simple snorers or insomnia patients otherwise healthy. All patients and controls
underwent full-night in-laboratory polysomnography. We obtained the urine samples
from patients just after PSG. Sixteen patients were under anti-hypertensive medication,
and 4 patients were under oral glucose-lowering agents. Four subjects were taking statins
against hyperlipidemia.
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Table 2. Baseline characteristics of patients with the obstructive sleep apnea syndrome and controls *.

Validation Cohort (n = 120)

Characteristic Control Mild OSA Moderate OSA Severe OSA p Value **

n 18 28 27 47 -

M:F (n) 14:4 21:7 20:7 42:5 -

Age (yr) 35.8 ± 13.9 40.6 ± 12.6 45.5 ± 15.3 44.7 ± 14.1 0.080

BMI (kg/m2) † 22.6 ± 3.6 24.9 ± 2.8 24.9 ± 3.2 27.1 ± 3.8 <0.001

Hypertension (n) 4 4 5 21 -

Diabetes (n) 1 0 1 3 -

Smoking (n) 6 2 6 16 -

Systolic blood pressure
(mmHg) 133.4 ± 16.2 128.1 ± 12.8 129.4 ± 14.9 138.1 ± 21.6 0.092

Diastolic blood pressure
(mmHg) 81.1 ± 11.8 78.0 ± 8.6 79.3 ± 8.6 85.3 ± 14.7 0.060

Apnea-hypopnea index
(events/h) 2.3 ± 1.4 9.8 ± 3.2 22.2 ± 4.5 52.6 ± 20.2 <0.001

Mean SaO2 (%) 97.0 ± 1.0 96.1 ± 0.8 96.0 ± 1.1 94.2 ± 2.7 <0.001

Minimal SaO2 (%) 90.9 ± 3.6 88.6 ± 3.7 85.7 ± 4.1 78.4 ± 8.3 <0.001

5-HETE (ng/mg
creatinine) 25.7 ± 9.4 28.4 ± 8.6 42.2 ± 16.6 45.9 ± 21.2 <0.001

5-oxoETE (ng/mg
creatinine) 23.8 ± 7.6 23.8 ± 6.8 36.3 ± 14.7 38.6 ± 18.2 <0.001

* Plus-minus values are means ± SD. ** ANOVA used. † The body-mass index is the weight in kilograms divided by the square of
the height.

2.4. Cell Culture

Primary human mononuclear cells were purchased from PromoCell (Heidelberg,
Germany), and cultured in a specific medium according to the manufacturer’s instruction.
Cells were cultured for no more than three passages before the analysis. THP-1, which
originated from human peripheral blood monocytes, was obtained from the Korean Cell
Line Bank (Seoul, Korea). THP-1 cells were cultured in RPMI-1640 supplemented with
10% heat-inactivated fetal bovine serum. Cells were grown in 5% CO2/21% O2 (normoxic)
or in 5% CO2/1% O2 (hypoxic) conditions, and the conditioned media were collected for
metabolomic analysis. In addition, siRNAs and chemical inhibitors of hypoxia-inducible
factor 1 (HIF-1) was used to evaluate the role of HIF-1 in generation of target metabolites.

2.5. Animals and Hypoxic Exposures

The Institutional Animal Use and Care Committee of Seoul National University
approved this animal study (SNU-140103-1). Male C57BL/6J mice (18–20 g) were purchased
from Central Laboratory Animal Inc. (Seoul, Korea). According to the experimental
protocols provided by the Institutional Animal Use and Care Committee, all efforts were
made to minimize animal suffering and to reduce the number of animals used. To induce an
intermittent hypoxia, mice were maintained in hypoxic chambers (Oxycycler model A44XO,
BioSpherix, Redfield, NY, USA) operated under a 12 h light-dark cycle (7:00 a.m.–7:00 p.m.)
for 14 days with periodical urine collection, as previously reported [18,19]. Mice were
randomly assigned to three different conditions of intermittent hypoxia (IH), continuous
hypoxia (CH), or room air (RA) exposures. Hypoxic exposures were kept every day from
9 a.m. to 5 p.m. for 8 h. Urine samples were collected just after the end of hypoxic stimulus
and were stored at −80 ◦C.
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2.6. Metabolite Analyses Using LC/Q-TOF MS

The defrosted urine samples (100 µL) were diluted to four volumes of cold water in
1.5 mL e-tubes. After brief vortex mixing, supernatants were collected after centrifugation
at 14,000× g for 20 min at 4 ◦C, and transferred to vials for LC/Q-TOF MS analysis.
Chromatographic separations of metabolites in urine were performed with a Zorbax SB-
C18, 50 mm × 2.1 mm, 1.8 µm (Agilent Technologies, Santa Clara, CA, USA) analytical
column using an Agilent 1200 series (Agilent Technologies, Santa Clara, CA, USA). A 5 µL
of diluted urine sample was loaded onto the column held at 40 ◦C and eluted with 0.1%
formic acid and 2 mM ammonium formate in water (Solvent A), and 0.1% formic acid in
methanol (Solvent B) over 21 min. While maintaining a constant flow rate of 0.4 mL/min,
the metbolites were eluted using the following gradients of 2–98% B from 0.1 to 13 min, and
98% B was held constant for 2 min followed by a return to 2% B from 15.1 to 17 min. The
eluent was introduced into the mass spectrometer (Agilent 6530 quadrupole time-of-flight
(Q-TOF) mass spectrometer, Agilent Technologies, Santa Clara, CA, USA) by electrospray
ionization (ESI), with ESI Vcap, MS TOF fragment, MS TOF skimmer, and nozzle voltages
set in the positive ion mode to 3500, 170, 65, and 1000 V, respectively. The nebulizer gas and
drying gas was set to 30 psig and 11 µL/min, respectively, and ESI gas temperature was
325 ◦C. Centroid data were acquired over an m/z range of 100–1100 using an accumulation
time of 0.25 s per spectrum. All spectra were mass corrected in real time by external
reference through an independent reference electrospray. For each injection batch, the
overall quality of the analysis procedure was monitored using repeat extracts of a pooled
urine sample.

2.7. Quantification of Biomarkers

MassHunter Quantitative analysis (Agilent Technologies) was used to quantify 5-
HETE and 5-oxo-ETE, of which authentic compounds were commercially available. Cre-
atinine was also quantified to normalize to the actual concentrations of each urinary
biomarker. One hundred microliters of urine supernatant was diluted with 900 µL of three
internal standard mixtures: 2.5 ng/mL of 5-HETE-d8 ([M + H]+ = 329.2926) for 5-HETE,
and of 5-oxo-ETE-d7 ([M + H]+ = 326.2707) for 5-oxo-ETE, and 50 µg/mL of 1,3-dimethyl-2-
imidazolidinone ([M + H]+ = 115.0866) for creatinine. Calibration curves were constructed
from 0.5 to 10 ng/mL of 5-HETE-d8 and 5-oxo-ETE-d7, and from 10 to 1000 µg/mL of 1,3-
dimethyl-2-imidazolidinone. The concentration of each biomarker in urine was determined
from the calibration curves using linear regression analysis. All determined correlation
coefficients were >0.99 for each biomarker, and the resultant concentrations were expressed
as ng/mg creatinine (normalized).

2.8. Immunoblotting

To quantify protein levels, total proteins were separated on SDS/polyacrylamide gels,
and transferred to Immobilon-P membranes (Millipore, Billerica, MA, USA). Membranes
were then blocked with 5% nonfat milk in Tris-buffered saline containing 0.05% Tween-
20 (TTBS) at room temperature for 1 h, and incubated overnight at 4 ◦C with a primary
antibody diluted 1:1000 to 1:5000 in 5% nonfat milk in TTBS. Horseradish peroxidase-
conjugated anti-rabbit antiserum was used as a secondary antibody (1:5000), and antigen-
antibody complexes were visualized using an ECL Select kit (GE healthcare, Pittsburgh, PA,
USA). Rabbit polyclonal anti–HIF-1α antiserum was generated in our laboratory [20], and
anti-tubulin serum was purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

2.9. Glutathione Peroxidase Activity

Commercially available enzyme assay kits were used to determine the activity of
glutathione peroxidase GPX activity (ab102530, Abcam, Cambridge, MA, USA). Cells were
grown in the presence of indicated normoxic or hypoxic conditions for 24 h, and lysates pre-
pared from 2 × 106 cells according to the manufacturer’s instructions. Enzyme activity was
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determined using a Power Wave HT microplate spectrophotometer (BioTek Instruments,
Seoul, Korea), and the results were normalized to the total protein concentration.

2.10. siRNA and Plasmid DNA Transfection

Cells at 40% confluence were transfected with siRNAs using RNAiMAX reagent (Invit-
rogen, Waltham, MA, USA) according to the manufacturer’s instructions. The sequences of
siRNAs (IDT, Iowa) were 5′-CAAAGUUAAAGCAUCAGG-3′ and 5′-GAAGGAACCUGAU
GCUUU-3′ for HIF-1α. Stealth RNAi negative control duplex (Invitrogen) was used as a
control siRNA.

2.11. Statistics

Comparisons between patients with OSA and control subjects for continuous variables
were made by the Mann–Whitney U test. To compare outcomes among three groups, the
ANOVA was used. The mass abundance of metabolites from in vitro, in vivo and human
specimens was also compared using the Mann–Whitney U test. The Wilcoxon signed rank
test was used to evaluate the change of candidate markers in samples between baseline and
post-CPAP values. Receiver-operating-characteristic (ROC) analysis was used to quantify
the diagnostic values of the candidate biomarker. In addition, we conducted multivariate
logistic regression analyses to estimate the odds ratio (OR) of OSA (AHI ≥ 5) in relation to
cutoff values of 5-HETE and 5-oxoETE with a 95% confidence interval (CI). The potential
confounding variables included in the multivariate model were age, gender, body mass
index, smoking status, and presence of hypertension and diabetes mellitus. All statistical
analyses were performed by using IBM SPSS Statistics version 21.0 (Chicago, IL, USA).
p < 0.05 was considered as significant.

3. Results
3.1. Characteristics of the Study Population

During a three-year period (April 2010 to March 2013), male patients (96 in the pilot
cohort; 90 in the verification cohort) underwent full-night in-laboratory polysomnography
and participated in the study. Urine samples form 143 participants of them were adequately
collected and subjected to metabolomics analysis. During a five-month period (December
2014 to April 2015), 169 male and female patients were enrolled in the validation cohort
study, and finally polysomnography and urine metabolomics data of 120 participants
were analyzed.

3.2. Identification of Urine 5-HETE as an OSA Marker

We collected the first morning urines that contain metabolites accumulated during
sleep, and compared urine metabolite profiles between 20 patients with moderate to severe
OSA and 38 controls in the pilot cohort (Table 1). A partial least squares-discrimination
analysis (PLS-DA) reveals that urinary metabolic profiles are significantly different between
OSA and control groups (Figure 1a). Based on the profiles (Figure 1b), 5-tetradecenoic
acid, arachidonic acid and 5-hydroxyeicosatetraenoic acid (5-HETE) were considered as
potential OSA markers. Confirmatory assessments showed that 5-tetradecenoic acid and
5-HETE increase markedly in OSA patients (a verification cohort in Table 1; Figure 1c).
Of two metabolites, 5-HETE has a better correlation with lowest oxygen saturation and
apnea-hypopnea index (AHI) recorded in polysomnography (Figure 1d) rather than either
body mass index (BMI) or age (Figure S5a). Considering the known correlation between
OSA and BMI or age, we performed the partial correlation test, which revealed that 5-HETE
level correlates with lowest oxygen saturation and AHI even after controlling BMI and/or
age (Figure S5b).
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Figure 1. Identification of 5-HETE as a hypoxic biomarker in the obstructive sleep apnea syndrome. (a) Results of the partial
least squares discriminant analysis of urine specimens from patients with the obstructive sleep apnea syndrome and controls.
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In a pilot cohort, moderate to severe OSA patients (n = 20) with AHI > 10 were compared to the simple snorers or
healthy subjects as controls (n = 38) with AHI < 5. The peaks of 5-HETE, which was one of the crucial urine metabolites
distinguishing two groups, were visualized in comparison with the standard material of it. (b) List of three major metabolite
biomarkers for the obstructive sleep apnea, which were identified and significantly higher in urine specimens from
OSA patients than in those from controls. (c) Levels of three identified metabolites in a different group as a verification
cohort—25 healthy controls, 60 OSA patients. The horizontal lines indicate means, and I bars are standard deviations.
(d) Correlation between the levels of candidate metabolite markers and the lowest oxygen saturation or apnea-hypopnea
index (AHI) from polysomnographic studies in the verification cohort.

3.3. Analyses of Metabolites in the 5-Lipoxygenase Pathway

Given the metabolic pathway of 5-HETE (summarized in Figure 2a), we performed
the targeted analysis to quantify arachidonic acid, 5-hydroperoxyeicosatetraenoic acid
(5-HpETE), 5-HETE, and 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-oxoETE). Further, 5-
HETE and 5-oxoETE increased in the mild-to-moderate OSA group and more in the severe
OSA group patients (Figure 2b). Arachidonic acid and 5-HpETE marginally increased in
the OSA groups but the differences were not significant. Although each of four metabolites
showed a tendency of negative correlation with the lowest oxygen saturation, 5-HETE
and 5-oxoETE had higher correlation coefficients than arachidonic acid and 5-HpETE
(Figure 2c). The 5-HETE and 5-oxoETE also correlated with the apnea-hypopnea index
(Figure 2d), but arachidonic acid and 5-HpETE did not (Figure S6). Next, we investigated
whether 5-HETE and 5-oxoETE levels were reduced after appropriate CPAP treatment.
The effect of CPAP on oxygenation in OSA patients was verified by checking oxygen
profiles on polysomnography (Table S1). After patients used CPAP for more than a year,
5-HETE and 5-oxoETE levels were significantly reduced compared with those before CPAP
treatment (Figure 2e). Patients’ body mass indexes were little changed after CPAP treatment
(Table S1).
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3.4. Verification and Validation of 5-HETE and 5-oxoETE as Diagnostic Markers for OSA

To assess the most effective cutoff value for 5-HETE and 5-oxoETE, we performed
the absolute quantification using their standard compounds and computed a receiver-
operating-characteristic (ROC) curve. For 5-HETE, the area (±SE) under the ROC curve
was 0.988± 0.008 (95% confidence interval [CI], 0.972 to 1.004; p < 0.001) with the diagnostic
criteria of AHI > 5. At the cutoff value of 27.5 ng 5-HETE/mg creatinine, the sensitivity
was 95%, and the specificity was 96% (Figure 3a). For 5-oxoETE, the area (±SE) under
the ROC curve was 0.984 ± 0.014 (95% confidence interval [CI], 0.957 to 1.011; p < 0.001)
with the diagnostic criteria of AHI > 5. At the cutoff value of 24.0 ng 5-oxoETE/mg
creatinine, the sensitivity was 97%, and the specificity was 92% (Figure 3b). In addition,
with the diagnostic criteria of the lowest oxygen saturation <90%, the areas under the ROC
curves for 5-HETE and 5-oxoETE were 0.978 ± 0.012 (95% confidence interval [CI], 0.954 to
1.002; p < 0.001) and 0.960 ± 0.021 (95% confidence interval [CI], 0.918 to 1.003; p < 0.001),
respectively. This indicates urinary 5-HETE and 5-oxoETE could be reliable diagnostic
markers for OSA.
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Figure 3. Verification of 5-HETE or 5-oxoETE as OSA markers. (a,b) Amount of 5-HETE or 5-oxoETE in urine from a
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characteristic (ROC) analysis was performed to quantify the diagnostic values of each candidate biomarker. AUC, the area
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Following this, we investigated the diagnostic values for these cut off values of urinary
5-HETE and 5-oxoETE in a validation cohort including OSA patients with hypertension,
diabetes, and other OSA-associated diseases (Table 2). As expected, 5-HETE and 5-oxoETE
levels in urine samples correlate with the apnea-hypopnea index in this cohort (Figure 3c).
At the cutoff value of 27.5 ng 5-HETE/mg creatinine, the sensitivity was 75% and the
specificity was 72%. At the cutoff value of 24.0 ng 5-oxoETE/mg creatinine, the sensitivity
and specificity were 67% and 61%, respectively. When we adopted the cutoff values of
AHI for 5-HETE and 5-oxoETE as above, both sensitivity and specificity were decreased,
but still applicable to screening objectives. To estimate the odds for OSA (AHI ≥ 5) in
relation to cutoff values of 5-HETE and 5-oxoETE, a logistic regression analysis was con-
ducted (Table 3). In the unadjusted analysis, subjects who had 5-HETE (≥27.5 ng/mg
creatinine) and 5-oxoETE (≥24.0 ng/mg creatinine) had 7.60-fold (95% CI, 2.47–23.37) and
3.29-fold (95% CI, 1.17–9.25) increased odds for OSA, compared to those who had 5-HETE
(<27.5 ng/mg creatinine) and 5-oxoETE (<24.0 ng/mg creatinine), respectively. In multi-
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variate analysis, subjects whose 5-HETE and 5-oxoETE levels exceed the corresponding
cutoff values showed a further increased OR of OSA.

Table 3. Odds ratios of OSA according to the cutoff values of 5-HETE and 5-oxoETE.

Estimated Odds Ratio (95% CI)

No. of Subjects Unadjusted p Value Multivariate a p Value

5-HETE (<27.5 ng/mg) 39 reference reference

5-HETE (≥27.5 ng/mg) 81 7.60 (2.47–23.37) <0.001 11.71 (2.55–48.58) 0.001

5-oxoETE (<24.0 ng/mg) 44 reference reference

5-oxoETE (≥24.0 ng/mg) 76 3.29 (1.17–9.25) 0.024 4.71 (1.29–17.24) 0.019

Abbreviations: 5-HETE, 5-hydroxyeicosatetraenoic acid; 5-oxoETE, 5-oxo-eicosatetraenoic acid; AHI, apnea-hypopnea index; CI, confidence
interval. a Adjusted for age, gender, body mass index, smoking status, and presence of hypertension and diabetes mellitus.

3.5. Mechanism Study in Human Mononuclear Cells

Myeloid lineage cells are the main sources that produce pro-inflammatory cytokines
synthesized through the arachidonate 5-lipoxygenase pathway [21]. Indeed, a previous
report demonstrated that rat alveolar macrophages secreted 5-HETE under hypoxia [22],
which encouraged us to test the possibility that 5-HETE or 5-oxoETE secretion from human
mononuclear cells could be stimulated by hypoxia. In addition, sleep apnea is a condition in
which repeated reperfusion injury can occur because it is accompanied by severe hypoxia
and rapid reoxygenation of blood intermittently. Therefore, in order to satisfy similar
physiological conditions, the THP-1 human monocyte cell line was incubated under 8 h-
hypoxia followed by 16 h-reoxygenation, in addition to chronic hypoxia environment by
24 h-hypoxia (1% O2). Compared to the normoxia group, both metabolites were more
secreted in either hypoxia or hypoxia-reoxygenation group (Figure 4a). Next, we rechecked
the hypoxic secretion of the metabolites in human peripheral blood mononuclear cells
(hPBMCs). Considering sleeping duration, we set the incubation time for intermittent or
continuous hypoxia to 8 h. For intermittent hypoxia, cells were exposed to 8 cycles of
hypoxia and normoxia, and each cycle consisted of 10 min-hypoxia followed by 50 min-
reoxygenation. As a result, 5-HETE and 5-oxoETE levels in culture media were increased
after either intermittent or continuous hypoxia, whereas arachidonic acid and 5-HpETE
were not altered (Figure S7a). Moreover, the activity of glutathione peroxidase, which
converts 5-HpETE to 5-HETE, was increased in hPBMCs exposed to hypoxia or hypoxia-
reoxygenation (Figure 4b), suggesting that the hypoxia-induced production of 5-HETE and
5-oxoETE may attribute to the activation of glutathione peroxidase. Hypoxia-inducible
factor 1 (HIF-1), which transcribes 100 or more genes essential for hypoxic responses, has
been reported to induce the inflammatory mediator production in mononuclear cells [22,23].
Hence, we investigated whether the hypoxic secretion of 5-HETE and 5-oxoETE secretion
depends on HIF-1α. Two different siRNAs, which effectively downregulated HIF-1α
under hypoxia (Figure S7b), attenuated the hypoxic secretion of 5-HETE and 5-oxoETE
in THP-1 cells and hPBMCs (Figure 4c and Figure S8C). In addition, HIF-1 inhibitors
2-methoxyestradiol (2ME2), 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG) and
YC-1 significantly blocked 5-HETE and 5-oxoETE secretion in THP-1 cells exposed hypoxia-
reoxygenation (Figure 4d). These results support the involvement of HIF-1α in the hypoxia-
induced production of 5-HETE and 5-oxoETE.
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Figure 4. Augmented secretion of 5-HETE and 5-oxoETE from human monocytes by hypoxia. (a) Levels of arachidonic acid
and its derivatives secreted from THP-1, a human monocyte cell line, by normoxia (N, 21% O2 for 24 h), hypoxia (H, 1% O2

for 24 h) or reoxygenation (ReOxy, 21% O2 for 16 h) after hypoxia (H, 1% O2 for 8 h). (b) Activity of glutathione peroxidase
in primary human mononuclear cells under normoxic, hypoxic, or reoxygenation after hypoxia conditions. (c) Silencing of
hypoxia-inducible factor 1α (HIF-1α) reduced the secretion of 5-HETE and 5-oxoETE from THP-1 cells by normoxia (N, 21%
O2 for 24 h), hypoxia (H, 1% O2 for 24 h) or reoxygenation (R, 21% O2 for 16 h) after hypoxia (H, 1% O2 for 8 h). (d) HIF-1
inhibitors including 2-methoxyestradiol (2ME2), 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG) and YC-1 inhibited
5-HETE and 5-oxoETE secretion from THP-1 cells. THP-1 cells were incubated in normoxia (N, 21% O2 for 10 h), hypoxia
(H, 1% O2 for 10 h) or reoxygenation (R, 21% O2 for 5 h) after hypoxia (H, 1% O2 for 5 h). * p values < 0.05; ** p values < 0.01.
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3.6. Verification of 5-HETE and 5-oxoETE as Intermittent Hypoxia Markers in Mice

As shown in Figure 5a, 15 mice (5 per group) were subjected to room air (RA), continu-
ous hypoxia (CH, 12% O2), or intermittent hypoxia (IH, alternating period of 21% and 5.7%
O2) for two weeks. Urine samples were collected before hypoxic exposure (baseline), and
after one or two week-exposure. PLS-DA analysis revealed that those three groups have
distinct urinary metabolic profiles (Figure 5b). Arachidonic acid, 5-HETE and 5-oxoETE
increased after two week-exposure to intermittent hypoxia, but 5-HpETE did not signif-
icantly (Figure 5c). The levels of urine 5-HpETE and 5-oxoETE are likely to reflect two
week-exposure to intermittent hypoxia in mice. These results further verify 5-HpETE and
5-oxoETE as surrogate markers for OSA diagnosis.
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Figure 5. Changes of urine metabolites induced by hypoxic stimulus in a murine model. (a) The schema of the urine
collection form the mice after exposure of room air (RA), continuous hypoxia (CH, 12% O2), or intermittent hypoxia (IH,
alternating period of 21% and 5.7% O2) for 2 wks). (b) Results of the partial least squares discriminant analysis of urine
specimens from the mice, which were exposed to three different oxygen surroundings. (c) Change of arachidonic acid and
its derivatives 5-HpETE, 5-HETE and 5-oxoETE in mice urine at baseline, 1 and 2 wks after the treatment. * p values < 0.05.
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4. Discussion

In this study, we found that 5-HETE and 5-oxoETE increase significantly in urine sam-
ples from OSA patients and that their levels correlate with hypoxia indexes on polysomnog-
raphy. These metabolites are secreted from human mononuclear cells in response to
hypoxia or hypoxia-reoxygenation, and also increased in urines of mice exposed to inter-
mittent hypoxia for two weeks. Based on these results, we propose that urine 5-HETE and
5-oxoETE be used as hypoxia markers for OSA diagnosis.

Intermittent hypoxia is a hallmark feature of OSA and evokes sympathetic activation
and systemic inflammation [24,25]. Although the pathogenesis of cardiovascular complica-
tions by OSA is not fully understood, endothelial dysfunction due to systemic inflammation
is believed as an etiology underlying the complications [26]. We here screened for OSA
markers through metabolome-wide random approach and identified 5-HETE and 5-oxoETE
as the candidates. These metabolites are synthesized via the arachidonate 5-lipoxygenase
pathway, which is well known to be activated under inflammation. Given that OSA pro-
vokes systemic inflammation, it is not surprising that the arachidonate-derived metabolites
accumulate in OSA patients. Indeed, a few recent studies have demonstrated that 5-HETE
and 5-oxoETE are secreted from human leukocytes during oxidative stress [27,28]. To our
best knowledge, however, the metabolites have not been suggested as OSA markers.

The 5-HETE synthesis from 5-HpETE is catalyzed by glutathione peroxidase (GPX),
and then 5-HETE are converted to 5-oxoETE by 5-hydroxyeicosanoid dehydrogenase
(5-HEDH). In mononuclear cells, continuous or intermittent hypoxia promoted GPX ac-
tivation, which may underlie increased production of 5-HETE and 5-oxoETE. Although
GPX activity has not been checked in OSA patients, a previous report showed that plasma
GPX activity and GSH level are significantly higher in breath-hold divers who has been
chronically exposed to intermittent hypoxia [29]. Moreover, HIF-1, which orchestrates
cellular responses to hypoxia, was found to be responsible for 5-HETE and 5-oxoETE
induction under continuous or intermittent hypoxia. Given a previous report showing that
the plasma GPX expression is directly regulated by HIF-1 through its promoter region [30],
it is speculated that the in mononuclear cells exposed to hypoxia HIF-1 stimulates 5-HETE
and 5-oxoETE productions by upregulating GPX. This metabolic pathway remains to be
further investigated.

The 5-lipoxygenase pathway is the main process to convert arachidonate to 5-HpETE
and leukotrienes (LTs). LTs are potent proinflammatory mediators that play crucial roles in
inflammatory diseases [31]. The LT family includes LTB4 and cysteinyl leukotrienes (cysLTs:
LTC4, LTD4, and LTE4), which display specific and overlapping functions as inflammatory
mediators [32]. In fact, LTB4 has been reported to increase in OSA patients and to be linked
with early vascular remodeling and atherosclerosis [33]. We also checked the LTB4 level in
urines and found that the mean value of LTB4 is higher in OSA patients than in controls
(Figure S8a). However, the LTB4 levels were not only widely distributed among OSA
patients but also irrelevant to the lowest oxygen saturation (Figure S8b). In addition, it
has been reported that urinary LTE4 level correlates with obesity and metabolic disorder
rather than with sleep hypoxia [8]. Of arachidonate metabolites, 8-isoprostane has been
also reported to increase in OSA patients [34–36]. As isoprostane synthesis is triggered
under oxidative conditions, isoprostanes have been used to evaluate oxidative stress
in vivo [37]. Given that reactive oxygen species are generated at the reoxygenation phase
during intermittent hypoxia, it is reasonable that the oxidative stress-induced metabolite
increases in OSA patients. However, the large population study showing its correlation
with hypoxic parameters remains to be designed for the application of 8-isoprostane to OSA
diagnosis. In addition, the 8-isoprostane levels in serum, urine or exhaled condensates were
as variable as they were overlapped between control and patient groups [34,35]. Compared
to the metabolites suggested previously, 5-HETE and 5-oxoETE have a better correlation
with hypoxia parameters, and thus, could be specific markers for OSA diagnosis. Moreover,
as their levels are not so much overlapped between control and patient groups, they can
be used for diagnosing OSA with higher sensitivity and specificity. Finally, the logistic
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regression analysis revealed the quite high odds ratio in the general OSA population
(validation) cohort.

There are few reports on the role of 5-HETE and 5-oxoETE in terms the cardiovascular
consequences. Further, 5-HETE is known as chemotactic for human neutrophils [38],
and inhibited PGI2 production in porcine coronary artery endothelial cells [39]. Both
5- and 15-HETE induced pulmonary edema, possibly due to increased lung vascular
permeability [40]. High concentrations of HETE, including 5-HETE, 12-HETE, and 15-
HETE, were reported in atherosclerotic plaques, especially in those that were more likely to
rupture [41]. Elevated concentrations of circulating 5-HETE and 12-HETE were observed
in patients after cardiac surgery [42]. Elevated concentrations of 5-HETE, 12-HETE, and 15-
HETE were reported in individuals with acute cardiac syndrome [43]. Elevated circulating
concentrations of 5-HETE, 12-HETE, and 15-HETE were reported in patients with coronary
arterial disease [44]. Considering its effects on neutrophils and monocytes, 5-oxo-ETE
could also be involved in cardiovascular disease [45].

This study has a few drawbacks in methodological aspects. To validate the clinical
efficacy of these markers thoroughly, we firstly need to increase the cohort size, or evaluate
them in different ethnic groups or in a wide range of BMI groups. Secondly, this study
showed current levels of metabolites correlating with the polysomnographic parameters,
but provided no evidence supporting the potential linkage of the metabolites with OSA
complication or mortality. This should be investigated in the future prospective research
by long-term follow-up. Finally, the development of convenient tools for detecting these
urinary metabolites has not been established, so the quantification depends on highly
sophisticated equipment like LC-MS. Although the ELISA kit for serum 5-HETE, not
for 5-oxoETE, is commercially available, it was not applicable to urine 5-HETE in our
experimental setting (data not shown). The development of more convenient methodology
is mandatory for the widespread utilization of these novel markers for OSA diagnosis.
With the recent development of targeted metabolomics technology, the cost of analysis can
be significantly reduced when performing mass analysis. In addition, if a diagnostic kit
that detects a target metabolite is made, it can be used more widely.

5. Conclusions

Our observations suggest that urinary 5-HETE and 5-oxoETE productions are induced
from human mononuclear cells exposed to hypoxia, and their urinary levels positively
correlate with hypoxic severity in OSA patients. Moreover, the metabolite levels in OSA
patients are reduced after appropriate CPAP treatment. Based on these results, we here
propose that 5-HETE and 5-oxoETE can be used as surrogate makers to diagnose OSA and
to evaluate the disease progress or the treatment effectiveness.
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