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ABSTRACT
It is generally feasible to classify different species of vegetation based on remotely

sensed images, but identification of different sub-species or even cultivars is

uncommon. Tea trees (Camellia sinensis L.) have been proven to show great

differences in taste and quality between cultivars. We hypothesize that hyperspectral

remote sensing would make it possibly to classify cultivars of plants and even to

estimate their taste-related biochemical components. In this study, hyperspectral

data of the canopies of tea trees were collected by hyperspectral camera mounted on

an unmanned aerial vehicle (UAV). Tea cultivars were classified according to the

spectral characteristics of the tea canopies. Furthermore, two major components

influencing the taste of tea, tea polyphenols (TP) and amino acids (AA), were

predicted. The results showed that the overall accuracy of tea cultivar classification

achieved by support vector machine is higher than 95% with proper spectral pre-

processing method. The best results to predict the TP and AA were achieved by

partial least squares regression with standard normal variant normalized spectra,

and the ratio of TP to AA—which is one proven index for tea taste—achieved the

highest accuracy (RCV = 0.66, RMSECV = 13.27) followed by AA (RCV = 0.62,

RMSECV = 1.16) and TP (RCV = 0.58, RMSECV = 10.01). The results indicated

that classification of tea cultivars using the hyperspectral remote sensing from UAV

was successful, and there is a potential to map the taste-related chemical components

in tea plantations from UAV platform; however, further exploration is needed to

increase the accuracy.
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Keywords Hyperspectral remote sensing, Unmanned aerial vehicle, Cultivar classification,
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INTRODUCTION
Tea (Camellia sinensis L.) is the second most frequently consumed beverage in the world

after water (Macfarlane & Macfarlane, 2004). As a beverage, the tea’s quality decides its

market value (Gallaher et al., 2006; Hilton & Palmer-Jones, 1975). Traditionally, trained

sensory tasters can evaluate the tea’s quality through a series of taste indicators such as

sweetness, acidity, and aroma, but sensory evaluation is unavoidably expensive and

subjective. Research has revealed that tea quality is largely determined by its concentration
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of leaf biochemical components (Dutta, Stein & Bhagat, 2011; Yamamoto et al., 1997; Atoui

et al., 2005) which are highly depended on the cultivar of tea and its growing condition

(Harbowy et al., 1997; Ercisli et al., 2008; Bhatia & Ullah, 1965).

Remote sensing, especially hyperspectral remote sensing, makes it possible to classify

species of plants and even to estimate their biochemical parameters, because hyperspectral

data contain a great number of narrow spectral channels that can detect subtle changes in

narrow absorption features (Curran, 1989). This technique has been widely applied to

estimate biochemical parameters in plants, such as nitrogen (Hansen & Schjoerring, 2003;

He et al., 2016; Singh et al., 2015), phosphorus (Sibanda et al., 2015; Zhou et al., 2015;

Ramoelo et al., 2013), and chlorophyll (Wang, Pu & Sun, 2016; Zou et al., 2015). With

regard to tea, tea polyphenols (TP) and amino acids (AA) are generally regarded as

the most two influential components affecting the tea’s quality and taste (Chen et al., 2008;

Potter, 2012). The ratio of TP and AA (P/A) is calculated by TP divided by AA, P/A

can determine the quality of the tea to a great extent. When TP is set, the lower the P/A is,

the better the quality of the tea (Wei, 2011; Bian, 2010). Although estimation of TP and

AA by spectroscopy has been studied (Bian et al., 2013; Dutta et al., 2015), most of the

studies are based on tea leaves in the laboratory or point measurement in the field

(Bian et al., 2013; Dutta et al., 2015). Compared with point measurement, airborne and

spaceborne hyperspectral data have a broader field of view and can capture the spatial

characteristics and pattern of the target vegetation. However, hyperspectral instruments

including airborne visible infrared imaging spectrometer, hyperspectral mapper, compact

airborne spectrographic imager, Hyperion, and Tiangong-1 (TG-1) are often

accompanied by a limited spatial resolution (>20 m) or relatively high cost. Because tea

trees are often planted in rows with intervals of 0.5 m between rows in a tea plantation

(Wang, 2000; Wen, 2006) and the spatial resolution of airborne and spaceborne

instruments is much coarser than the interval of tea trees, mixed pixels with spectral

information of both tea canopy and soil background are inevitably included, which will in

turn decrease the accuracy of classification and the quality of estimation (Düzgün &

Demirel, 2011). The existing researches at remote sensing scale only separate tea

plantations from other vegetation, and have not evaluated the taste quality of tea, nor

divided plants into different cultivars.

This study attempted to distinguish tea cultivars from hyperspectral images

collected by unmanned aerial vehicle (UAV) and to map the biochemical concentration

in the tea canopy from near ground height at the same time. The ability of a UAV to

adjust its flying altitude, thus controlling the pixel size, enables the ability to obtain pure

pixels of tea tree canopies and avoid the problem of mixed pixels. With the imaging

hyperspectral data collected by the UAV, we can obtain and analyze the spatial distribution

of the canopy biochemical parameters of C. sinensis.

MATERIALS AND METHODS
Study area
The study site is located in the Southlake Tea Plantation (latitude 30�28′N, longitude
114�21′E) on the eastern Jianghan Plain, Wuhan, China. The 30-year (1986–2016) average
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annual precipitation and sunlight are 1,000 mm and 1,850 h, respectively (China

Meteorological Administration). An experimental field containing eight tea cultivars,

namely Fuding Dabai, Tai Cha 12#, Huang Dan, Mei Zhan, Tie Guanyin, Wu Niuzao,

Ying Shuang, and Fuan Dabai, was selected as the study area (Fig. 1).

Hyperspectral data
Hyperspectral images were acquired using an octocopter UAV (S1000+; DJI, Inc., Shenzhen,

China) equipped with a Cubert UHD185 hyperspectral imager, (Cubert, Inc., Ulm,

Germany) (Fig. 2). The imager consists of a Sony hyperspectral camera (ICX285, Sony, Inc.,

Tokyo, Japan), a mini-PC server, a battery power system, and the Cubert suite software.

The hyperspectral camera provided hyperspectral images in the visible and near

infrared wave range. The spectral resolution of the camera was 8 nm (@532 nm) and

the spectral sampling interval was 4 nm, resulting in 138 spectral channels over

wavelength of 450–998 nm for each pixel. Moreover, three bands at wavelengths of 450,

550, and 650 nm share a spatial resolution of 1,000 � 1,000 pixels per frame. The other

135 bands have a spatial resolution of 50 � 50 pixels per frame. These bands were later

fused to give 1,000 � 1,000 pixels through a multi-resolution image fusion algorithm

embedded in the software accompanying the UHD camera.

Figure 1 Visible RGB ortho-mosaic image of the study site on March 23, 2016, acquired using the

Cubert UHD185 camera. Full-size DOI: 10.7717/peerj.4858/fig-1
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A flight with the UAV mapping system was carried out between 10:30 and 12:00 a.m.

under clear sky conditions on March 23, 2016. Before the flight, two flight lines were

designed and ground control points were set over rows of tea trees to mark sampling sites

for foliage collection (Fig. 1). The sensor was fixed so that the imagery was collected at

nadir to enable collection of ortho-images. As the camera’s field of view angle was 29.4�,
the flight height was set to 100 m, which resulted in each image frame covering an area of

54 � 54 m, with a nadir on-the-ground spatial resolution of 0.054 m. For stability of

camera, the errors within the actual flight height and set height was not more than 0.1 m.

The exposure time of the camera was set to 5 ms and the ISO was set to 100; therefore, the

ground targets could be captured clearly while the reference of white panel in the image

were not overexposed. The forward overlap and the side overlap of any two adjacent

images were more than 65% and 40% respectively, and therefore most of the ground

pixels were covered by at least two images.

Foliage concentration measurement
Tea foliar chemistries of 85 samples were measured on the same day as the flight.

Acquired samples were sent to a wet chemistry laboratory to measure the concentration of

TP and AA. These samples were collected from 85 locations marked in Fig. 1. At each

sampling point, 60–70 leaves from the canopy were collected to meet the minimum

requirement with regard to foliar quantity for laboratory measurements. Statistical

descriptions of TP, AA, and P/A in the study site are shown in Table 1.

Figure 2 The Dji-S1000+� UAV equipped with the Cubert� mapping system. Photo by Teng Fei.

Full-size DOI: 10.7717/peerj.4858/fig-2
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All leaf samples from the canopy were dried for 1 h at 80 �C and then ground into

fine tea powder. The concentration of TP was measured by the Folin–Ciocalteu

colorimetry method (Singleton, Orthofer & Lamuela-Raventos, 1999; Li & Wang, 2009;

Büyükbalci & El, 2008; Schulz et al., 1999; Soultani et al., 2014; Iwasa & Torii, 1962).

The AA concentration was measured using the ninhydrin colorimetry method

(Lee & Takahashi, 1966; Rosen, 1957).

Image pre-processing
Pre-processing was subsequently applied to the acquired hyperspectral images.

The pre-processing was composed by the following steps:

Radiometric calibration and image selection: in this step, raw radiance spectra were

converted into reflectance spectra. The UAV hyperspectral image was radiometrically

corrected with reference measurements on a white board and dark measurements by

covering the black plastic lens cap. The dark measurements were subtracted from the

reference measurements and the actual measured values. The white board was measured

twice before and after the flight. If the difference between the two measurements was larger

than 5%, which means the light condition during the flight was changed significantly, the

data collected during the flight was abandoned. This procedure allows us to make sure that

the radiance collected are correctly translated to reflectance during the image acquisition

process. After that, blurred and redundant images were discarded on the basis of visual

interpretation, leaving 12 clear images covering the whole study area.

Image Fusion: due to the different spatial resolutions in different bands, image fusionwas

applied using the Pan-Sharpening algorithm integrated in the Cube-Pilot software (Cubert

GmbH, 2014). After performing this image fusion technique, 12 image cubes with 1,000 �
1,000 pixels and 138 spectra ranging from 400–950 nm in each cube were available.

Mosaic and crop: Fused images were processed (images were aligned, a dense point

cloud was built, and a mesh was built) and combined with a larger ortho-mosaic image

using Agisoft PhotoScan (v1.2.4; Agisoft, Inc., St. Petersburg, Russia) (Agisoft, 2016). The

large ortho-mosaic image was cropped to the study region in Envi (5.1; Harris Geospatial

Solutions, Inc., Broomfield, CO, USA).

Tea canopy extraction: Although the average leave area index (LAI) of tea plants is

relatively high (LAI > 3). There is still a possibility that the background soil spectra mix

with the spectra of tea canopy. In order to distinguish tea plants from the soil and dry

branches in the hyperspectral images, the optimized soil-adjusted vegetation index

(OSAVI) was utilized as an effective index for extracting the plant canopy from the soil

Table 1 Biochemical components (%) of 85 foliage samples.

Min Max Mean SD

TP 46.5 110.9 85.6 1.2

AA 6.8 14.6 9.9 0.1

P/A 44.6 143.7 88.5 1.7

Note:
Min, minimum; Max, maximum; Mean, mean value; SD, standard deviation.
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background. OSAVI is a soil-adjusted vegetation index optimized for agricultural

monitoring, in Eq. (1).

OSAVI ¼ 1þ Coeð Þ � R800 � R670ð Þ
R800 þ R670 þ Coeð Þ (1)

Rondeau (Rondeaux, Steven & Baret, 1996) summarized the formulation of OSAVI and

noted that the proper value of Coe is 0.16. R800 and R670 represent the reflectance at

wavelengths of 800 and 670 nm. In this study, all pixels with OSAVI larger than 0.65 were

considered as tea canopy.

Dimensionality reduction: hyperspectral information is often affected by the “Hughes

phenomenon,” where the classification or prediction accuracy is reduced due to the vast

spectral dimension (Hughes, 1968). To avoid this effect, the raw spectra were compressed

into a lower dimension by three to-be-determined preprocessing methods: minimum

noise fraction (MNF) transformation, principal component analysis (PCA) and

independent component analysis (ICA). These methods can decompose the spectra

into statistical independent components.

Tea cultivar classification
Supervised classifications were applied in this research. For each tea cultivar, 10–15

regions of interest were used to extract the spectral signatures for classification.

A total of four classification approaches, including both statistical model and machine

learning based methods, were compared to find the possibility of tea cultivar classification

and to explore the optimal methods. A total of four selected methods were maximum

likelihood classification (MLC), minimum distance classification (MDC), artificial neural

network (ANN) classification, and support vector machine (SVM) classification.

Validation of tea cultivar classification
To validate the classification accuracy, tea cultivar types at 500 randomly distributed

points in the image were identified during a fieldwork. The confusion matrix (Stehman,

1997) was then calculated by comparing the ground truth data with the classification

results. The overall accuracy (OA) and Kappa coefficient (Kappa) in the confusion matrix

indicate the percentage of correctly classified pixels and the effectiveness of the overall

classification. OA and Kappa are described by Eqs. (2) and (3) as follows:

OA ¼
PT
i¼1

Xii

n
(2)

Kappa ¼ n �PT
i¼1 Xii �

PT
i¼1

PT
j¼1 Xij

n2 �PT
i¼1

PT
j¼1 Xij

(3)
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In Eqs. (2) and (3), T is the number of classes; Xii represent the correctly classified pixels in

class i; Xij represent the incorrectly classified pixels in class i; and n represents the number

of pixels participating in the classification.

Leaf biochemistry prediction from canopy
In order to establish a robust biochemical prediction model, several pre-processing

methods were applied to the spectra, including the Wavelet De-noising method,

continuum removal, standard normal variant (SNV), first derivative, and second

derivative.

The spectral bands centered at 450 nm and between 954 and 998 nm were excluded,

because these bands were considered noisy with a low SNR (36). Thus, spectra between

450 and 954 nm were left for modeling.

Partial least squares regression (PLSR) was performed to establish the relationship

between the reflectance and the foliar chemistry of tea leaves, because it has proven

accuracy and effectiveness when solving small samples and high dimensional regression

problems (Shi et al., 2014; Liu et al., 2014). Besides, the predictive ability and stability of

the PLSR model are often based on the selection of a number of factors (Asyraf &

Afthanorhan, 2013).

Artificial neural network has shown good performances in solving non-linear

regression and has high error tolerance (Keiner & Yan, 1998). To tackle the possible

nonlinearity in the biochemical parameter estimation, a back-propagation ANN (BP-

ANN) was tried with the same prepressing methods, and the best results were obtained

by using the PLS method. The modeling work was coded with Matlab� (R2014a;

MathWorks, Inc., Natick, MA, USA).

The leave-one-out cross-validation method was employed to estimate the accuracy

of the model to prevent over-fitting during training (Kohavi, 1995). All samples were

divided into several parts: 84 samples were used as the calibration data set for regression

and one sample was used as the validation data set to validate the results. The regression

did not stop until every sample was assigned to the validation set once. The models

were evaluated by comparing the average correlation coefficient of cross-validation (RCV)

and the averaged root mean squared error of cross-validation (RMSECV). RCV and

RMSECV measure how well the model fits the data: the larger the value of RCV and the

smaller the value of RMSECV, the greater the precision and accuracy of the model. RCV

and RMSECV are computed by Eqs. (4) and (5),

Rcv ¼
PN

i¼1 ŷi �mean ŷi
� �� �

yi �mean yið Þð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i ŷi �mean ŷi

� �� �2 � yi �mean yið Þ½ �2
q (4)

RMSECV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
XN
i¼1

ŷ i � yi
� �2

vuut (5)
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where N is the number of samples, ŷi and yi and are the predicted and measured values of

biochemical components of each sample. The mean (ŷi) and mean (yi) represent the

average values of ŷi and yi.

RESULTS
Classification of tea cultivars
The tea cultivar classification maps were generated from the hyperspectral data by

using full wave bands with different models of MLC, MDC, ANN, and SVM, as shown in

Figs. 3A–3D. The results obtained by employing the dimension reduction methods of

MNF transformation (e–h), PCA (i–l), and ICA (m–p) are shown in the second to the

fourth rows in the same figure.

The confusion matrix is calculated based on the classification results against the 500

validation points. The OA and Kappa accuracy evaluation indices are shown in Table 2.

With the full-band spectra, a relatively low classification accuracy is achieved by using

MLC and MDC, which result in OAs of 48.4 and 35.2%, and values of the Kappa

coefficient of 41.5% and 26.0%, respectively (Table 2). MLC and MDC do not clearly

distinguish between the eight cultivars of tea. The MLC algorithm classifies almost all of

the tea plants as Fuding Dabai cultivar, and MDC classifies most of them as Ying Shuang.

ANN and SVM give better classification results than MLC and MDC according to the OA.

Cultivar boundaries are obvious under ANN and SVM classification, and the spatial

distribution of tea cultivars is basically correct (Figs. 3C and 3D). ANN shows poor ability

to identify the cultivar Huang Dan, while SVM performs better. However, it is time

consuming to carry out ANN and SVM classification on the hyperspectral image cube on

a PC (220 and 420 min on a 3-GHZ 24-core workstation).

Minimum noise fraction analysis revealed that the top 10 bands possessed more than

90% of the information in the full-band spectra; therefore, these 10 bands were selected as

the new input spectra. As shown in Figs. 3E–3G, the classification results of MLC and

MDC are much better than those without MNF transformation. The values of OA and

Kappa are twice those obtained without dimensionality reduction (Table 2). As shown

in Table 2, worse values of OA and Kappa were obtained with the ANN and SVM

methods compared to cases in which the full spectra were used. With dimension reduction

of the spectra, the processing time decreased to less than 60 min when using the ANN

and SVM algorithms. In brief, MNF can improve the classification accuracy dramatically

in statistical models like MLC and MDC but it fails in machine learning algorithms

like ANN and SVM.

Through PCA analysis, it was found that the first three principle components contained

nearly 90% of the full-band information; therefore, the first three components were

used for classification. With PCA, the classification results were similar to the results

of MNF, especially for the statistical models such as MLC and MDC, but significantly

better results were obtained by ANN and SVM classification. As only three instead of

138 bands were used, the classification efficiency is much higher than without PCA

and MNF transformation and the computational expense is reasonable: less than 30 min

when using the ANN and SVM algorithms.
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Figure 3 Classification of tea cultivars in the study region, with image pre-processing and

classification method combinations of: (A) None+MLC (B) None+MDC (C) None+ANN (D) None+SVM

(E) MNF+MLC (F) MNF+MDC (G) MNF+ANN (H) MNF+SVM (I) PCA+MLC (J) PCA+MDC

(K) PCA+ANN (L) PCA+SVM (M) ICA+MLC (N) ICA+MDC (O) ICA+ANN (P) ICA+SVM.

Full-size DOI: 10.7717/peerj.4858/fig-3
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When we performed the forward ICA transformation, 10 independent components

were used to replace the full 138 bands. After ICA transformation, SVM still obtains the best

classification result among the modeling methods. In general, MLC, MDC, ANN, and SVM

show similar classification accuracy after PCA transformation.

Among the various classification methods, SVM classification always shows the best

result, while ANN classification shows slightly poorer performance. The results of MLC

and MDC are worse than those of the above machine learning algorithms. By reducing

the dimension of hyperspectral data, the classification accuracy of statistical classification

improves considerably, while the improvement in classification accuracy is not obvious

for machine learning algorithms.

Prediction of foliar biochemistry
The results indicate that the pre-processing methods have a significant impact on the

prediction accuracy (Table 3). The best calibration results for TP, AA, and P/A

Table 2 Accuracy evaluation of the tea cultivar classification.

Classification method MLC (%) MDC (%) ANN (%) SVM (%)

Dimensionality reduction method: None

OA 48.4 35.2 93.2 96.2

Kappa 41.5 26.0 92.2 95.6

Dimensionality reduction method: MNF

OA 84.0 79.8 84.8 87.6

Kappa 81.6 76.8 82.1 85.8

Dimensionality reduction method: PCA

OA 86.8 78.2 90.2 95.2

Kappa 84.9 75.0 88.8 94.5

Dimensionality reduction method: ICA

OA 89.4 80.4 90.4 93.8

Kappa 87.8 77.4 89.0 92.9

Table 3 RCV and RMSECV (g kg-1) of PLS regression models with multivariate pre-processing

methods.

Target Factors TP AA P/A

Preprocessing method RCV RMSECV RCV RMSECV RCV RMSECV

None 7 0.57 10.04 0.50 1.31 0.60 14.16

WD 8 0.50 10.79 0.49 1.33 0.55 14.93

CR 9 0.45 11.24 0.40 1.40 0.48 15.87

SNV 7 0.58 10.01 0.62 1.16 0.66 13.27

WD+CR 9 0.49 10.77 0.35 1.46 0.42 16.37

WD+SNV 5 0.48 10.60 0.51 1.25 0.52 14.80

CR+SNV 6 0.47 12.03 0.48 2.57 0.54 14.68

WD+CR+SNV 10 0.52 10.55 0.44 1.46 0.50 15.49

CR+First+SNV 9 0.42 11.55 0.30 1.52 0.43 16.57

CR+Second+SNV 10 0.32 12.68 0.29 1.53 0.47 15.89
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were achieved by using the SNV pre-processing method (RCV = 0.58, 0.62, 0.66 and

RMSECV = 10.01, 1.16, 13.27). By using PLS regression with the SNV pre-processing

method, the best estimation results were obtained.

In order to model the potential non-linear relationship between the spectral reflectance

and foliar chemistry, a BP-ANN was established with the same inputs as the PLS

regression with the best pre-processing methods (SNV). The result (Table 4) shows no

significant improvement when using ANN regression, besides the computational expense

is much higher using ANN regression.

Figure 4 shows the one-one plot between the predicted and measured biochemical

concentrations using PLSR and ANN regression. The PLS regression obtains better results

in terms of Rcv and RMSECV.

Table 4 RCV and RMSECV (g kg-1) of ANN regression model with SNV pre-processing methods.

Target TP AA P/A

Hidden layer RCV RMSECV RCV RMSECV RCV RMSECV

9 0.51 12.81 0.52 1.37 0.51 17.11

Figure 4 Scatter plots of the reference versus predicted foliar biochemical contents (g kg-1) using PLS

and ANN regression (the solid line is the 1:1 line and the dashed line is the regression line between the

predicted and measured values) (A) Predicting TP using PLS regression (B) Predicting AA using PLS

regression (C) Predicting P/A using PLS regression (D) Predicting TP using ANN (E) Predicting AA

using ANN (F) Predicting P/A using ANN. Full-size DOI: 10.7717/peerj.4858/fig-4
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DISCUSSION
In the field of tea plantation management, this study accomplished two tasks: to

accurately classify tea plants into cultivars and to estimate the quality-related foliar

biochemicals of tea plants at near ground scale. Since few reports on classifying plants

into cultivars using remote sensing were found, this research seems to be the first to

demonstrate the feasibility of cultivar classification with hyperspectral data collected from

UAV platform.

In the prediction of foliar biochemical components, with our result it is safe to state

that prediction of the biochemical components of tea plants is feasible at near ground

scale. Compared with contemporary spectroscopy researches, however, our biochemical

estimation results are generally less accurate than those at leaf powder scale (R2 from

0.91 to 0.99) and foliage scale (R2 from 0.54 to 0.71) (Bian, 2010; Gong, Pu & Heald, 2002;

Dury & Turner, 2001). When upscaling to the near ground scale, further factors such as

leaf angle, canopy structure, soil background, and atmospheric scattering and absorption

weaken the SNR of spectral reflectance, as a result, the accuracy of the bio-chemical

parameter reported in our study is not as high as the studies focused at powder or leave

scale. However, with this sacrifice, for the first time, one can monitor the spatial

distribution pattern of TP and AA in a tea plantation.

The beta coefficients (b-coefficients) in PLS are often used to determine the importance

of spectral bands in PLS calibrations (Haaland & Thomas, 1988). A waveband is

considered significant if the corresponding b-coefficient exceed a threshold, for example

one standard deviation (±s). We calculated the prediction models repeatedly: 85 times for

each biochemical component. Wavebands that were identified as important more than

75 times (>88%) were regarded as the robust ones in this research. The important

wavelengths were centered near to 454, 490, 538, and 578 nm for the prediction of TP; 470,

482, and 522 nm for AA; and 482, 502, 522, and 534 nm for P/A. We found that the

wavebands from 522 to 578 nm played an important role in the three main predictions.

The wavelength range was identified as the most useful wavelengths for predicting the

chlorophyll a/b and the vital component nitrogen contents in other spectroscopy

researches (Blackburn, 1998; Mutanga, Skidmore & Prins, 2004; Penuelas et al., 1994).

Because nitrogen is also a major component of AA, when estimating free AA, some of the

influential bands are close to the nitrogen absorption peaks.

As we mentioned earlier, the UHD185 sensor uses an image fusion technique to

generate full resolution image cubes from hyperspectral data with resolution of 50 by

50 and RGB data with resolution of 1,000 by 1,000. This design makes assumptions

about the correlation of hyperspectral bands with nearby visible wavelengths at 450,

550, and 650nm. The first three principal components from PCA analysis and the

original high spatial resolution visible bands (450, 550, 650 nm) used for image fusion

are compared in terms of correlation coefficients. It is quite obvious that the second principle

component is highly correlated with the visible band at 650 nm, while the other two

components are poorly related with all visible bands (Table 5). Not so strictly speaking, the

second principle component can be seen as a proxy spectral band of red.
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However, before and after the image fusion, the first three principal components of

the two hyperspectral cubes can explain almost the same percentage (>99%) of the

total variation in the raw spectral data, despite the image fusion process enhances the

collinearity between spectra (Fig. 5). Therefore, if using more than two principal

components as independent variables, it seems that the image fusion process does not

have a significant impact on the effectiveness of PCA.

The research has important practical significance for tea quality evaluation and also

provides a reference for tea plantation management and precision agriculture. Further

researches can be performed to further explore the potential of hyperspectral images onboard

a UAV, such as by making use of the information on spatial auto correlation to improve the

accuracy of parameter estimation or by using images taken by UAV at different altitudes to

seek the best spatial scale to estimate the canopy biochemical parameters.

CONCLUSION
This study indicated that the classification of tea cultivars using the hyperspectral remote

sensing from UAV can achieve high accuracy. Although there is a strong statistical

significance between the sensory quality of tea and the canopy spectra, the potential to

map the taste-related chemical components in tea plantations from UAV platform,

however, needs further exploration to increase the accuracy.

Figure 5 The percentage of the variance explained by the first three principal components before

and after image fusion. Full-size DOI: 10.7717/peerj.4858/fig-5

Table 5 Correlation coefficient of components and visible bands.

PCA1 PCA2 PCA3

Red (650 nm) 0.21 0.97 0.03

Green (550 nm) 0.51 0.85 -0.05
Blue (450 nm) 0.42 0.57 0.48
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