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Abstract
There is an ongoing shift in demographics such that older persons will outnumber young persons in the coming years, and with it
age-associated tissue attrition and increased diseases and disorders. There has been increased information on the association of
the aging process with dysregulation of hematopoietic stem (HSC) and progenitor (HPC) cells, and hematopoiesis. This review
provides an extensive up-to date summary on the literature of aged hematopoiesis and HSCs placed in context of potential
artifacts of the collection and processing procedure, that may not be totally representative of the status of HSCs in their in vivo
bone marrowmicroenvironment, and what the implications of this are for understanding aged hematopoiesis. This review covers
a number of interactive areas, many of which have not been adequately explored. There are still many unknowns and mechanistic
insights to be elucidated to better understand effects of aging on the hematopoietic system, efforts that will take multidisciplinary
approaches, and that could lead to means to ameliorate at least some of the dysregulation of HSCs and HPCs associated with the
aging process.
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Aging is an inevitable process if one lives long enough. There
is an ongoing shift in demographics such that older persons
will out number young persons in the coming years, and with
it age-associated tissue attrition and increased diseases and
disorders. There has been an increased influx in literature on
the association of the aging process with dysregulation of
hematopoietic stem (HSC) and progenitor (HPC) cells, and
hematopoiesis. Most such hematopoietic aging studies have
been carried out in mice, where it has been reported that the
aging process (in this case mice in the range of 2 years old)

compared to that of younger mice is associated with increased
absolute numbers of phenotypically defined HSCs identified
by cell surface antigens in the bone marrow (BM). Yet, the
functional capacities of these increased numbers of HSCs are
grossly deficient in their engrafting capability in competitive
and non-competitive HSC transplants in lethally irradiated
mice. Moreover, the differentiation capacity of the engrafted
donor BM cells from the old mice is different from that of
young donor BM cells; there is a shift in the lymphoid/
myeloid ratio of engrafting cells such that the older donor
BM cells manifest greater numbers of myeloid to lymphoid
cell output. This is the opposite of that of young engrafting
mouse BMHSCs. How informative this and other information
on aged hematopoiesis is remains to be determined by further
investigation. Recent work from our laboratory [1] has ob-
served that at least some of the abnormalities of HSCs from
old mice may be more of an artifact of the collection and
processing of mouse BM cells, rather than how they manifest
their numbers and functional capacities in vivo.

This review provides an extensive, although not necessar-
ily complete, summary on the literature of aged hematopoie-
sis, HSCs and HPCs. When placed in context of potential
artifacts of the collection and processing procedure, that may
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not be totally representative of the status of HSCs in the in vivo
microenvironment of BM, the site in which HSCs, HPCs, and
hematopoiesis are nurtured for self-renewal, proliferation, sur-
vival, and differentiation some of what we know may have to
be re-evaluated. This review encompasses the following sec-
tions: A) Aging and Stem Cells in General, B) Age-Related
Changes in HSCs/HPCs and Hematopoiesis, C) Age-Related
Clonal Hematopoiesis of Indeterminant Potential (CHIP) and
Inflammation, D) DNA Damage, Transcriptional and
Epigenetic Changes During Aging, E) Metabolic Processes,
Mitochondria and Reactive Oxygen Species (ROS) During
Aging, F) Apoptosis, Autophagy, Radiation and a Role for
the Sirtuin Family of Proteins During Aging, G) The
Microbiome, Hematopoiesis, and Aging, H) Additional Age-
Related Information, The Microenvironment, Exosomes,
Leptin (Lep) and Leptin Receptors (R), and Means to Better
Evaluate and Understand Hematopoiesis During Aging in part
in context of our recent studies [1], I) COVID-19, SARS-
CoV-2, Aging and Hematopoiesis, and J) Conclusions in
Context of Potential Future Interventions for Better Health
of the Hematopoietic System During Aging. One of the au-
thors (HEB) of this review had an interest in Gerontology, the
study of aging, over 50 years ago, but it is only most recently,
that he, his lab members, and collaborators have been in-
volved in actual experiments in this area, having previously
focused on the regulation of hematopoiesis in the young.1

A) Aging and Stem Cells in General

It has been suggested that aging is not caused by active gene
programming, but that it rather evolved through limitations in
maintenance of somatic cells in which there was a build up of
damage [2], which in fact is associated with gene mutations
that affect endocrine signaling, stress responses, metabolism
and telomere length [3]. Thus, aging is believed to entail

“damage” due to multiple mechanisms, some information of
which may possibly be used to slow some of the “damage”
during aging for healthier outcome. Covered in these papers
[2, 3] are the areas of: why aging occurs, is it programmed,
how does evolutionary genetics and physiology fit into these
processes, how aging is “caused” in terms of molecular mech-
anisms, mitochondria, and network themes. Whether we yet
know enough about the aging process of cells, their organ-
elles, and organisms is still open for debate, although more
insight into problems and causes associated with aging could
provide the means to potentially intervene at least partially in
the future.

Human aging is associated with a number of diseases and
defects including the heart, muscle wasting, osteoporosis, and
in some cases mental deterioration [4]. Senescent cells and
their accumulating damage can contribute to aging, through
a number of intracellular signaling pathways including the
p53 and RB tumor suppressors, and the influences of neigh-
boring cells in the environment [5]. These, and a number of
other genetic pathways have been implicated in aging [6],
including nutrient sensing pathways. Over thirty genetic mu-
tations have been reported to extend the lifespan of mice, and
a number of genes have been associated in genome wide as-
sociation studies with longevity of humans [6]. Ames Dwarf
mice which harbor a spontaneous mutation in the Prop1df

gene resulting in the lack of growth hormone, prolactin, and
thyroid-stimulating hormone are known to live close to two
times the lifespan of other mouse strains [7–10], a situation
mimicking certain conditions in humans. Why we age has
been commented on from an evolutionary point of view
[11]. While somatic cells have a limited lifespan, the lifespan
of stem cells, which have the property of making more of
themselves (self-renewal) and being able under the appropri-
ate stimuli for differentiation to more mature cell types has not
yet been conclusively defined, although transcriptional finger-
printing and other pathway analyses suggest that stem cells do
themselves age as one gets older [12, 13].

B) Age-Related Changes in HSCs/HPCs
and Hematopoiesis

A number of articles and reviews appeared in this area of
research since 2005 [14–37] which will be mainly described
in chronological order so that the reader can see what research
was reported first and then subsequently, as not all research
findingsmay agree. It was reported that the aging of long-term
(LT) HSCs was associated with autonomous changes that in-
creased the self-renewal of these cells, but that these HSCs
manifested decreased potential for lymphoid cell differentia-
tion and production [14]. This was associated with down-
modulation of genes that mediate lymphoid specification,
and up-modulation of myeloid fate decisions and functions

1 While HEBwas pursuing aMasters degree inmicrobiology, prior to his PhD
studies in blood cell development and regulation, he was especially interested
in reading the literature on Gerontology. In 1969, he attended as an on-looker
an International Conference on Gerontology, the first conference he ever
attended. The conference was held in Washington, DC, where he heard talks
by all the leading experts in this area of research, including Leonard Hayflick,
the original proponent on identifying the limited life-span of normal cells. On a
whim, HEB registered to attend a closed discussion group of 20 individuals in
the conference to discuss the ramifications of what was then currently known
about the biology of aging. While he was the only one in the discussion group
without an advanced degree, the others in the group were understanding when
the Discussion participants were asked to describe their academic background
and interest in the field of Gerontology. When it came time for him to talk he
apologized, as he had not worked in the area, but noted his interest in the field,
and told them his very limited academic training to that time. To his surprise,
he was warmly welcomed into the discussion group, which included amongst
those present, Dr. Hayflick. The other participants made it clear that the field of
Gerontology was still in its infancy, and their words of advice to him, in not so
many words, was to find a field to work in that was more advanced and then
when he became an expert in that field to integrate the knowledge from that
field into the studies of aging. This he did, a half century later.
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[14]. Competitive transplants were done using the congenic
CD45.1/CD45.2 mouse system with relatively purified popu-
lations of donor HSCs to assess engraftment, and self-renewal
was estimated by secondary transplants. This paper [14] did
not note the decreased engrafting capacity of HSCs from BM
of older mice that most of the other numerous publications in
this area have reported, and lacked detailed month by month
chimerism data comparing engraftment of old vs. young mice;
nor did it quantitate numbers of functional HSCs using limit-
ing dilution analysis to calculate competitive repopulating
units (CRUs, a measure of the numbers of functional HSCs
[38]. Age-related defects in lymphoid-bias [15] and B-
lymphopoiesis [16] have been reported by others, and have
been suggested to underlie the dominance of myeloid cells in
adult leukemia [17]. In order for HSCs to engraft, they must
first home to the BM after IV injection. This process of hom-
ing for BM cells of old mouse CRUs was about 3-fold lower
than the homing efficiency of CRUs from young mice [18],
hence one potential reason for decreased engrafting capability
noted by others. Of some interest, although not completely
understood, the ability to mobilize HSCs from old mice with
G-CSF to the blood was increased compared to that of G-CSF
mobilization of HSCs from younger mice [19]. This correlated
with a reduced adhesion capacity of an immature cell popula-
tion (not a purified HSC population) to stromal cells, and with
increased activation of Cdc42, a small RhoGTPase. This work
has not yet been reproduced to the knowledge of the authors of
this review, and more rigorous analysis is needed to fully
understand this interesting phenomenon. What has not been
defined yet is the mobilization of lymphoid vs. myeloid-
biased HSCs in old vs. young mice. It will also be of interest
to assess the mobilizing capacity of bonified HSCs to the
combination of G-CSF plus AMD3100 (Plerixafor), as G-
CSF and AMD3100 synergize to mobilize HSCs and HPCs
from young mice [39].

Other reviews have noted age-related changes in hemato-
poiesis of old vs. young mice [20, 21], with one short report
[22] not seeing differences in engraftment of sorted popula-
tions of HPCs from elderly (>70 years old vs. young) human
BM in immune deficient NSG mice. This clearly needs more
rigorous investigation in terms of numbers and engrafting ca-
pability of rigorously purified populations of functional hu-
man BM HSCs (not HPCs) from old and young donors.

While an earlier report [14] suggested increased self-
renewal of HSCs fromBM of old mice, a later report by others
with more in-depth analysis demonstrated that HSCs from the
BM of old mice manifested significantly reduced self-renewal
in secondary transplants using highly purified populations of
LT-HSCs [23] for both primary and secondary engraftment.
They [23] as did others [18] showed decreased homing effi-
ciency of HSCs from the BMof old mice. Moreover, they [23]
showed significantly delayed proliferative responses of old vs.
young BM HSCs.

What is clear is that all studies thus far that have assessed
old vs. young BM engrafting HSCs have shown a bias of the
myeloid vs. lymphoid production capability of HSCs from old
mice [14, 16–18, 20–24]. Whether this apparent bias of donor
HSCs from old mice might be due to potential artifacts in how
donor cells were collected, processed, and injected into recip-
ient mice [1] will be discussed in Section H.

The impact of hematopoiesis in aging primates was inves-
tigated by clonal tracking in which clonal output of thousands
of genetically barcoded HSCs and HPCs was determined in
old vs. young macaques after autologous transplantation [25,
26]. Delayed output from multipotent clones was observed in
old macaques with persistence of lineage biased clones noted;
in contrast to aging studies in mice which showed persistence
of myeloid-biased clones with old age, there was persistent
output from both B-lymphoid- and myeloid-biased clones.
Whether or not macaque vs. mouse differences were due to
aging differences between species requires further investiga-
tion as these studies [25] were based on only two old ma-
caques 18 and 25 years of age, which were considered “aged”
on their lifespans of captivity of 20-30 years.

The multipotential progenitor (MPP) cell compartment is a
composite of 4 different cell types, with the MPP4 compart-
ment being considered to be lymphoid-primed [27]. A yet to
be understood observation in context of lymphoid-biased ag-
ing studies is the progressive loss and increased cycling of the
MPP4 population with aging; other cells and factors may be
involved in lymphoid-biased output from engrafted aged
HSCs.

Two intriguing reviews on HSC aging are entitled: “The
slippery slope of hematopoietic stem cell aging” [30], and
“Age-related clonal hematopoiesis: Stem cells tempting the
devil” [29]. The latter review touches on clonal hematopoiesis
of indeterminate potential (CHIP), an area that will be covered
in detail in Section C, and is associated with increased risk of
hematological cancers, as well as that of the mortality associ-
ated with cardiovascular problems. A number of other more
recent reviews are worth noting including: “Aging of hema-
topoietic stem cells” [31], “Anemia at older age: etiologies,
clinical implications and management” [32], “Aged murine
stem cells drive aging-associated immune remodeling” [33],
“The global complexity of the murine blood system declines
throughout life and after serial transplantation” [34],
“Hematopoietic stem cells aging, life span and transplanta-
tion” [35], “The ageing hematopoietic stem cell compartment”
[36], and “Relationships between aging and hematopoietic
cell transplantation” [37]. All these reviews suggest that inter-
vention in age-related dysfunction of HSCs may be possible,
in part by targeting selected intracellular regulatory pathways.
We suggest in Section H, the potential use based on studies in
mice of HSCs and HPCs from older individuals for efficient
hematopoietic cell transplantation (HCT), if the cells are more
appropriately collected and processed under conditions that
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maintain their in vivo numbers and functional characteristics
[40–42]. How these cells are collected may be crucial, as cells
are currently collected in almost all mouse studies, except
those noted by us [40–42], and in all human studies, in ambi-
ent air (~21% O2 tension). Collection of cells in ambient air
subjects them to a phenomenon which we termed Extra
Physiological Oxygen Shock Stress (EPHOSS) [40, 41].
Ambient air causes the very rapid loss of HSCs and a con-
comitant increase in numbers of HPCs due to EPHOSS-
induced differentiation of HSCs [40]. This differentiation pro-
cess during collection of cells in air occurs within minutes,
and may likely be needed to be considered in interpretation of
at least some of the published information presented. This
may require some re-evaluation of past studies to ensure that
studies accurately describe the situation of numbers and func-
tions of these cells as when they are present in their BM
microenvironment, before removal for collection and analysis,
as we reported in [1] and discuss in Section H.

C) Age-Related Clonal Hematopoiesis
of Indeterminant Potential (CHIP)
and Inflammation

Age-Related Clonal Hematopoiesis

CHIP, also known as age-related clonal hematopoiesis
(ARCH), is characterized by expansion of somatic mutations
in various hematopoietic lineages of older persons and is as-
sociated with risks of developing leukemia [43], as well as
other age-associated disorders including cardiovascular dis-
ease [44]. Human aging is associated with an exponential
increase in the occurrence of CHIP in aged individuals. It is
an emerging public health issue that affects at least 15-20% of
individuals aged 70 or above [43–59]. A number of reviews
and reports on clonal hematopoiesis have been published
[45–59]. This is currently a heavily researched area of inves-
tigation, with the causes still relatively unknown. Clarity is
needed on why some cells with mutations, likely involving
and caused by several factors [57] noted in the below Sections,
persist and/or expand with resultant disorders such as leuke-
mias, myelodysplasias, and cancers associated with aging
individuals.

The vast majority of the mutations identified in CHIP are
dispersed across the genome. However, five genes, including
DNMT3A, TET2, ASXL1, JAK2, and TP53, have high num-
bers of somatic mutations [54–59]. The most common base-
pair change in the somatic variants identified in CHIP was a
cytosine to thymine (C to T) transition, a somatic mutational
signature of aging [54–56]. CHIP is an age-dependent risk
factor for both hematological malignancies and cardiovascular
disease [53–59]. Thus, preventing CHIP progression may
prove to be beneficial for human health. However,

mechanisms by which somatic mutations in HSCs and other
blood cells contribute to the pathogenesis of age-related dis-
eases are largely unknown.

Clinical studies revealed that hematopoietic clones harbor-
ing specific mutations in individuals with CHIP may expand
over time [54–58]. However, how different cellular stressors
affect clonal expansion is largely unknown. Recently, three
different stressors, including hematopoietic transplantation,
cytotoxic therapy and inflammation, have been shown to ex-
pand hematopoietic clones. TP53 mutations identified in
CHIP confer a competitive advantage to HSCs and HPCs
following transplantation throughmodulating epigenetic path-
ways [52]. Considering that common mutations identified in
CHIP affect epigenetic modulators, including DNMT3A,
ASXL1, and TET2, these findings underscore the importance
of dysregulated epigenetic control in CHIP development.

PPM1D is a phosphatase that negatively regulates p53 and
several proteins involved in the DNA damage response
(DDR) pathway [60]. Recently, PPM1D mutations were
found in CHIP [54–58]. PPM1D mutations result in the ex-
pansion ofPPM1D-mutant hematopoietic cells following che-
motherapy treatment. However, they do not confer competi-
tive advantage to HSCs and HPCs following bone marrow
transplantation [61, 62]. TP53 mutations are associated with
prior exposure to chemotherapy [63]. Genotoxic stresses se-
lectively expand TP53-mutant HSPCs [50, 64]. While both
p53 and PPMID are involved in the DDR pathway, they ap-
pear to play distinct roles in promoting of HSCs and HPCs
expansion.

The Effects of Chronic, Low-Grade Inflammation
Associated with Aging

During aging, chronic and low-grade inflammation -
inflammaging - develops, which contributes to the pathogen-
esis of age-related diseases [65, 66]. Aberrant innate immune
activation and pro-inflammatory signaling within the malig-
nant clone and the BM microenvironment have been identi-
fied as key pathogenic drivers of myelodysplastic syndrome
(MDS), an age-related disease [67]. Mutations identified in
CHIP may utilize cell extrinsic mechanisms to promote clonal
hematopoiesis. For example, TET2-deficient macrophages
exhibit an increased in NLRP3 inflammasome-mediated inter-
leukin-1β secretion [68]. Inflammasomes are multiprotein
complexes that activate Caspase-1 and increase the release
of pro-inflammatory cytokines such as IL-1β, leading to
caspase-1-dependent death, known as pyroptosis [69]. HSCs
and HPCs from low to high-risk human patients with MDS
manifest activated NLRP3 inflammasome [70]. NLRP1
inflammasome activation increases IL-1β secretion that in-
hibits wild-type HSPC function through inducing pyroptosis
[71]. The NLRP1 inflammasome, but not the NLRP3
inflammasome, is specifically activated in p53 mutant
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HSPCs, leading to increased secretion of IL-1β, which in-
duces pyroptosis of wild-type HSPCs in a paracrine fashion
(YL and HEB, unpublished data). Tet2-deficient hematopoi-
etic stem and progenitor cells manifest a hyperactive IL-6
pathway, which promotes cell survival under basal conditions
and in response to inflammatory stress. Inhibiting inflamma-
tory signaling in Tet2 mutant preleukemic cells mitigates
stress-induced abnormalities and clonal hematopoiesis [72].

Splicing of pre-mRNAs by the spliceosome plays a key
role in tissue development [73, 74]. Genome wide splicing
analysis revealed an increased number of spliced genes during
aging [75, 76]. Changes in spliceosome gene expression and
alterations in pre-mRNA splicing are associated with lifespan
in mice and humans [77]. Notably, both human and mouse
HSPCs display dysregulated pre-mRNA splicing with age
[78, 79]. Further, spliceosome gene mutations, including
SF3B1, SRSF2 and U2AF1, were frequently found in CHIP
andMDS [54–57, 80–82], implicating that aberrant splicing in
hematopoietic cells may contribute to CHIP and pathogenesis
of MDS. Although both SRSF2 and SF3B1 mutations alter
mRNA splicing, these mutations functionally converge with
hyperactivation of NF-κB, a keymediator of the inflammatory
response [83]. These findings underscore the importance of
chronic inflammation in promoting CHIP development during
aging.

Inflammation

Inflammation is a double-edged sword in hematopoiesis and
disease. The hematopoietic system gives rise to the immune
cells of the body and is, therefore, closely linked to inflamma-
tion. Even at early stages of hematopoietic development, in-
flammatory cytokines, such as interleukin-1 (IL-1),
interferon-γ (IFN-γ), tumor necrosis factor (TNF), and gran-
ulocyte colony stimulating factor (G-CSF), play critical roles
in the specification of hematopoietic stem cells (HSCs) [84].
Remarkably, different levels and combinations of inflamma-
tory signaling molecules can elicit opposing responses, sug-
gesting that context may be significant. For example, while
IFN-γ and TNF are linked to bone marrow failure and de-
creased self-renewal capacity in adults, they enable hemato-
poiesis during development [84]. Under normal conditions in
the mature hematopoietic system, cytokines influence HSC
proliferation, differentiation, and self-renewal [84]. IFN-γ,
IL-3, and IL-1 can influence the differentiation of HSCs to-
ward myeloid lineages by activating myeloid transcription
factors [84]. These same inflammatory factors stimulate he-
matopoiesis to support the immune system during infection
and injury in a process called emergency granulopoiesis [85].
This process leads to the expansion of myeloid cells, which
serve as the first line of defense against foreign pathogens
[85]. These mechanisms rely on inflammatory mediators and
are essential for maintaining homeostasis.

While inflammation enables hematopoietic development
and stimulation of HSCs during illness and injury, it also
contributes to pathogenesis and disease progression. During
infection, inflammatory signals, such as IFN-γ and IL-27,
trigger the proliferation and differentiation of HSCs to bolster
the immune response either by acting directly on HSCs or
indirectly via mature hematopoietic cells, endothelial cells,
or the bone marrow microenvironment [86–90]. However,
prolonged bacterial or viral infection can hinder self-renewal
and competitive repopulation capacity, leading to HSC deple-
tion [91, 92]. This exhaustion of HSCs during chronic inflam-
mation may be attributed to increased myeloid differentiation
[93]. Notably, dysregulation of the myeloid cell compartment
also occurs in patients with severe COVID-19 [94]. This
inflammation-mediated HSC dysfunction may occur via the
TLR4-TRIF-ROS-p38 signaling pathway rather than Myd88
signaling, suggesting that the mechanism underlying chronic
inflammation may be distinct from that of emergency
granulopoiesis [91]. In the context of sepsis, activation of
Myd88 caused myelosuppression without significant effects
on HSCs, whereas activation of TRIF strongly inhibited HSC
self-renewal without direct effects on myeloid cells, inferring
cell type-specific effects of these inflammatory mechanisms
[95]. Targeting these two pathways may have therapeutic val-
ue. While foreign infections can alter hematopoiesis by trig-
gering inflammation, the normal microbiome can also influ-
ence the hematopoietic system. See more on this in Section G.
Antibiotic-treatedmice exhibit depletion of HSCs and progen-
itor cells as well as anemia, thrombocytosis, pan-lymphope-
nia, and leukopenia [96]. The complexity of the intestinal
microbiome regulates the size of the myeloid cell population
in the bone marrow via Myd88 signaling [97]. The disruption
of these interactions may have implications for the potential
contribution of infection to the progression of preleukemic
conditions to hematological disease. For example, disruption
of the intestinal barrier promotes myeloproliferation in mice
lacking the preleukemic gene Tet2, whereas germ-free Tet2-
deficient mice do not exhibit myeloproliferation [98].
Germline Tet2 loss of function is associated with immunode-
ficiency and lymphoma in children [99, 100]. Importantly,
myeloproliferation was alleviated in Tet2-deficient mice with
loss of intestinal integrity by treatment with antibiotics [98,
101]. Similarly, bacterial signals cause the expansion of HSCs
lacking Tet2 and induce the production of IL-6 from HSCs,
bolstering the role of infection and inflammation in the path-
ogenesis of hematological malignancy [102]. A link to these
effects in aged animals remains to be better elucidated, with
effects of bacteria on tumor progression and metastasis cov-
ered in Section I.

Remarkably, many of the same inflammatory pathways
that guide hematopoietic development and strengthen the im-
mune system under normal conditions can also drive leukemia
in the context of infection or other inflammatory conditions.
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For example, IL-6 facilitates the development of chronic
myelogenous leukemia in mice, and IL-33 contributes to
myeloproliferative neoplasms by altering myelopoiesis
[103, 104]. In addition, inflammation can cause genotoxic
stress, the accumulation of mutations, and the progression
of preleukemic conditions to leukemia [105, 106]. An un-
explored area is the elucidation of the factors and events
responsible for the transition from the normal inflammato-
ry response to the deleterious inflammation that can pro-
mote hematological disease. As during hematopoietic de-
velopment, the context of the inflammatory response may
be important in shaping disease outcomes. For example,
chronic IL-1 signaling can reduce HSC self-renewal, limit
hematopoietic lineages, and impair the response of HSCs
to replicative challenges [107]. A recent study of MDS
indicates that inflammation acts as a selective pressure that
specifically fosters expansion of preleukemic or malignant
HSCs compared to normal HSCs [108]. Distinct hemato-
poietic cell subtypes may exhibit differential responses to
specific inflammatory signaling molecules, further
supporting heterogeneous HSC populations that can drive
leukomogenesis [84, 109].

The effect of inflammation on HSCs has valuable implica-
tions for age-associated diseases, as older individuals exhibit
elevated levels of inflammation [110]. Inflammation plays a
significant role in expansion of HSC clones carrying
preleukemic mutations in CHIP. Characterized by acquisition
of somatic mutations in hematopoietic lineages with age,
CHIP is associated with both hematological malignancy and
cardiovascular disease (CVD), broadening the role of
preleukemic mutations in disease states [111, 112]. The pro-
inflammatory response observed in HSCs carrying
preleukemic mutations indicates the existence of intrinsic
mechanisms of inflammation for HSCs [102, 113, 114]. The
addition of a pro-inflammatory preleukemic mutation can alter
the presentation of hematological malignancy [115]. It has
been proposed that HSCs and mature hematopoietic lineages
propagate the inflammatory response via a feedforward mech-
anism, in which inflammatory signals from one cell type am-
plifies the other [116]. Pro-inflammatory macrophages secret-
ing IL-1α enable CHIP-associated CVD, underscoring that
some of the same pathways involved in hematopoietic homeo-
stasis and leukemogenesis also contribute to the non-
hematopoietic manifestations of CHIP [68]. In addition, as
in emergency granulopoiesis, aging promotes myeloid expan-
sion, further emphasizing potential mechanistic overlap [109].
While intrinsic factors appear to be important to the inflam-
matory response involved in the pathogenesis of CHIP-
associated diseases, extrinsic mechanisms may also influence
this process as the conditioned media from agedmesenchymal
stromal cells impairs the function of young HSCs [117]. In
addition to acting directly on HSCs, inflammation can also
remodel the bone marrow microenvironment, which regulates

hematopoiesis [118]. Additional studies are needed to under-
stand the ways in which these pathways are altered during
aging and pathogenesis, and how they may be modified for
health benefit.

Elderly populations may be uniquely susceptible to the
effects of inflammation and CHIP as comorbidities and
CHIP are more common in aging individuals. Several comor-
bidities with inflammatory components, such as ulcerative
colitis, rheumatoid arthritis, and systemic sclerosis, have been
linked to increased clonal hematopoiesis [119–121]. Pro-
inflammatory features of CHIP-associated HSCs/HPCs may
influence outcomes of hematopoietic stem cell transplants,
leading to cytopenias, chronic graft vs. host disease, and/or
donor-derived leukemia (DDL) [122]. These patient popula-
tions may especially be vulnerable to development of hema-
tological malignancies and CHIP-associated diseases fol-
lowing infection, as infection may exacerbate the
existing inflammatory response in these patients.
Inflammation may be a key factor contributing to the
heterogeneity observed in hematological malignancies
and CHIP-associated diseases and should be considered
in the clinical management of patients with these con-
ditions. In particular, differences in the clinical presen-
tation between donors and recipients that develop DDL
highlight the potential role of inflammation and comor-
bidities in promoting leukemogenesis. It is yet not
known if these different sources of inflammation influ-
ence hematological malignancies and CHIP-associated
diseases via common mechanisms.

Intrinsic and extrinsic sources of inflammation may repre-
sent potential therapeutic targets for hematological malignan-
cies and CHIP-associated diseases. Inhibition of inflammation
can impede clonal expansion in response to inflammatory
stimuli [102]. Blocking inflammation may also be a valuable
therapeutic approach in CVD, as inhibiting IL-1 receptor sig-
naling from pro-inflammatory macrophages can prevent
CHIP-associated CVD in mice [68]. It is currently unclear
whether suppressing inflammatory HSCs or mature hemato-
poietic lineages is more effective. Inflammatory signals from
the bone marrow microenvironment may also be viable ther-
apeutic targets but have not yet been investigated. A more
thorough understanding of the timing of the inflammatory
response and the cell types involvedwill facilitate the effective
inhibition of inflammation in hematological malignancies and
CHIP-associated diseases. Strategies to both prevent patho-
genesis and to treat existing disease will be valuable. A critical
aspect of targeting inflammation in these disease contexts will
be to maintain the normal inflammatory response necessary
for responses to infection and injury while targeting aberrant
inflammatory pathways that promote disease; however, addi-
tional studies are needed to elucidate factors governing these
processes. Thus, Inflammation acts as a dysregulator of tissue
maintenance and regeneration during aging as evidenced by
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the fact that HSC do not regenerate well after inflammatory
challenge [123].

D) DNA Damage, Transcriptional,
and Epigenetic Changes During Aging

DNA damage accumulates with age, and defects in DNA
repair can cause cellular changes that resemble a premature
aging phenomenon [124–127]. Tables on selected models of
premature aging in mice and their common features have been
summarized in a review [126] and p53 implicated in DNA
damage [87]. While DNA damage to HSCs and HPCs during
aging is clearly impacted, such damage to the microenviron-
mental niche cannot be overlooked [124]. Transcriptional
changes in stem cell populations have been profiled for
HSCs and other stem cell types, but it is not clear yet if a
common age-related signature has been identified [12]. A role
for epigenetics in the aging process is also considered [128].
Epigenetic hallmarks of aging and senescence have been
diagrammed, as have been the pros and cons of using model
systems to study aging and senescence in a variety of species,
along with a short listing of repositories and tools for evaluat-
ing a role for research in the aging process [128].

Repair of damage has been shown to offset deficient HSC
function during aging [129]. This was especially apparent
under stress conditions, in which DNA damage led to loss of
the potential of HSC reconstitution, proliferative capacity,
self-renewal activity, enhanced apoptosis, and then exhaustion
of function [129]. It was suggested that the accrual of DNA
damage may be a means contributing to HSC functional de-
fects of these cells to respond to acute stress or injury [129].

A shift from canonical to non-canonical signaling by Wnt,
in response to elevated expression of Wnt5a was associated
with the process of HSC aging [130]. Treatment of cells from
young mice with Wnt5a induced aging associated HSC
apolarity, reduced their capacity for regeneration, and resulted
in a age-related shift in myeloid/lymphoid differentiation, that
was associated with activation of the GTPase Cdc42 [130].
Moreover, haploinsufficiency of Wnt5a resulted in the atten-
uation of the aging phenotype of HSCs [130]. Other studies
defined replication stress as a driver of functional declines in
HSCs during aging [131]. This was associated with decreased
expression of mini-chromosomal maintenance helicase com-
ponents and altered DNA replication fork dynamics [132].

There are reports on a role for epigenetics in abnormalities
associated with HSCs in old mice [132–135]. While the de-
cline of HSC function seemed to be dependent on their pro-
liferative history, it was noted to be independent of the length
of their telomeres [133]. HSCs from old mice manifested re-
duced signaling of transforming growth factor-beta with
changes in genes involved in proliferation and differentiation
of HSCs [135]. HSCs from old mice had broader peaks of

H3K4me3 with increased methylation of DNA at the tran-
scription factor binding sites that were associated with genes
involved in promotion of differentiation, and a reduction of
genes associated with maintenance of HSCs [135]. Ribosomal
biogenesis was found to be a particular target of this age-
related HSC phenotype; there was increased transcription of
ribosomal protein and RNA genes, and the hypomethylation
of genes for ribosomal RNA [135].

Proteosome analysis [136] and single-cell RNA sequenc-
ing [137] have been performed on HSCs from old mice. How
much these analyses really inform us about the prime drivers
in HSC dysfunction remains to be determined, especially
since the cells were collected in ambient air prior to analysis,
which may not be optimal for assessing physioxia associated
effects [1]. Of some interest, deletion of inhibition of DNA
binding1 (Id1), a helix-loop-helix transcription faction
protected HSCs from both the effects of stress-induced ex-
haustion and that of aging [138].

E) Metabolic Processes, Mitochondria
and Reactive Oxygen Species (ROS)
During Aging

Metabolism, mitochondria and ROS are important aspects of
HSC function [40, 41], as well as for other stem and progenitor
cell types [139–141]. Aging is associated with extensive
changes in metabolism [75–77]. A short report questioned
whether or not metabolic mechanisms of stem cell mainte-
nance might explain aging and its associated impact on stem
cells [142]. Another review concentrated on mitochondrial
contributions to dysfunction of somatic stem cells in general
and in context of aging [143] and a review on mitochondrial
metabolic checkpoints and aging of HSCs implicated mito-
chondrial maintenance mechanisms including mitophagy and
asymmetric segregation of “aged” mitochondria [144]. This is
an area that clearly requires more detailed investigation, al-
though it has been suggested that mutations in mitochondrial
DNA are not a primary driver of stem cell aging [145].

ROS has been implicated in various stem cell functions [40,
41, 146–148], and STAT3, mitochondrial dysfunction, and
overproduction of ROS has been associated with a rapid
aging-like phenotype [149]. Symmetric divisions of stem cells,
including HSCs, results in increased stem cell numbers with
maintenance of stem cell characteristics of the original “moth-
er” cell. However, asymmetric division of stem cells can result
in one daughter cell maintaining the original stem cell charac-
teristics of the “mother” stem cell, while the other cell can be a
more differentiated progenitor cell. To assess selective appor-
tioning of subcellular contents between “daughter” cells using
mammary stem like cells, it was found that “daughter” cells
that received fewer “old” mitochondria were associated with
maintenance of stem cell traits; inhibition of mitochondrial
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fission disrupted age-dependent subcellular localization and
segregation of mitochondria with resultant loss of stem cell
properties in the progeny [150]. It is not clear if such studies
with mitochondria apportuning between HSCs undergoing
symmetric or asymmetric divisions have yet been done, but it
is certainly an area of interest if done in context of HSC from
young and old bone marrow HSCs, and their collection and
processing under physioxia conditions as noted [1].

There is still much to be learned regarding how stem cells
maintain metabolic homeostasis. The unfolded protein re-
sponse has been implicated as modulating the HSC pool dur-
ing stress [151], but has apparently not yet been evaluated in
HSCs from aged mice. However, a regulatory branch of the
mitochondrial unfolded protein response, mediated by the in-
terplay of the sirtuin, SIRT7 (more on sirtuins in Section F),
and nuclear respiratory factor 1 (NRF1) which is a master
regulator of mitochondria, was interrogated in HSCs [152].
It was noted that inactivation of SIRT7 resulted in reduced
quiescence, increased mitochondrial protein folding stress,
and decreased regenerative capacity of HSCs. Moreover, ex-
pression of SIRT7 was decreased in HSCs from old mice, and
up-regulation of SIRT7 in the aged HSCs improved their re-
generative capacity. This implicated the mitochondrial unfold-
ed protein response-mediated metabolic checkpoint as a con-
tributor to HSCs in old mice [152]. In addition, mitochondrial
DNA polymerase, when defective, has been associated with
premature aging in mice [153], but how, if at all, this relates to
HSC function from old mice remains to be determined.

Thioredoxin-interacting protein (TXNIP) is a 397 amino
acid residue, belonging to the arrestin family of proteins. It
has been reported to regulate HSC quiescence and mobiliza-
tion after stress [154–156], and is likely to be involved in HSC
function, but has not to our knowledge been extensively in-
vestigated. Reasons to evaluate this during aging is that
Txnip-/- mice have decreased HSC reconstitution resulting in
HSC exhaustion, effects associated with hyperactive signaling
of Wnt, an active cell cycle, and reduced expression of
p21cip1. These stresses also affect the BM microenvironment
resulting in decreased expression of CXCL12 (a chemotactic
and homing chemokine)- and osteopontin-mediated interac-
tions between HSCs and the BM [154]. TXNIP helps to main-
tain the pool of HSCs by functional switching of p53 after
oxidative stress, effects that have been reviewed [155].

There is much to be learned regarding metabolic influences
in aging, and molecular mechanisms underlying aging effects
on HSCs still remain unclear. Elevated activity of the small
RhoGTPase cdc42, previously noted by the investigators in
another paper was linked casually to effects on HSCs in old
mice [152], with a correlation of the loss of polarity in these
cells. Moreover, by inhibiting cdc42 activity by pharmacolog-
ical means, it “rejuvenated” the aged populations of HSCs by
increasing the percent of polarized cells and restoring the level
and spatial distribution of histone H4 lysine16 acetylation

such that it was similar to that in HSCs isolated from young
mice [152, 157]. This information further identified epigenetic
regulatory changes in functional effects of HSCs from old
mice, and may relate to metabolic changes.

Other studies linked the interaction of ROS dependent DNA
damage, mitochondria, and p38 MAPK with senescence of
adult mesenchymal stem/stroma cells (MSCs) from humans,
with pharmacological inhibition of p38MAPK partially recov-
ered the senescence phenotype by partial prevention of hydro-
gen peroxide-induced senescence [158]. How linked senes-
cence phenotypes are to the function of HSCs in aged persons
remains to be determined. Somatic cell mitochondrial DNA
(mtDNA) mutations contribute to such age-related disorders
as those associated with myelodysplasia (MDS), and it was
noted that the mito-protective effect of autophagy was im-
paired in erythroid cells of old mice [159]. mtDNA-mutated
mice had somatic mtDNA mutations that were a targeted de-
fect in the function of proofreading mtDNA polymerase,
PolgA, and developed macrocytic anemia similar that seen in
MDS patients. Mechanistic insight into these processes was
reported [159], but whether or not these processes reflected
changes in HSCs from old mice was not explored.

F) Apoptosis, Autophagy, Radiation,
and a Role for the Sirtuin Family of Proteins
During Aging

Aging-Related Apoptosis and Autophagy

Apoptosis, the phenomenon of programmed cell death, and
autophagy, a self-degrative process responsible for eliminat-
ing cytosolic constituents such as long-lived proteins, aggre-
gated proteins, and damaged organelles (mitochondria, ribo-
somes, peroxysomes) [160] have been linked to functional
changes noted during aging [161, 162] and HCT [163].
Autophagy is associated with repair pathways that can protect
hematopoiesis from injury due to nuclear radiation [164, 165].
Inhibition of autophagy by genetic manipulation was associ-
ated with normal and pathological aging, with its inhibition
compromising the “longevity-promoting” effects of restriction
of calories, the activation of SIRT1, inhibition of insulin and
insulin growth factor signaling, and the administration of
rapamycin, resveratrol, or spermine [161]. Autophagy was
shown to maintain the metabolism of HSCs from both young
and old mice [164]. These influences were not noted in all
HSCs from old mice, with about a third of HSCs from aged
mice demonstrating high autophagy levels being associated
with a low metabolic state and high potential for regeneration
[165]. This suggests that not all HSCs in aged mice are func-
tionally compromised, an important point in aging HSC re-
search that can be overlooked when studying HSCs from old
mice at a total HSC population level. It is known that there are
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subsets of rigorously purified HSC populations that differ in
mitotic history [166], and intracellular characteristics [1].
FOXO4was suggested as a pivotal agent in the area of cellular
senescence [167]. Using a FOXO4 peptide that disrupted the
FOXO4 interactions with p53 in vivo where it was tolerated,
restored certain functions in naturally aged and in fast aging
XpdTTD/TTD mice. How this relates to HSCs in old mice re-
mains to be evaluated.

Mitophagy is a process that is evolutionary conserved in-
volving autophagic targeting and clearance of mitochondria
that are destined for removal [168]. It is induced by short
ubiquitin chains on the mitochondria [169]. Reviews on this
process have been reported [168, 169] and discuss how met-
formin, an oral diabetes medication, both enhances and nor-
malizes mitochondrial function that leads to alleviation of in-
flammation associated with aging [170]. What remains to be
determined is if there is a role for mitophagy in HSC and HPC
during aging, and if this can be modulated for health benefit.

Radiation Effects and Aging

Like aging, exposure to radiation is an additional stressor to the
hematopoietic (H) system, the most sensitive tissue in the body
to radiation damage. Therapeutic radiation, nuclear accidents,
andmalicious exposure from radiologic-warfare put mankind at
risk for life-threatening acute radiation syndromes (ARS) and
the delayed effects of acute radiation exposure (DEARE) in
those fortunate to survive ARS. H-ARS, due to direct and indi-
rect effects of radiation exposure on all classes of hematopoietic
cells, leads to death within weeks if untreated [171, 172].

Hematopoietic DEARE, also known as residual bone mar-
row damage (RBMD), is characterized by diminished immu-
nity and decreased production of blood cells persisting for
years after radiation exposure [173–179]. Survivors of H-
ARS exhibit severe lifelong damage to HSC, characterized
by significantly decreased complete blood count, loss of
HSC repopulating potential, loss of HSC quiescence, de-
creased numbers of HPC, and dramatic myeloid skewing, all
most evident under stress [173–183]. An increased incidence
of lymphoid malignancies, shortened life span, decreased
mesenchymal stem/progenitor cell (MSC) number, and aber-
rant levels of endothelial cell-derived HSC niche proteins in
aged H-ARS survivors have also been documented (Orschell,
unpublished data). Long-term damage to the HSC-supportive
niche also likely contributes to HSC dysfunction and RBMD.
As enhanced cycling of HSC is believed to lead to loss of self-
renewal potential and is detrimental to engraftment potential
[184], it seems likely that the enhanced cycling of HSC from
H-ARS survivors is a major contributor to RBMD. These data
illustrate an unrecoverable loss of HSC self-renewal and dif-
ferentiation potential, the two hallmarks of HSC [185–191], in
survivors of H-ARS and suggest that compensatory

mechanisms of hematopoietic support cannot overcome the
“second hit” imparted by aging [14, 124, 129, 192, 193].

The DEARE are generally thought to result from persistent
inflammation and chronic oxidative stress [194–201], leading
to fibrosis [202] and loss of stem cell self-renewal functions.
Indeed, elevated levels of pro-inflammatory cytokines associ-
ated with oxidative stress [203] have been reported in
Japanese atomic bomb survivors [198, 202]. Other studies in
atomic bomb survivors have shown possible reductions in self
renewal capability of HSC secondary to dose-dependent DNA
damage [204], as well as detriments in immune function
[205], corroborating mouse H-ARS data. NAD(P)H oxidase,
xanthine oxidase, and mitochondria have all been implicated
as primary oxidant sources in various models and conditions
[203, 206–208], and ROS has been documented in HSC post-
irradiation as well [181]. NF-kB, one of several transcription
factors activated by ionizing radiation [209], plays a central
role in inflammation [210], is activated by oxidative stress and
induces oxidative stress through interactions with cytokines
[211], creating a potential feed-forward mechanisms to main-
tain chronic inflammation and oxidative stress.

Cellular senescence, and its associated oxidative/pro-
inflammatory phenotype, has recently emerged as a causative
mechanism of DEARE [211–214], making senescent cells a
new therapeutic target for RBMD and other DEARE.
Importantly, senolytic drugs have the potential to be used as
an effective treatment for DEARE even after DEARE be-
comes a progressive disease [212], but it is not yet clear how
this might be used in and for elderly exposed individuals.

As mice age, like humans, health issues and phenotypic
changes begin to manifest and variability in experimental end-
points increases, necessitating the need for larger group sizes
for sufficient statistical power. For example, mice of similar
strains have been shown to exhibit significantly different life
spans [215, 216] and radiation sensitivities when aged
(Orschell, unpublished data), as well as differing susceptibil-
ities to radiation-induced swollen muzzle syndrome [217], all
depending on the vendor from which they were sourced. Mice
from different vendors have also been shown to possess dif-
ferent fecal microbiota [218], which may contribute to
vendor-specific phenotypic differences. For these reasons, in-
vestigators should consider stringent control of the vendor and
barrier of their mice for aging studies to ensure optimal stabil-
ity of their experimental models.

It is noted that more profound effects of aging may be
produced not by life-threatening ARS (where the majority of
those are exposed to high dose radiation), but rather by mod-
erate or even low dose exposure.

The Role of Sirtuins in Regulating Aged HSC Function

Sirtuins are part of a large family of molecules, some of which
have been linked in longevity/aging studies. The role of the
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sirtuin SIRT1 in stem cell biology, the aging process and in
HSC function in old mice had been reviewed [219]. In this
review it was noted that although the role of SIRT1 in
teleomere maintenance was not resolved, its role in mitochon-
dria and generation of ROS was highly implicated. It was
observed that the genetic, hormonal, or drug manipulation of
stem cell mitochondria may be useful as an intervening tool
for manipulating HSCs from old mice. It was later reported
that deficiency of SIRT1 compromised mouse embryonic
stem cell hematopoietic cell differentiation in addition to em-
bryonic and adult mouse hematopoiesis [220]. SIRT1 was
reported to be required for maintenance of HSCs and lineage
specification, in part by the transcription factor FOXO3 [221].
These investigators also suggested that SIRT1 may be in-
volved in HSC function during aging by “delaying” HSC
functional abnormalities [221], but this has not been rigorous-
ly studied. Although the role of SIRT1 and other sirtuins in the
caloric restriction of modifying the aging process have been
extensively reviewed [222–224], such studies do not always
take into account the sex and mouse strains utilized [225]
which could influence the reported results. SIRT3, while
found to be dispensable for maintenance of HSCs and homeo-
stasis of tissues during young age, was reported to be essential
following stress and with the aging process [226]. SIRT3 ex-
pression was decreased with aging and upregulation of SIRT3
expression in HSCs of old mice improved their regenerative
capacity, effects involving a role for mitochondrial homeosta-
sis [226]. As noted above in Section E, SIRT7 in the mito-
chondrial unfolded protein response and aging-associated
changes in HSCs in the old mice were linked [152]. This
was discussed more thoroughly in a short commentary [227].

G) The Microbiome, Hematopoiesis,
and Aging

The microbiome describes microorganisms such as bacteria,
viruses, and fungi that colonize the human and animal body
and influence various biological processes. Most studies that
explored microbiome–hematopoiesis interactions are based
on characterizing HSC and HPC populations in germ-free
(GF) or broad-spectrum antibiotic-treated mice and in human
subjects under prolonged antibiotic regimens or diagnosed
with gut dysbiosis such as inflammatory bowel syndrome
[228–230]. GF mice demonstrated myelosuppression, smaller
HSC, MPP, and common lymphoid progenitor (CLP) popu-
lations, and impaired neutrophils, monocytes, and T-cell func-
tions. Recolonization of GF mice restored immune response
to infection [96, 228, 231]. However, a closer evaluation of
HSCs and HPCs in oral antibiotic-treated mice revealed nor-
mal HSC and HPC populations but reduced mature T cell, B
cell, and granulocyte populations, suggesting impaired differ-
entiation of mature immune cells in microbiota-depleted mice

after oral antibiotics treatment and introduced some discrep-
ancies between animal models used to study the microbiome
[232]. Following HCT, microbiota-depleted recipient mice
immune reconstitution was significantly lower than their con-
trol counterparts [232] supporting the conclusion that the
microbiome plays a role in regulating mature immune cell
development. Several studies have linked the human gut
microbiome imbalance or dysbiosis in conditions such as in-
flammatory bowel syndrome, malnutrition, and obesity to al-
tered hematopoiesis [229].

The microbiome and hematopoiesis have been intimately
linked [233–238]. Gut microbiota are known to sustain hema-
topoiesis [233], microbiota can regulate HSC differentiation
by altering the BM niche [234], and CX3CR1+ mononuclear
cells influence HPCs [235]. Reduced mPB is noted in mice
receiving antibiotics [236] and microbiota modification has
been discussed in context of hematology [237]. Moreover,
gut microbiota are known to control bacterial infection by
promoting hematopoiesis [238], but definitive and rigorous
comparative studies on a role of the microbiome on hemato-
poiesis in the young and old are yet to be done.

Bacteria and the microbiome present a not uncomplicated
scenario that has not been adequately addressed in context of
aged hematopoiesis and this needs adequate attention. Certain
bacteria, using that of Fusobacterium nucleatum as an exam-
ple, have been implicated in enhancing metastasis of cancer
cells [239–248]. If such bacteria have this capacity for cancer
cell metastasis, then why not for HSC and HPC, migration
and/or homing an area worthy of investigation.

Up to 15% of patients with a history of prolonged antibiotic
use have suffered hematological adverse effects in the form of
neutropenia, anemia, and pancytopenia [249, 250]. Although
associations between the hematopoietic system and microbi-
ota imbalance is apparent in mice and humans, mechanistic
understanding of this interaction is limited. In the signal trans-
ducer and activator of transcription protein 1 (STAT1) knock-
out mouse, the antibiotic effects on HSC and HPC numbers
were abrogated [96]. In another report, administrating a ligand
of the pathogen recognition receptor 1 (NOD1) restored HSC
and HPC numbers in GF mice [251]. To the authors' knowl-
edge, aged-HSC and HPC function and phenotyping in rela-
tion to the microbiome have not yet been reported in mice or
humans. Aging is associated with perturbation of intestinal
epithelial integrity and upregulation of permeability, allowing
microbiota entrance to the circulation and induces a chronic
inflammatory state in the aged subject. Aging results in
microbiota-associated increases in pro-inflammatory cytokine
levels (e.g., TNF-α, TGF-β, IL-6, etc), changes in T-cell num-
bers (e.g., Treg, Th1, and Th2 T-cell subsets), and activation
of TLR2, NF-κB and mTOR [252]. Considering how the
well-characterized low-grade, chronic inflammation associat-
ed with aging affects the hematopoietic system, a role for
microbiota promoting such inflammation is a strong
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possibility. How this might regulate hematopoiesis in the
young and old remains an unexplored area to be better studied
in steady- and stressed-states.

H) Additional Age-Related Information
and Means to Better Evaluate/Understand
Hematopoiesis During Aging

Role of Collection/Processing of Cells

Many studies have acknowledged the probable effects of ox-
idative stress on functional changes in stem cells during aging
[253]. This oxidative stress is associated with damage to mac-
romolecules including that of nucleic acids, proteins, lipids,
and carbohydrates that could contribute to changes in HSC
function. This however, did not consider how even the mere
removing of HSC-containing populations of cells frommouse
BM [40], mouse mobilized peripheral blood (mPB) [42], or
human cord blood [40] could so quickly changeHSC numbers
and impinge on the function of the removed HSCs. As previ-
ously mentioned, collecting and processing cells under ambi-
ent air conditions for as little as 15minutes exposes the cells to
extra physiological oxygen stress/shock or EPHOSS.
EPHOSS is associated with increased differentiation of
HSCs to HPCs through a sequence of events involving p53,
the opening of the mitochondrial permeability transition pore,
cyclophilin D, hypoxia inducing factor (HIF)1-alpha and the
hypoxamir, miR210 [40, 41]. By collecting and processing
BM and mPB from mice and cord blood from humans in a
hypoxic chamber set at 3% O2 and taking care to make sure
that the cells are never exposed to ambient air conditions, it is
possible to obtain many more phenotyped and functional
HSCs [40–42]. Increased numbers of collected HSCs under
hypoxia has also been reported for BM cells from Fanca-/- and
Fancc-/- mice [254]. It is possible that some of the EPHOSS-
related effects on HSCs exposed to ambient air can be com-
pensated for by collection and processing of these cells at
~4°C [255]. Such cold collections and processing of human
cord blood and mouse BM cells mimic at least some of the
effects seen during hypoxia collection/processing of cells in-
cluding increased numbers of collected HSCs. However, the
mechanisms involved with preserving HSC numbers/function
following cold collection/processing of cord blood cells have
not yet been worked out andmay differ somewhat from that of
physioxia/hypoxia collected/processed cell populations.

Collecting/processing BM cells from old vs. young mice
under different oxygen tensions [1], allowed us to demonstrate
that functional engraftingHSCs from oldmouse BM collected/
processed at 3%O2were equal in number to that of ambient air
(~21% O2) collected/processed young mouse BM HSCs.
Perhaps more importantly, the abnormal myeloid to lymphoid
ratio seen when aged BM cells were engrafted into lethally

irradiated recipient mice in a competitive transplant setting
was not noticeable and completely resembled that seen after
engraftment of young mouse BM. This was consistent with
increased CLP numbers and decreased CMP and GMP num-
bers in the donor BM from old mice following their collection
in hypoxia. These phenomena seen with old BM HSCs
collected/processed in hypoxia, were associated with de-
creased total andmitochondria ROS, and decreased expression
of stress-induced proteins [1]. Hence, aged mouse BM HSC
function may not be as dysregulated as many others have re-
ported, with differences perhaps due to their increased re-
sponse to EPHOSS following ex vivo analysis in ambient air.
A corollary of this may suggest that with the more physiolog-
ical collection and processing of HSCs (a.k.a. in hypoxia con-
ditions, or by means of a physiological strategy (e.g. collecting
cells in the cold [255]) from BM of older individuals may be
more functional in context of clinical HCT than if they were
collected/processed as usual in ambient air O2. It is known that
there are distinct populations of even rigorously purified pop-
ulations of HSCs [1, 256]. Which of these HSC populations
survive EPHOSS effects when cells are collected/processed in
ambient air from young and old mouse BM remains to be
better elucidated. While much more obviously needs to be
done to more mechanistically and physiologically understand
the true state of HSCs isolated from older human individuals or
mice, it may be that much of the literature on aged HSCs needs
to be re-evaluated for their functional status as they are within
their in vivo physioxia microenvironment. Studies to be done
with hypoxia vs. ambient collected HSCs include more in-
depth intracellular events and signaling pathways that include
gene and protein expression profiles, as well as epigenetic
changes, work currently ongoing.

Molecular chaperones and heat shock responses have been
postulated to play a role in longevity and aging [257], but
rigorous studies in the area of aged HSCs are lacking. Age
and organ specific differences in bioenergistics in Brown
Norway rats have been noted [258], and p53 deficiency in-
duces diverse dysregulated processes under physiological
oxygen/physioxia [259], but we know that such events are
influenced by modes of cell collection and processing [40, 41].

The Microenvironment

Not to be ignored in studies of aged HSCs is the role that their
microenvironment in vivo plays in the functional cellular and
intracellular abnormalities/defects associated with their
engrafting deficiencies and biased differentiation patterns.
The microenvironment niche for HSCs has been studied for
young mice [260], but more in-depth studies of the aged BM
microenvironment is warranted, especially in context of oxy-
gen content [260], as we noted [1]. There is a report of the
rejuvenation of progenitors from old mice when placed into
and exposed to a young BM environment [261], and a more
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recent report demonstrated that degeneration of adrenergic
nerves in BM affects aging of the HSC niche [262], and that
aging in humans alters the special organization between pop-
ulations of CD34+ cells (contains mainly HPCs, but also a
small percentage of HSCs) and adipocytes in the BM [263];
this is of potential relevance as increased adiposity is associ-
ated with the aged BM microenvironment and can alter the
functionality of surrounding cells. MSCs showed aging relat-
ed expression of cxcr4 [264], a “homing”HSC/HPC receptor,
but this has not yet been evaluated under conditions of hyp-
oxia collection and processing such as in [40, 41].

Leptin (Lep) and Lep Receptors (R)

Metabolic activities of cells are adaptively regulated by sys-
temic signals that reflect the nutritional status of an organism
throughout its life [265, 266]. This is particularly crucial in the
case of HSCs as they are rare, and they maintain the integrity
of the entire hematopoietic organ system. One way that the
body communicates nutritional cues to HSCs is via systemic
hormonal regulations. Various metabolic hormones have been
documented to influence hematopoiesis, and aging can signif-
icantly alter these metabolic messengers, hence indirectly af-
fecting HSC functional behavior [267–269].

Among them, leptin controls the body energy expenditure
and storage through both central and peripheral mechanisms
[270]. As an adipokine, it is recognized to have broad spectrum
effects on numbers and functions of different immune cells
under homeostasis [271]. Aging is known to be associated with
multiple dysregulations of the immune system, including a de-
clined adaptive immune response [272]. Lep induces gene ex-
pression of p16, a marker of cellular immunosenescence in
human B cells from young lean adults. These cells also exhib-
ited lowered class switching activity and ability to produce
influenza-specific IgG [273, 274]. Unfortunately, the study
was limited to in vitro treatment only and did not provide full
mechanistic insights. In line with this finding, it was demon-
strated that lep induced significantly higher levels of IL-10,
TNF-α, and IL-6 from aged human B cells as compared to
young controls, and this effect was mediated through the
STAT3 signaling pathway downstream of lepR activation
[275]. Another group reported that sustainably higher lep levels
were found in LPS-treated older (24month) compared to young
(2 month) rats, and the old rats showed delayed but longer
febrile response. Elevated lep concentrations were accompa-
nied by increased levels of pro-inflammatory cytokines includ-
ing IL-6 and IL-1Rα; however, it was not determined whether
the increase in lep level was causative and how [276]. Although
lep signaling was consistently reported to be altered in aged
animals, more rigorously designed studies are needed to help
us understand how this well-known proinflammatory neuroen-
docrine adipokine may play any roles in aging-associated im-
munological changes [277, 278].

Beyond its role in immunity, lepR-expressing MSCs in
murine hematopoiesis have been well-characterized as an in-
dispensable source of stem cell factor for maintenance of both
HSCs and more differentiated progenitor cells [279–282]. In
addition, it has been demonstrated that BM adipose tissue
possessed brown fat properties that declined in old or diabetic
mice [283]. It was demonstrated that during the process of
aging or in obesity, MSCs preferentially differentiated into
adipocytes, which impaired hematopoietic recovery [284].
Since BM adipocytes could be a potential source of lep, it is
important to know howBMadipocyte-derived lep can directly
or indirectly alter hematopoiesis as the animal ages. In the
context of HSC biology, we recently discovered that Lepr
marks a small subset of robustly repopulating and self-
renewing long-term HSCs in adult murine BM; Lepr+ HSCs
(defined as LSKCD150+CD48-) were found to generate equal
myeloid-lymphoid outputs as compared to Lepr-HSCs [285].
Given that lepr (OB-R) was also reported to be expressed by
different types of both myeloid and lymphoid leukemic cells
[286–289], it will be intriguing and important to determine
whether aging has a differential selection pressure on
Lepr+HSCs as compared to the rest of total BM HSCs, partic-
ularly in the context of clonal hematopoiesis. Although RNA-
seq data suggested that Lepr+HSCs and Lepr+MPPs (defined
as LSKCD150-CD48-) predominantly expressed the truncated
short isoformsOB-Ra andOB-Rc, it remains to be determined
whether aged HSCs or leukemic cells can express the long
functional isoform OB-Rb (LepR). Future studies with more
mechanistic insight should be able to address these questions,
perhaps providing potential meaningful clinical implications.

More on Inflammation

Aging-related inflammation promoted aging characteristics of
HSCs through a tumor necrosis (TNF)-alpha, ERK, ETS1, IL-
27 receptor (R) pathway [290]. TNF-alpha increases during
aging and induced expression of HSC IL-27R-alpha by ERK-
ETS-1 intracelluar signaling, with deletion of IL-27R-alpha
rescuing functional decline and myeloid bias of HSCs. Old
IL-27R-alpha knockout mice had reduced proportions of
myeloid-biased HSCs. Thus, this is another report implicating
factors external to HSCs that effect the functional capacity of
HSCs from old mice. Somatotrophic/Insulin-Insulin-Like
Growth Factor has also been implicated in aging effects on
stem cells as well, in these cases on a population of very small
embryonic like stem cells [291, 292].

Exosomes

Exosomes are a subset of small extracellular vesicles that
range in size from 30-150nm, that are produced by normal
and malignant cells [293, 294], originate from the endocytic
compartment of producer cells [295], and have emerged as a
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universal intercellular communication system [296, 297].
Exosomes are in a protective protein/lipid bilayer, are deliv-
ered to recipient cells without degradation, and freely cross
biological barriers [296, 297]. Exosomes [298] influence pro-
liferation of HPCs [299], but there is no information on effects
of exosomes on HSCs and HPCs during aging.

Biological Time Keeping and Circadian Rhythms

Biological time keeping [300] and circadian variations are
known to influence numbers of HSCs and HPCs in BM and
blood, but how this might occur in old mice has not yet been
explored. Such studies may be of interest, based on when it is
best to collect HSCs and HPCs from older individuals from
BM and mPB for use in HCT. Studies of circadian deep se-
quencing revealed stress-response genes that adapted to high
rhythmic expression during aging [301], and daily onset of
light and darkness have been reported to manifest control over
HSC maintenance and differentiation [302]. Moreover, circa-
dian host and microbiome interactions have been suggested to
play relevant roles [303]. There is a noted sexual dimorphism
in body clock regulation [304] which has not been adequately
addressed, especially in context of aging, and aged HSCs and
HPCs.

HSC homing to the BM plays an important role in the
engrafting capability of the HSCs [305], and more consider-
ation needs to be given to this capacity of aged HSCs. There
are a number of means to enhance the homing of HSCs for
enhanced engraftment [306–309], but these have not yet been
evaluated in context of HSCs from old mice, or when cells are
collected/processed in hypoxia vs. ambient air. Notably, there
are a number of animal models to study aging, with an exam-
ple being the Ames hypopituitary dwarf mice [7–10], that live
approximately two times longer than that of most other mice.
Imbalanced myelopoiesis was noted in myelopoiesis between
BM and spleen in Ames dwarf mice [310].

I) COVID-19/SARS-CoV-2, Aging,
and Hematopoiesis

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2) is the pathogen responsible for causing Coronavirus
Disease 2019 (COVID-19), a disease which has spread world-
wide, infected over 32 million people and claimed the lives of
nearly 1 million people as of September 2020 [311]. SARS-
CoV-2 is a virus which infects cells by binding to cell surface
proteins via its Spike protein that extends out from the viral
envelope, facilitating entry to the host cell and allowing for
viral replication within the cell [312–314]. The most well-
studied presentation of COVID-19 is an infection of the lungs,
with symptoms ranging from a mild cough and fever to a
severe pneumonia [315, 316].

The prognosis and severity of COVID-19 in patients ap-
pears strongly tied to the age of the patient [317]. The risk for
SARS-CoV-2 infection leading to symptomatic disease rises
dramatically with age. According to the Center for Disease
Control (CDC), as age increases the likelihood of being hos-
pitalized for COVID-19 increases, with adults over 65 having
5-13x higher hospitalization rate [318]. Older people are, as
presently known, alsomore likely to die from the disease, with
a 90-630x higher death rate in patients over 65 [318], although
it is likely that the full story on this is not yet known. This is
not likely due to older people being more susceptible to infec-
tion, as RT-PCR tests for the presence of SARS-CoV-2 in
mild to moderate cases of COVID-19 demonstrate that the
host cells of younger patients contain more viral RNA than
older patients [319]. A potential interpretation of this is that a
higher viral load is necessary for younger people to display
symptoms compared to older people. This suggests that chil-
dren are equally likely to be infected, but may be less likely to
display symptoms of the disease, likely due to a general lack
of additional contributing factors, possibly including a predis-
position to hematologic disorders.

Understandably, many studies of SARS-CoV-2 have fo-
cused on its infection of and impact on the lungs. However,
it has become increasingly evident that COVID-19 is systemic
in nature [320], affecting many different systems including
primitive and mature hematopoietic cells [317, 321–324].
The impact that the disease has on the hematopoietic system
is evident in the hematological manifestations of COVID-19.
A review looking at hematological factors in COVID-19 pa-
tients found that both lymphocytopenia and thrombocytope-
nia are common symptoms with hospitalized patients [322]. It
is also evident that more severe cases of COVID-19 were
more frequently associated with these hematological factors
[322]. Further, one of the more devastating effects of SARS-
CoV-2 infection is the induction of a "cytokine storm" [325,
326]. Cytokine storm refers to a toxic excessive release of
immune cytokines leading to an autoimmune response.
Thus, there is a strong need to address the mechanisms and
effects of SARS-CoV-2 exposure on primitive and mature
hematopoietic cells and the impact it may have for COVID-
19 patients, especially in older individuals.

Recently it was demonstrated that ACE2 is expressed on the
cell surface of small numbers of HPCs and mature immune
cells [324] and moderate to large numbers of HSCs [323, 324].
Importantly, exposure of human HSCs to SARS-CoV-2 Spike
protein induces increases in expression of inflammatory mol-
ecules such as NLRP3 and IL-1beta [323], indicating that the
cytokine storm may be mediated in part through primitive he-
matopoietic cells. Further, human HSCs and HPCs exposed to
Spike protein ex vivo have decreased capacity for functional
HPC colony formation, exhibit decreased cell growth, and de-
creased expansion of HSCs, HPCs, and functional HPC colony
forming units compared to cells that were unexposed to the

1032 Stem Cell Rev and Rep  (2020) 16:1020–1048



viral protein [324]. These effects can be neutralized by co-
treatment with Angiotensin1-7 [323, 324], a peptide linked to
ACE2 regulation of hypertension [327]. The effects of the
SARS-CoV-2 Spike protein on colony forming capacity and
expansion can also be neutralized by treatment with an anti-
body targeting SARS-CoV-2 Spike protein or by treatment
with soluble human ACE2 [324]. Human peripheral blood
mature immune cells also exhibit a response to exposure to
Spike protein ex vivo, with monocytes upregulating CD14
and undergoing aberrant changes in morphology [324]. It is
clear that SARS-CoV-2 does not have to infect HSCs and
HPCs to cause some of the above noted effects of the SARS-
CoV-2 Spike protein [323, 324]. These, and that yet to be
reported, data are important because they may help to explain
the origin of hematological manifestations of COVID-19 such
as lymphocytopenia and thrombocytopenia and provide in-
sight into neutralizing these effects on the hematopoietic
system.

It is very possible that one of the contributing factors to
COVID-19 disease severity in the aged population is due to
the impact of the disease on a hematopoietic system that has
already been accumulating alterations and damage for many
years. Additionally, effects of cytokine storm associated in-
flammation may further damage aged hematopoietic cells,
possibly making them even more vulnerable to the develop-
ment of hematological disorders even after recovery from
COVID-19. The relationships between hematologic manifes-
tations of COVID-19 and age should be further studied, as
should the effects of SARS-CoV-2 exposure on HSC/HPC
and mature immune cells from the aged versus young. It will
also be important to determine whether the hematological
manifestations of COVID-19 may be neutralized by specifi-
cally targeting the effects on the hematopoietic system, thus
potentially relieving some of the disease burden on more se-
verely affected patients, including older patients.

J) Conclusions in Context of Potential Future
Intervention for Better Health
of the Hematopoietic System During Aging

A number of studies have reviewed the aging process in gen-
eral including protein sequestration at the nuclear periphery,
and pathways of cellular proteostasis, the effects of aging on
stem cell populations, and potential therapeutic interventions
including that for aged HSCs [328–334]. Organoids have
been suggested as experimental means to study the process
of cellular aging [335], but much more rigorous work is need-
ed in this area, especially with analysis ex vivo of HSCs in a
relevant physioxia microenvironment BM niche model.

It has been noted that there are molecules in aged blood that
promote the spread of cancer [336] and the accumulation of
methylmalonic acid promotes tumor progression in the aged

[337]. How these phenomenon relate to HSC, HPC, and he-
matopoiesis and pre-leukemia and leukemia, and to effects on
cells collected in hypoxia/physioxia remains to be determined.
A recent book [338] has described the aging process from the
perspective of a long-time investigator in this field and noted
the mTOR, AMPK and sirtuin pathways as main longevity
signaling pathways.

Other considerations in context of aging and hematopoiesis
to be elucidated are: how mitochondrial ROS acts as a double-
edged conundrum for that of host defense in contrast to infec-
tion associated pathological inflammation [339] and its effects
on HSC and HPC [340]. More in-depth insights can be gained
from approaches incorporating single cell multiomics [341]
and what role the mechanoregulation [342] of hematopoiesis
might play during aging and disorders associated with aging.
There is also the question of a role for mitochondrial transfer
from Cx43-expressing HPC to stroma [343] during aging of
the hematopoietic system and its interaction with the bone
marrow microenvironment during regeneration. As noted in
more recent reviews on CHIP [344–346], there is still much
we do not understand about this phenomenon and its relation-
ship to aging and aged hematopoiesis.

Cytokines, Chemokines and Intracellular Signaling

HSCs, HPCs, and hematopoiesis are regulated by numerous
interacting cytokines and chemokines [347], effects mediated
by receptor-induced intracellular signaling (348; Broxmeyer;
submitted solicited review on Cytokines/Chemokines/Other
Growth Regulators and their Receptors, 8th Edition,
Hematology: Basic Principles and Practice, Eds. R.
Hoffman, et. al., 2020). Some recent intracellular players in-
volved in HSC and HPC function have been reported
[307–309, 349, 350]. However, all such intracellular signaling
events have been carried out with HSCs, HPCs, and immune
cells of youngmice, or human CB or human BMormPB from
younger individuals. Whether or not such regulatory intracel-
lular signaling is similar in cells from old vs. the young re-
mains to be determined, and such studies need to be assessed
with purified populations of HSCs and HPCs, and in context
of such cells isolated and processed under physioxia condi-
tions, so that they are not exposed to ambient air oxygen
which will likely modify the signaling events.

Dipeptidylpeptidase (DPP)4

We had noted that it may be feasible to use HSCs from older
individuals for hematopoietic cell transplantation (HCT) if the
cells are collected so that they are not induced by EPHOSS to
decrease HSC numbers [1] when stressed by ambient air col-
lection [40–42], but are there means to decrease the acute
GVHD associated with allogeneic HCT, which perhaps has
the potential to be more aggressive when donor cells are from
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more aged individuals? Inhibition of the enzyme
dipeptidylpeptidase (DPP)4/CD26 has been shown to enhance
mouse BMHCT and to accelerate recovery after radiation and
selected chemotherapeutic drugs [351, 352] and to enhance
time to engraftment of cord blood (CB) HCT [353–355]. This
enhancement in time to neutrophil engraftment was also asso-
ciated with a decrease in the already low acute GVHD noted
for CB HCT [356]. It is now clear that the orally active DPP4
inhibitor, sitagliptin used in the CB Trials also greatly
dampens acute GVHD in the setting of clinical mPB HCT
[357]. Hence, there may be a role for DPP4 inhibitors such
as sitagliptin in context of aged hematopoiesis and HCT.
DPP4 has also been implicated in exosomes from patients
with acute myeloid leukemia [299]. More in depth informa-
tion on DPP4 during the aging process is clearly warranted.
There are many proteins that have purported DPP4-truncation
sites [358, 359]. This is of relevance as DPP4-trucated pro-
teins can have decreased activity and block the effects of the
full length molecules [352, 360]. Hence, a better undertaking
of DPP4 on hematopoiesis in the old, as well as young, could
uncover additional means to enhance hematopoiesis during
health, aging and disease.

Concluding Thoughts

There are still many unknowns, and still to be elucidated
mechanistic insights to understand changes in hematopoiesis
during aging. Enhanced genomics may provide additional
clues to age-related hematopoiesis [361]. Some of these areas
for further investigation are noted in Table 1. It will likely take

a multidisciplinary approach to fully understand the causes of
abnormalities associated with the aging process, not only of
the hematopoietic system. This information might at least par-
tially control what might not be the inevitable consequences of
the time- and disease-induced aging process. Future studies of
hematopoiesis and HSCs during the aging process that inves-
tigate these processes in context of their status in an in vivo/
physioxia environment, and ex-vivo under conditions that
more closely mimic their in vivo condition of O2 tension and
with microenvironmental niche cell interactions [362] will
bring us closer to better understanding aged HSCs and what
their true functional capacities and abnormalities are. Only
with this enhanced understanding can we truly know how this
information can best be used and better modified, if necessary
and possible, for health benefit.
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