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Abstract: Given the fact that diabetes remains a leading cause of end-stage kidney disease (ESKD),
multi-aspect approaches anticipating the risk for ESKD and timely correction are crucial. We in-
vestigated whether fasting glucose variability (FGV) could anticipate the development of ESKD
and identify the population prone to the harmful effects of GV. We included 777,192 Koreans with
diabetes who had undergone health examinations more than three times in 2005–2010. We evaluated
the risk of the first diagnosis of ESKD until 2017, according to the quartile of variability independent
of the mean (VIM) of FG using multivariate-adjusted Cox proportional hazards analyses. During
the 8-year follow-up, a total of 7290 incidents of ESKD were found. Subjects in the FG VIM quartile
4 had a 27% higher risk for ESKD compared to quartile 1, with adjustment for cardiovascular risk
factors and the characteristics of diabetes. This effect was more distinct in patients aged < 65 years;
those with a long duration of diabetes; the presence of hypertension or dyslipidemia; and prescribed
angiotensin-converting enzyme inhibitors, metformin, sulfonylurea, α-glucosidase inhibitors, and
insulin. In contrast, the relationship between baseline FG status and ESKD risk showed a U-shaped
association. FGV is an independent risk factor for kidney failure regardless of FG.

Keywords: diabetes mellitus; glucose variability; end-stage kidney disease; Korean National Health
Insurance Corporation

1. Introduction

Diabetes remains a leading cause of end-stage kidney disease (ESKD) globally and
accounts for 35–50% of these cases [1].

Although several medications, such as sodium-glucose cotransporter 2 inhibitors
(SGLT2 inhibitors), angiotensin-converting enzyme inhibitors (ACE inhibitors), and
angiotensin-receptor blockers (ARBs), have some protective mechanism against deteriora-
tion of renal function, their prevention capacity for ESKD is only 22–40% [2,3]. Therefore,
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to reduce the burden of ESKD, multi-aspect approaches exploring new biomarkers for
anticipating the risk for ESKD and timely correction are crucial in patients with diabetes.

The variability of cardio-metabolic parameters has been an interesting issue because of
its predictive value for numerous clinical outcomes [4,5]. Glucose variability (GV) consists
of short-term, intraday GV derived from the continuous glucose monitoring system and
long-term fasting glucose (FG) variability over several months to years, reflecting the
stability of the medication’s effect, adherence, and residual insulin secretion [6]. Several
studies have reported that high GV is associated with an increased risk of diabetic vascular
complications [7,8], heart failure [9], and poor prognosis for acute lung diseases [10].

Regarding kidney outcomes, long-term variability in comprehensive cardio-metabolic
risk factors showed a positive association with the future risk of ESKD in the general
population, but not in diabetes [4,11]. Furthermore, in patients with diabetes, most evidence
adopted glycated hemoglobin (HbA1c) variability rather than GV, and study outcomes were
the development of macroalbuminuria or kidney function decline, rather than the development
of ESKD [12–15]. This is attributed to the lower incidence rates of ESKD compared to other
diabetic vascular complications, such as cardiovascular disease (CVD) [16]. To overcome this
limitation, large-scale epidemiologic studies are essential to explore ESKD outcomes.

Therefore, we investigated whether FGV could predict the risk of ESKD using nation-
ally representative population-based cohort data in Korea. We also compared the impact
of FGV with FG on future ESKD risk and verified the specific population prone to the
detrimental effect of higher FGV.

2. Materials and Methods
2.1. Study Design and Subjects

This was a retrospective observational study (Figures S1 and S2). We extracted the
data of the participants who had undergone health examinations supported by the National
Health Insurance Corporation (NHIC) at least twice from 2005 to 2008, and simultaneously
at least once between 1 January 2009 and 31 December 2010 (referred to as “baseline exam”).
That is, the study subjects underwent at least three health examinations during the five years
between 2005 and 2010 (referred to as the FGV assessment period). Among them, we excluded
16,736,363 participants without diabetes, aged < 40 years; those with previous histories of
ESKD and missing data in the inclusion criteria; and those who were diagnosed with ESKD
within one year after baseline. A total of 777,192 participants were included in the study.

The NHIC is a nationally operating health insurance system in Korea and covers
approximately 97% of Koreans. The NHIC database contains eligibility information; health
examination results, including questionnaires on lifestyle; and a medical care institution
database [17,18]. Enrollees of the NHIC are encouraged to perform a standardized medical
examination annually or biannually. Information about medical treatments was recognized
by the medical bills charged by healthcare providers with the International Classification
of Diseases, 10th Revision (ICD-10).

This research was approved by the NHIC and the Institutional Review Board of the Korea
University Ansan Hospital (2019AS0138) and followed the Helsinki Declaration of 1975.

2.2. Anthropometric and Laboratory Measurements

Demographic characteristics, lifestyle habits, and medical history were identified
using questionnaires during medical examinations. Alcohol consumption was categorized
as near abstinence, moderate (<30 g/day), or severe (≥30 g/day). Smoking history was
stratified into never, ex-, and current smokers. Regular exercise was defined as >30 min of
moderate-intensity exercise or >20 min of vigorous-intensity exercise ≥1 per week [19].

Body mass index was calculated as weight (kg) divided by the square of height (m).
Blood pressure (BP) was checked after ≥5 min of rest.

Venous blood sampling was conducted in the morning after an overnight fast of≥8 h to
measure the concentrations of hemoglobin, plasma glucose, creatinine, high-density lipoprotein
cholesterol, low-density lipoprotein cholesterol, triglycerides, and total cholesterol.
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Midstream urine samples were collected to measure urine protein using a urine
dipstick with the following grades: absent, trace (±), 1+, 2+, 3+, and 4+, which corre-
spond to the amount of urine protein of undetectable, 10, 30, 100, 300, and 1000 mg/dL,
respectively [4].

Quality control of laboratory tests was performed, followed by the Korean Association
of Laboratory Quality Control.

2.3. Definition of Glucose Variability

Using FG concentrations measured at least three times during the five years prior
to and including the baseline, the variability independent of the mean (VIM) of FG was
calculated as a primary variability indicator (Figure S2). The equation is as follows:

VIM = 100× SD
meanβ

Standard deviation (SD), coefficient of variation (CV, SD/mean), and average real
variability (ARV) were estimated [20].

ARV =
1

n− 1

n−1

∑
k=1
×|BPk+1 − BPK|

where n is the number of FG measurements, and k ranges from 1 to n − 1.

2.4. Operational Definition of Diseases

Diabetes was defined as a fasting plasma glucose level ≥ 126 mg/dL or at least one
prescription of glucose-lowering medicine (GLM) per year with ICD-10 codes E10–14. We
defined type 1 diabetes in patients if they had both an ICD-10 code E10 and at least one
prescription history of insulin, while the remaining patients were referred to as having
type 2 diabetes.

The study outcome was a new diagnosis of ESKD, identified by the initiation of renal
replacement therapy or kidney transplantation under ICD-10 codes N18–19, Z49, Z90,
Z94, or Z99.2 [21]. Because dialysis is reimbursed when registered in Korea, we could
discern all cases of renal replacement therapy under the claim codes for peritoneal dialysis
(O7071-O7075 or V003), hemodialysis (O7011-O7020 or V001), and kidney transplantation
(R3280) [21]. We excluded acute renal failure events, which were defined as individuals
with transient renal replacement therapy or continuous renal replacement therapy without
a previous history of CKD. Deceased cases, identified by the nationwide death certificate
data of the Korea National Statistical Office, were censored at the time of their death. The
follow-up period was calculated from the time interval between the baseline exam and
incident ESKD, date of death, or 31 December 2017, whichever came first (Figure S2).

Hypertension was defined as systolic BP ≥ 140 mmHg, diastolic BP ≥ 90 mmHg, or at
least one prescription of antihypertensive drugs per year under ICD-10 codes I10–I15. The
presence of malignancy was defined by registration in the Korea Central Cancer Registry with
ICD-10 C00–C96 before the baseline examination. Low-income status was defined as the low-
est 20% income identified by the amount of health insurance premium or eligibility as medical
care [17,18]. Dyslipidemia was determined by total cholesterol concentration ≥6.21 mmol/L
or at least one prescription of antihyperlipidemic medications under ICD-10 code E78. The
estimated glomerular filtration rate (eGFR) < 60 mL/min/1.73 m2, estimated by the Modi-
fication of Diet in Renal Disease formula [22], was stratified according to the presence of
chronic kidney disease (CKD) [23].

The prescription of ACE inhibitors or ARBs, oral GLM among metformin, sulfonylurea,
meglitinide, thiazolidinedione, inhibitors of dipeptidyl peptidase 4 (DPP-4 inhibitors),
α-glucosidase inhibitor (AGI), and insulin in the 12 months before baseline was identified.
History of heart disease or stroke was estimated using self-reports.
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2.5. Statistical Analysis

Data are shown as mean ± SD, median (interquartile range), or number (%). After
stratifying the subjects according to the FG VIM quartile, we compared baseline features
using chi-squared tests and analysis of variance for continuous variables. Triglyceride
concentrations were log-transformed for the analysis.

Multivariable regression analyses were conducted using the Cox proportional hazards
model to estimate the time-dependent risk of ESKD according to FG VIM quartiles, with
quartile 1 as the reference group. In model 1, age, sex, body mass index, alcohol drinking,
smoking, exercise, presence of CKD, hypertension, dyslipidemia, and low-income status
were adjusted. In model 2, the duration of diabetes as continuous variable, insulin pre-
scription, the number of classes of oral GLM during 12 months prior to baseline exam,
mean FG measured for the five years preceding the baseline exam, and the number of
exams were additionally adjusted. To evaluate the change in significance according to the
cutoff value of VIM, we further divided the study population into deciles and reiterated the
above-mentioned regression analysis with decile 1 as a reference. In addition, we explored
whether the main findings would change after replacing the parameters of FGV with SD,
CV, and ARV instead of VIM.

For subgroup analyses, we determined the hazard ratios (HRs) and 95% confidence
intervals (CIs) of FG VIM quartile 4 versus quartile 1–3 for ESKD after dividing the subjects
according to clinically relevant factors and the characteristics of diabetes. Regression
analysis was performed using the same adjustment strategy.

To evaluate the association of a single FG concentration with the risk of ESKD, we
repeated the analysis according to baseline FG concentration, with 100–119 mg/dL as a
reference group. The mean FG was excluded as a confounder in this analysis.

We found a variable inflation factor for all covariates of less than 2.0, and there was no
multicollinearity in the covariates. Statistical analysis was performed using SAS version 9.3
(SAS Institute Inc., Cary, NC, USA). Statistical significance was set at p < 0.05.

3. Results

Compared with participants in the FG VIM quartile 1, those in the FG VIM quartile 4
were younger, had a higher proportion of males, were current smokers, and had higher
fasting glucose and triglyceride levels (Table 1). Among comorbidities, they had more CKD
but less hypertension, dyslipidemia, ischemic heart disease, and stroke. In the case of the
characteristics of diabetes, people in FG VIM quartile 4 had a higher proportion of insulin
users, individuals prescribed with ≥2 GLM during one year before baseline, and those
with a duration of diabetes of at least five years.

Table 1. Baseline characteristics of the study subjects according to quartiles of fasting glucose variability a.

Characteristics VIM Q1
(n = 194,302)

VIM Q2
(n = 194,291)

VIM Q3
(n = 194,301)

VIM Q4
(n = 194,298) p-Value

Age (years) 61.2 ± 9.8 60.2 ± 10.0 59.7 ± 10.2 59.4 ± 10.5 <0.001
Sex, male (%) 109,509 (56.4) 116,074 (59.7) 120,274 (61.9) 125,355 (64.5) <0.001
BMI (kg/m2) 24.7 ± 3 24.9 ± 3.1 24.9 ± 3.1 24.8 ± 3.2 <0.001
Systolic BP (mmHg) 128.3 ± 15.2 128.7 ± 15.2 128.8 ± 15.3 128.5 ± 15.3 <0.001
Fasting glucose (mg/dL) 125.0 ± 33.9 130.1 ± 35.5 135.7 ± 39.0 146.0 ± 53.4 <0.001
Total cholesterol (mg/dL) 193.6 ± 39.1 194.9 ± 39.9 195.6 ± 40.7 194.4 ± 41.5 <0.001
Triglyceride (mg/dL) 132.9 (132.5–133.2) 138.4 (138.1–138.8) 143(142.6–143.4) 146.3 (146.0–146.7) <0.001
HDL-C (mg/dL) 52.7 ± 22.8 52.3 ± 21.5 52 ± 21.8 51.5 ± 21.3 <0.001
LDL-C (mg/dL) 111.6 ± 43.0 111.6 ± 42.7 111.2 ± 43.4 109.5 ± 44.5 <0.001
GLU_VIM (%) 8.2 ± 3 16.6 ± 2.2 25.5 ± 3 43.5 ± 11.1 <0.001
GLU_SD (mg/dL) 8.1 ± 5.3 16.8 ± 8.5 26.7 ± 13.1 49.0 ± 25.2 <0.001
GLU_CV (%) 6.2 ± 2.6 12.7 ± 2.9 19.9 ± 4.3 35 ± 11.2 <0.001
GLU_ARV (mg/dL) 10 ± 7.2 20.3 ±11.9 31.6 ± 18.3 56.5 ± 34.3 <0.001
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Table 1. Cont.

Characteristics VIM Q1
(n = 194,302)

VIM Q2
(n = 194,291)

VIM Q3
(n = 194,301)

VIM Q4
(n = 194,298) p-Value

Current smoker (%) 31,644 (16.3) 36,873 (19.0) 42,614 (21.9) 50,137 (25.8) <0.001
Heavy drinking (%) 12,395 (6.4) 13,844 (7.1) 14,670 (7.6) 14,289 (7.4) <0.001
Regular exercise (%) 49,893 (25.7) 48,442 (24.9) 46,317 (23.8) 43,246 (22.3) <0.001
eGFR (mL/minute/1.73 m2) 79.6 (68.5–92.6) 79.9 (68.5–92.9) 80.1 (68.5–93.3) 79.6 (67.7–92.9) <0.001

Chronic kidney disease (%) b 23,041 (11.9) 22,930 (11.8) 23,569 (12.1) 26,133 (13.5) <0.001
Dipstick proteinuria (%) <0.001

Absence (%) 178,444 (91.8) 177,043 (91.1) 175,837 (90.5) 173,973 (89.5)
Trace (%) 6065 (3.1) 6380 (3.3) 6777 (3.5) 6723 (3.5)
1 + (%) 5939 (3.1) 6580 (3.4) 6999 (3.6) 7742 (4)
2 + (%) 2841 (1.5) 3149 (1.6) 3450 (1.8) 4205 (2.2)
3 + (%) 841 (0.4) 924 (0.5) 1064 (0.6) 1378 (0.7)
4 + (%) 172 (0.1) 215 (0.1) 174 (0.1) 277 (0.1)

Comorbidities
Hypertension (%) 119,605 (61.6) 117,761 (60.6) 115,704 (59.6) 112,881 (58.1) <0.001
Dyslipidemia (%) 102,627 (52.8) 98,666 (50.8) 95,100 (48.9) 90,667 (46.7) <0.001
IHD (%) 28,614 (14.7) 26,445 (13.6) 24,879 (12.8) 23,758 (12.2) <0.001
Stroke (%) 10,979 (5.7) 10,286 (5.3) 9961 (5.1) 9996 (5.1) <0.001

Income (lower 20%, %) 34,931 (18.0) 36,804 (18.9) 39,098 (20.1) 43,447 (22.4) <0.001
ACE inhibitors or ARBs (%) 71,197 (36.6) 69,355 (35.7) 67,950 (35.0) 67,800 (34.9) <0.001
Oral GLM

Metformin 72,551 (37.3) 75,633 (38.9) 79,615 (41.0) 85,739 (44.1) <0.001
Sulfonylurea 70,505 (36.3) 76,924 (39.6) 84,825 (43.7) 92,837 (47.8) <0.001
Meglitinide 3960 (2) 4286 (2.2) 4821 (2.5) 5950 (3.1) <0.001
Thiazolidinedione 11,624 (6) 12,466 (6.4) 13,402 (6.9) 14,708 (7.6) <0.001
DPP-4 inhibitor 7602 (3.9) 7871 (4.1) 8300 (4.3) 8531 (4.4) <0.001
a-Glucosidase inhibitor 18,941 (9.8) 21,134 (10.9) 24,274 (12.5) 28,984 (14.9) <0.001

Number of oral GLM <0.001
0 96,962 (49.9) 93,619 (48.2) 88,878 (45.7) 82,779 (42.6)
1 34,341 (17.7) 31,949 (16.4) 29,574 (15.2) 26,813 (13.8)
2 42,096 (21.7) 44,622 (23.0) 47,759 (24.6) 51,446 (26.5)
3 17,310 (8.9) 19,723 (10.2) 22,828 (11.8) 26,763 (13.8)
≥4 3593 (1.9) 4378 (2.3) 5262 (2.7) 6497 (3.3)

Insulin 8125 (4.2) 9515 (4.9) 11,928 (6.1) 19,582 (10.1) <0.001
Duration of diabetes 2.7 ± 3.1 2.8 ± 3.1 3 ± 3.2 3.3 ± 3.2 <0.001
≥5 years (%) 56,944 (29.3) 59,454 (30.6) 63,309 (32.6) 68,451 (35.2) <0.001

Type 1 diabetes (%) 1274 (0.7) 1537 (0.8) 2106 (1.1) 4153 (2.1) <0.001
Number of exams <0.001

3 167,018 (86.0) 152,379 (78.4) 146,220 (75.3) 142,455 (73.3)
4 13,832 (7.1) 19,418 (10.0) 22,307 (11.5) 24,566 (12.6)
5 13,452 (6.9) 22,494 (11.6) 25,774 (13.3) 27,277 (14)

Time interval between adjacent
exams (years) 1.87 (1.3–2.1) 1.8 (1.1–2.1) 1.76 (1.1–2.1) 1.71 (1.1–2.1) <0.001

a Q1: 0–12.7; Q2: 12.8–20.6; Q3: 20.7–31.2; Q4: ≥31.3. b Presence of chronic kidney disease represents estimated glomerular filtration
rate < 60 mL/minute/1.73 m2. Data are presented as mean ± standard deviation, median (interquartile range), or number (%). One-way
analysis of variance and the chi-squared test were used to compare the characteristics of the study subjects at baseline. Post hoc multiple
comparison analysis was performed with Bonferroni correction, and triglyceride levels were log-transformed for analysis. p-values
were <0.001 for all variables because of the large sample size. Abbreviations: VIM, variability independent of mean; BMI, body mass index;
BP, blood pressure; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density lipoprotein-cholesterol; SD, standard deviation; CV,
coefficient of variation; ARV, average real variability; eGFR, estimated glomerular filtration rate; IHD, ischemic heart disease; ACE inhibitor,
angiotensin-converting enzyme inhibitor; ARB, angiotensin-receptor blocker; GLM, glucose-lowering medicine; DPP-4 inhibitor, inhibitors
of dipeptidyl peptidase 4; ICD-10, International Classification of Diseases, 10th Revision.

During 8.0 (7.4–8.4) years of median (interquartile range) follow-up period, a total
of 7290 cases of ESKD were identified (Table 2). Age- and sex-adjusted HRs for ESKD
serially increased as the FG VIM quartile increased. In model 2, the HR (95% CI) for ESKD
of participants in FG VIM quartile 4 was 1.27 (1.19–1.36), with adjustment for clinically
relevant factors, duration of diabetes, history of CKD, mean FG, and the number of exams.
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When the participants were divided into deciles in more detail, significantly higher risks for
ESKD were found in D9 and D10 with a cutoff value of D9 of 34.4 (Table S1). A similar
association was observed when FGV parameters were changed to SD, CV, and ARV (Table S2).

Table 2. Hazard ratios and 95% confidence intervals for the incidence of end-stage of kidney disease by quartiles of fasting
glucose variability a.

Events (n)
Follow-Up
Duration

(Person-Years)

Incidence Rate
(Per 1000

Person-Years)

Age- and Sex-
Adjusted

HR (95% CI)

Multivariate-Adjusted
HR (95% CI)

Model 1 Model 2

Q1 (n = 194,302) 1412 1,478,422.2 0.96 1 (Ref.) 1 (Ref.) 1 (Ref.)
Q2 (n = 194,291) 1487 1,483,681.0 1.00 1.07 (0.99–1.15) 1.05 (0.97–1.13) 0.99 (0.92–1.06)
Q3 (n = 194,301) 1721 1,482,829.3 1.16 1.25 (1.16–1.34) 1.21 (1.12–1.3) 1.03 (0.96–1.1)
Q4 (n = 194,298) 2670 1,468,254.3 1.82 1.96 (1.84–2.10) 1.79 (1.68–1.91) 1.27 (1.19–1.36)

a Q1: 0–12.7; Q2: 12.8–20.5; Q3: 20.6–31.2; Q4: ≥31.3. Model 1 is adjusted for age, sex, body mass index, smoking, alcohol drinking, exercise,
presence of chronic kidney disease, dyslipidemia, hypertension, and low-income status. Model 2 is the same as model 1, plus an adjustment
for duration of diabetes as continuous variable, the number of classes of oral glucose-lowering medicine, the presence of prescription
history of insulin, the mean of fasting glucose, and the number of exams.

In subgroup analyses, increased risk for ESKD in VIM quartile 4 versus quartile 1–3
was more evident in individuals aged 40–64 years, with a prescription history of ACE inhibitors
or ARBs, hypertension, and dyslipidemia (Table 3). Among the various characteristics of
diabetes, the impact of higher FGV was more distinct in patients with a long duration of
diabetes and the prescription of metformin, sulfonylurea, AGI, and insulin (Table 4).

Table 3. Subgroup analysis according to clinically relevant factors in the fasting glucose variability quartile 4 versus quartiles 1–3.

IR per 1000 HR (95% CI) p for Interaction

Age (years) 0.000
40–64 (n = 521,902) 1.50 1.36 (1.28–1.45)
≥65 (n = 255,290) 2.61 1.14 (1.06–1.23)

Sex 0.849
Male (n = 471,212) 2.02 1.26 (1.19–1.33)
Female (n = 305,980) 1.46 1.27 (1.16–1.39)

BMI 0.325
<25 kg/m2 (n = 425,481) 1.94 1.24 (1.16–1.32)
≥25 kg/m2 (n = 351,711) 1.68 1.3 (1.2–1.4)

Current smoking 0.215
No (n = 615,924) 1.88 1.28 (1.21–1.35)
Yes (n = 161,268) 1.63 1.19 (1.08–1.32)

Hypertension 0.004
No (n = 311,241) 0.51 1.05 (0.92–1.2)
Yes (n = 465,951) 2.80 1.3 (1.23–1.37)

ACE inhibitor or ARB 0.001
No (n = 500,890) 0.70 1.11 (1.01–1.21)
Yes (n = 276,302) 3.99 1.33 (1.25–1.4)

Chronic kidney disease 0.988
No (n = 681,519) 0.75 1.26 (1.17–1.36)
Yes (n= 95,673) 9.33 1.26 (1.19–1.34)

Dyslipidemia 0.035
No (n = 390,132) 1.15 1.18 (1.09–1.28)
Yes (n = 387,060) 2.58 1.31 (1.23–1.39)

Income lower 20% 0.636
No (n = 622,912) 1.79 1.27 (1.2–1.34)
Yes (n = 154,280) 1.92 1.23 (1.12–1.37)

Adjusted for age, sex, body mass index, smoking, alcohol drinking, exercise, presence of dyslipidemia, hypertension, chronic kidney disease,
low-income status, duration of diabetes as continuous variable, the number of classes of oral glucose-lowering medicine, presence of prescription
history of insulin, mean fasting, and the number of exams. Each variable used to stratify the participants was excluded from the adjustment.
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Table 4. Subgroup analysis according to the characteristics of diabetes in the fasting glucose variability quartile 4 versus
quartiles 1–3.

IR per 1000 HR (95% CI) p for Interaction

Baseline fasting glucose 0.305
<126 mg/dL (n = 349,855) 2.67 1.16 (1.08–1.25)
≥126 mg/dL (n = 427,337) 1.34 1.23 (1.15–1.31)

Duration of diabetes <0001
<5 years (n = 529,034) 0.63 1.01 (0.92–1.11)
≥5 years (n = 248,158) 4.11 1.38 (1.3–1.46)

Type of diabetes 0.348
Type 2 diabetes (n = 768,122) 1.65 1.26 (1.19–1.32)
Type 1 diabetes (n = 9070) 10.06 1.16 (0.98–1.36)

Metformin 0.002
No (n = 463,634) 1.34 1.16 (1.08–1.25)
Yes (n = 313,538) 2.43 1.35 (1.26–1.44)

Sulfonylurea 0.011
No (n = 452,101) 1.24 1.16 (1.07–1.26)
Yes (n = 325,091) 2.46 1.32 (1.25–1.41)

Meglitinide 0.276
No (n = 758,175) 1.69 1.27 (1.21–1.34)
Yes (n = 19,017) 5.99 1.16 (0.99–1.36)

Thiazolidinedione 0.174
No (n = 724,992) 1.74 1.25 (1.18–1.31)
Yes (n = 52,200) 2.73 1.39 (1.2–1.61)

DPP-4 inhibitor 0.182
No (n = 744,888) 1.80 1.25 (1.19–1.31)
Yes (n = 32,304) 2.31 1.45 (1.17–1.78)

α-Glucosidase inhibitor 0.003
No (n = 683,859) 1.42 1.2 (1.13–1.27)
Yes (n = 93,333) 4.20 1.4 (1.29–1.53)

Insulin 0.001
No (n = 728,042) 1.14 1.19 (1.12–1.26)
Yes (n = 49,150) 8.38 1.42 (1.31–1.54)

Adjusted for age, sex, body mass index, smoking, alcohol drinking, exercise, presence of dyslipidemia, hypertension, chronic kidney
disease, low-income status, duration of diabetes as continuous variable, the number of classes of oral glucose-lowering medicine, presence
of prescription history of insulin, mean fasting, and the number of exams. Each variable used to stratify the participants was excluded from
the adjustment.

On the other hand, baseline FG levels showed a U-shaped association with the risk
of ESKD (Table S3). Compared to participants whose FG concentrations were in the range of
100–119 mg/dL, individuals with FG < 100 mg/dL or ≥180 mg/dL had a higher risk of ESKD.

4. Discussion
4.1. Significant Findings of the Present Study

These results confirmed the hypothesis that FGV is significantly associated with an
increased risk of ESKD among patients with diabetes. The risk for ESKD was 27% higher in
the group with the highest FGV than in the lowest FGV group. The predictive value of high
FGV on the incident ESKD was more prominent in patients with young age; hypertension;
dyslipidemia; a long duration of diabetes; and who were treated with ACE inhibitors or
ARBs, metformin, sulfonylurea, AGI, and insulin. In contrast, the association between FG
and the risk of ESKD was U-shaped.

4.2. Kidney Outcomes and Long-Term Glucose Variability

Most previous studies have chosen HbA1c variability rather than FG variability for
glucose variability assessment, and their study outcomes were renal function decline
or development of albuminuria, not ESKD [17–19,21]. In the Action in Diabetes and
Vascular Disease: Preterax and Diamicron MR Controlled Evaluation (ADVANCE) trial,
SD of FG over 24 months exhibited a positive association with the risk of nephropathy
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combined with retinopathy [8]. Recently, a meta-analysis of three well-known clinical
trials, the U.K. Prospective Diabetes Study, the Action to Control Cardiovascular Risk in
Diabetes trial, and the Veteran Affairs Diabetes Trial, showed that FGV was associated
with a 30–40% increase in the risk of incident moderate to severe nephropathy, defined by
eGFR < 45 mL/min/1.73 m2 [24].

Only one study has evaluated the impact of FGV on the development of ESKD using
a population-based study [25,26]. The Taiwan Diabetes Study reported that FG-CV and
HbA1c-CV could predict the development of diabetic nephropathy [27] and ESKD [28]
in patients with type 2 diabetes. In the present study, compared to the previous one, we
included more patients with diabetes (n = 777,192 vs. 31,841) and calculated the FGV
for a longer period (5 vs. 1 year). Although ESKD is a hard outcome of diabetic renal
complications, it is hard to study ESKD as an outcome due to the lower incidence. The
incidence rate of ESKD in 2018 was 374.7 cases per million [16], lower than that of CVD,
at 8980 cases per million in 2017 [29]. To overcome this limitation, a large population-
based study is necessary. Because the NHIC entirely operates the health insurance system
in Korea, we could use almost all Koreans with diabetes and subsequently obtained
777,192 individuals eligible for this study, making it possible to perform a more detailed
subgroup analysis.

In patients with diabetes, oscillation in the FG level during a long follow-up pe-
riod might reflect poor self-care, overall poor compliance, and suboptimal strategy for
GLMs [30]. Because HbA1c is the average plasma glucose during 2–3 months, HbA1c
variability implies a change in glycemic status rather than glucose fluctuation itself. In
other words, FG might be better at capturing real-time glucose variations than HbA1c
levels [7]. Therefore, FGV in our study was derived from yearly or biannually measured
FG levels over five years, allowing for a comprehensive evaluation of a patient over a long
period of time. In addition, this simple strategy for estimating FGV could be helpful for
public health policy makers to select high-risk populations and support active prevention.

On the other hand, a high risk for ESKD was observed in individuals whose baseline
FG levels were <100mg/dL or ≥180 mg/dL. These findings were consistent with another
nationwide cohort study of Koreans with diabetes using GLMs [31], suggesting that
intensive glucose control might not necessarily diminish the progression of established
diabetic kidney disease.

4.3. Interpretation for the Impact of Glucose Variability

There is little data available to explain the mechanism linking glucose variability
and ESKD risk directly. Cha et al. demonstrated the negative association of plasma
adiponectin and glypican-4 levels with eGFR and positive association with urinary albumin
levels [32]. The findings that transient glucose spikes could induce oxidative stress and
impair endothelial function more than sustained hyperglycemia [33,34] and that glomerular
permeability, mesangial lipid accumulation, and collagen synthesis are increased after
intermittent exposure to high glucose levels [25,26] could be a pathophysiologic explanation
of this association.

The results of the subgroup analysis provide a chance to identify the population more
vulnerable to FGV (Table 3). It is possible that individuals with a long duration of diabetes
are sensitive to oxidative stress because their enzymatic antioxidant defense systems are
less efficient [29,35]. The presence of hypertension or dyslipidemia itself is an already
proven risk factor for ESKD [36]. Its significant interaction with the harmful effect of high
FGV on the risk of ESKD suggests a synergic relationship.

Interestingly, a significant effect of FGV was not observed in individuals aged ≥ 65 years.
This may be due to the competing risk of death in patients with diabetic ESKD [37]. A
Finnish nationwide cohort study showed that the cumulative risk of ESKD decreased
with increasing age [38]. At the same time, mortality increased among the older age
groups, with a 100-fold higher incidence of death than the ESKD cases throughout the
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20-year-of follow-up [38]. Therefore, we theorize that the deceased cases ahead of ESKD
might diminish the ESKD cases, weakening the effect of FGV.

The valid interaction with the prescription of ACE inhibitors or ARB, metformin,
sulfonylurea, AGI, and insulin should be interpreted cautiously. There have been no
previous studies exploring the interaction between GLM and the impact of FGV on ESKD,
but only showed that sulfonylurea increases the glucose variability [39], whereas DPP-4
inhibitors and degludec reduced it [40,41]. Subjects with higher FGV might be treated with
more GLMs due to their clinical condition. If they were not prescribed more GLMs, their
FGV would be higher, and the association with ESKD risk might be stronger than in the
present study.

SGLT2 inhibitors and glucagon-like peptide-1 receptor agonists, which have been
known to prevent CKD progression, have been reimbursable for patients with diabetes
in Korea since 2014 and 2015, respectively [2,3]. Because the prescriptions of these GLMs
were negligible during the glucose variability assessment period (2005–2010), their impact
on the incidence of ESKD until 2017 was expected to be minimal.

4.4. Parameters for Estimating Glycemic Variability

There is no consensus on a standardized index for glucose variability with distinct
characteristics [42]. SD refers to the dispersion of measurements around the mean, and
CV reflects a standardized variation that provides direct comparison among study groups.
ARV is the average of the absolute differences of successive measurements and might be a
reliable index for time series variability [20,43]. However, we chose VIM as the primary
parameter of FGV because VIM is a measure of variability designed not to correlate with
mean levels which is appropriate for the purpose of this study [44]. SD, CV, and ASV
are partially dependent on mean despite of adjustment for mean value [45]. When we
analyzed SD or CV again, a similar trend was observed (Table S2).

4.5. Limitations

This nationwide population-based study clearly showed the influence of long-term
FG variability on incident ESKD with a long-term follow-up period. The 5-year FGV levels
used in the present study were much longer than those used in previous studies. However,
several limitations of this study should be considered.

First, given that we extracted study subjects according to the times of health check-ups
to calculate long-term glucose variability, those with healthier lifestyle and slightly ele-
vated glucose concentrations could be included, which might be a source of selection bias.
Moreover, it is not available for complete information of hypoglycemia events. Second,
postprandial glucose, HbA1c, serum c-peptide, and autoantibody levels were not included
in this database. To enhance the accuracy of diagnosis of diabetes and subtype, we used
ICD-10 codes with prescription histories of GLM and FG levels. Although we could not
use HbA1c variability, the variability of FG was a stronger predictor of microvascular and
macrovascular events than HbA1c variability in the ADVANCE trial [8]. Third, health
examinations provided by the NHIC measure only dipstick proteinuria, not urine albumin-
uria. Finally, given the retrospective design of this study, reverse causation and undetected
exposure of the risk factors of ESKD were possible [46]. We excluded incident ESKD cases
developed one year after the baseline to minimize this issue. Additionally, the fasting
period was not standardized fasting period could influence the FG levels.

Despite those limitations, a large-sized population-based cohort study covering almost
entire Koreans is still the most suitable design for investigating rare outcomes such as
ESKD possible [46].

5. Conclusions

This large-scale nationwide population-based study demonstrated that FG variability
was independently associated with an increased risk of ESKD among patients with diabetes,
especially in those with young age, long duration of diabetes, and comorbidities who need
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more GLM and RAS inhibitors. These findings highlight that reducing FGV is a vital
strategy to reduce the incidence of ESKD in diabetes, especially in high-risk populations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jcm10245948/s1, Figure S1: Selection of study subjects. Figure S2: Study design showing
the period estimating glucose variability and the risk of incident end-stage kidney disease (ESKD).
Table S1: Hazard ratios (HRs) and 95% confidence intervals (CIs) for the incidence of end-stage kidney
disease by deciles of fasting glucose variability. Table S2: Hazard ratios (HRs) and 95% confidence
intervals (CIs) for the incidence of end-stage kidney disease by quartiles of fasting glucose variability,
assessed by standard deviation, coefficient of variation, and average real variability. Table S3: Hazard
ratios and 95% confidence intervals for the incidence of end-stage of renal disease according to
baseline fasting glucose concentration.
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