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Detrimental effects of physical 
inactivity on neurogenesis
Trenton Lippert, Nate Watson, Xunming Ji1, Takao Yasuhara2, Isao Date2, 
Yuji Kaneko, Naoki Tajiri, Cesar V Borlongan

Abstract:
Patients diagnosed with neurological disorders exhibit a variety of physical and psychiatric symptoms, including 
muscle atrophy, general immobility, and depression. Patients who participate in physical rehabilitation at times 
show unexpected clinical improvement, which includes diminished depression and other stress‑related behaviors. 
Regenerative medicine has advanced two major stem cell‑based therapies for central nervous system (CNS) 
disorders, transplantation of exogenous stem cells, and enhancing the endogenous neurogenesis. The latter 
therapy utilizes a natural method of re‑innervating the injured brain, which may mend neurological impairments. In 
this study, we examine how inactivity‑induced atrophy, using the hindlimb suspension model, alters neurogenesis 
in rats. The hypothesis is that inactivity inhibits neurogenesis by decreasing circulation growth or trophic factors, 
such as vascular endothelial growth or neurotrophic factors. The restriction modifies neurogenesis and stem cell 
differentiation in the CNS, the stem cell microenvironment is examined by the trophic and growth factors, including 
stress‑related proteins. Despite growing evidence revealing the benefits of “increased” exercise on neurogenesis, 
the opposing theory involving “physical inactivity,” which simulates pathological states, continues to be neglected. 
This novel theory will allow us to explore the effects on neurogenesis by an intransigent stem cell microenvironment 
likely generated by inactivity. 5‑bromo‑2‑deoxyuridine labeling of proliferative cells, biochemical assays of serum, 
cerebrospinal fluid, and brain levels of trophic factors, growth factors, and stress‑related proteins are suggested 
identifiers of neurogenesis, while evaluation of spontaneous movements will give insight into the psychomotor 
effects of inactivity. Investigations devised to show how in vivo stimulation, or lack thereof, affects the stem cell 
microenvironment are necessary to establish treatment methods to boost neurogenesis in bedridden patients.
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A Call to Examine Stem Cell Effects with 
Physical Inactivity

Our encompassing hypothesis is absence 
of exercise impacts the neurogenic niche 

in the brain, thereby modifying the stem cell 
microenvironment. Until a short time ago, the 
nonregenerative ability of the adult injured 
brain was accepted as a scientific creed. Yet, 
growing evidence over the last decade reveals 
that neurons and astrocytes can be produced 
from isolated cells of the adult mammalian 
central nervous system  (CNS).[1] Shortly after, 
several laboratory studies investigated stem 
cell therapy for treating numerous diseases 
in the CNS, including stroke, traumatic brain 
injury, and neurodegenerative diseases, such 
as Parkinson’s disease and Alzheimer’s disease. 
Stem cell therapy, nonetheless, continues to be 
considered an experimental treatment. Countless 
patients continue to deteriorate because of these 

diseases, and the number of bedridden cases 
is rising. Bedridden patients’ muscles begin to 
atrophy, their everyday activities are reduced, 
and some patients begin to present a depressive 
mood. In addition, patients who are able to 
attend rehabilitation in the clinic occasionally 
show remarkable clinical improvements, along 
with reduced depression and a diminishment 
of other stress‑related behaviors. Unfortunately, 
there is a scarce amount of information available 
regarding the effects of disuse atrophy on 
the innate functions of the brain including 
neurogenesis.

Regenerative medicine is a new scientific field 
that has advanced stem cell therapy for the 
purpose of treating brain disorders, with a focus 
on either transplanting exogenous stem cells 
or amplifying endogenous stem cells through 
neurogenesis.[2‑13] Our envisioned research 
project is directed toward the latter method, 
which utilizes an inherent technique of mending 
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the injured brain and repairing the neurological deficiencies 
through physical rehabilitation. Within this study, we are 
interested in elucidating if inadequate exercise‑induced disuse 
atrophy, via the hindlimb suspension (HS) model, will alter 
neurogenesis in adult rats. The relationship between inadequate 
exercise and neurogenesis stands to be identified; compared 
to the inverse model of elevated exercise levels.[14] Specifically, 
exercise has been demonstrated to activate neurogenesis.[14‑16] 
Furthermore, various conditions, such as cerebral ischemia, 
have been shown to upregulate neurogenesis.[17] The theory of 
augmented neurogenesis achieved through exercise leads to 
the overarching concept of our thesis that inadequate exercise 
inhibits neurogenesis possibly by decreasing circulating 
factors, such as vascular endothelial growth factor (VEGF) or 
brain‑derived neurotrophic factor (BDNF). Laboratory studies 
are justified to unveil the underlying biological mechanism 
of neurogenesis. The comprehensive observations associated 
with these studies will allow the development of treatments 
designed to further neurogenesis in patients that demonstrate 
a lack of mobility.

Adaptation of Hindlimb Suspension to Assess Stem 
Cell Therapy

The hindlimb suspension model
The HS model was originally suggested for analyzing 
spaceflight‑associated phenomena,[18] due to the initial 
evidence which showed an inability for bone formation 
during spaceflight.[19] Following the initial use, the model has 
been subjected to different modifications,[20] along with bone 
formation studies,[21] analysis of muscle,[22] and vascular system 
of the hindlimbs[20]. Thus far, a majority of studies have been 
directed toward the peripheral response caused by the HS 
model.[23‑25] There has only been a handful of studies which use 
the HS model to measure changes in the CNS, with a majority 
targeting depression.[26,27] In 2005, Dupont et al. determined that 
neuronal growth factor (NGF) and BDNF mRNA and also NGF 
protein are upregulated in the somatosensory cortex of animals 
placed in the HS model.[28] These documented changes in 
neurotrophic factor levels reinforce the idea that “exercise,”[14,15] 
or lack of, controls neurotrophic factor expression. Even 
though there has been no analysis of HS model, figure 1, in 
CNS disorders, there has been evidence of forelimb disuse and 
overuse models in stroke and Parkinson’s disease.[29‑32] Forced 
disuse (using one‑sleeved casts) in stroke rats, but not overuse, 
of the afflicted forelimb during the early phases of recovery 

restricts the functional result of the healing.[33] Within rats that 
had somatosensory cortical lesions, involuntary overuse of the 
injured forelimb within the initial phases of repair was related 
to a decreased functional outcome from rehabilitation.[34] Led 
by Schallert and Jones, a group reported the aforementioned 
contrasting results and continued to explain that there are 
fundamental differences in the effects of forelimb disuse and 
overuse that may be resulting from the site‑specific anatomical 
changes  (e.g.,  subcortical in stroke versus cortical in the 
somatosensory cortical lesion model) that are produced by 
different injuries.[35] Subsequently, subcortical injury responded 
to the involuntary use of the affected forelimb, unlike the 
cortical injury. Involuntary use of the affected forelimb directly 
following unilateral 6‑hydroxydopamine  (6‑OHDA) lesions 
in rats diminished behavioral deficits and the involuntary 
forelimb exercises preceding the 6‑OHDA lesions boosted 
neurotrophic factor glial cell‑derived neurotrophic factor levels 
from glial cells guarding against cognitive deficiencies.[36,37] 
The recognized reduction of behavioral deficits within stroke 
and Parkinson’s disease animal models coincides with 
decreased neuroanatomical damage and fewer neurochemical 
deficiencies.[29‑32,38‑40] Through these studies, the practice of 
enforcing or denying a regimen of physical therapy reveals 
the effects on the CNS involving these diseased conditions. 
With these results, we can validate the effects that controlling 
physical therapy has on the CNS via the HS model.

Function of neurogenesis
Stroke can be the result of either a blockage located in an artery 
or a hemorrhage of a blood vessel within the cerebrovascular 
system.[41] Discreet brain areas shown to exhibit cell 
proliferation during adulthood are labeled as neurogenic 
niches.[41] Neurogenesis is defined as the proliferation and 
differentiation of neural stem cells into neurons.[41] The two 
main neurogenic niches are the sub‑granular zone  (SGZ) 
and sub‑ventricular zone  (SVZ) of the dentate gyrus  (DG), 
where neural stem cells accumulate and develop into 
mature neurons.[41] However, neurogenesis is not limited to 
these locations, and recent research has shown neurogenesis 
in the vicinity of the peri‑impact area, which can become an 
active sight of neural repair following a stroke.[41] The proposed 
mechanism of the HS model is to stimulate these neurogenesis 
niches to facilitate neural repair.[42] Following stroke, there is 
documented acute endogenous neurogenesis, allowing cells 
to proliferate in these neurogenic niches, thereafter facilitating 
the migration of neuroblasts toward the peri‑impact area.[41] 
Because endogenous neurogenesis by itself is not sufficient 
to sustain neural repair, the HS model aims to increase the 
proliferation of the neural stem cells within neurogenesis 
niches, as well as enhance the migration of neuroblasts to 
the peri‑impact area, altogether improving neural repair 
outcomes.

Neurogenesis, exercise, and growth factors
During innovative studies concerning exercise‑induced 
neurogenesis, conducted by van Praag et al.,[14,43] rats were allowed 
a running wheel for 3 h during their active period and it resulted 
in substantial increases of 5‑bromo‑2‑deoxyuridine  (BrdU) 
labeled newly developed cells within the SGZ.[44] This optional 
use of exercise correlated with a diminished threshold for 
long‑term potential (LTP) in the DG, concurrently increasing 
LTP, which conveys the theory of exercising improving 

Figure 1: The hindlimb suspension model is aimed to withhold the 
movement of posterior extremities for periods of time by suspending 

the rear limbs. This allows for observations to be drawn between 
experimental groups with various allotted times in the hindlimb 

suspension model
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memory.[43,45] Increased levels of VEGF[15,17] and BDNF[45‑48] 
following exercise‑induced neurogenesis give the appearance of 
these growth factors playing a role in exercise and neurogenesis. 
Within the SVZ and DG, the increase of neurotrophic factors 
reveals an association with the microenvironments of these 
familiar neurogenic sites. Due to the ability of diffusion 
for these growth factors, the effect of exercise‑induced 
neurogenesis is not limited to specific neurogenic sites. In 
a recent study,[49] the posterior hypothalamic area  (PHA) 
exhibited modified activity pertaining to in vitro and in vivo 
spontaneous firing rate of PHA was noticeably diminished 
from the rats that exercised in comparison to the nonexercising 
rats. To this end, exercise‑induced neurogenesis has been 
recognized in neurogenic sites, and potentially may stimulate 
neurogenesis‑like neuronal activity in other non‑neurogenic 
brain areas. In light of these results, rats with the ability to 
exercise have been shown to have neurogenesis in neurogenic 
site, but these results may also prompt similar neurogenesis 
effects in non‑neurogenic areas of the brain. The relationship 
between different levels of exercise and neurotrophic factor 
levels indicate that introducing a regimen of exercise should 
result in increased levels of neurotrophic factors as well as 
neurogenesis. Accompanying aging is a declining capability 
to exercise along with the advancement of several debilitating 
CNS diseases, which can provide a basis to investigate the 
effects of lack of exercise on neurotrophic factors along with 
neurogenesis. Although a lack of physical activity has been 
linked to a wide number of health issues  (e.g., osteoporosis, 
obesity, and cardiovascular diseases),[50‑53] there has not been an 
in‑depth look at the effect of reduced exercise on neurotrophic 
growth factors and neurogenesis.  In order to further the 
research involving the effects of lack of exercise and develop 
physical therapies to improve the behavioral deficits caused by 
an inability to exercise, making it vital to discern the essential 
growth factors that are available at sites of neurogenesis and 
how they are affected by the lack of exercise.  Physical activity 
inhibited by a debilitated state triggers motor and cognitive 
functions, which intensifies behavioral deficiencies within 
the debilitated state.[54,55] By creating a scope of research that 
evaluates only specific conditions surrounding physical 
inactivity, it would allow preliminary rehabilitation techniques 
to be developed to not only attempt to prevent early brain 
degeneration, but also promote healing from brain injuries.

Neurogenesis and stress proteins
Neurotrophic growth factors along with stress proteins are 
the fundamental indicators of the effects of physical inactivity, 
which allows the perception of both ends of the spectrum. In 
theory, a decline of neurotrophic growth factors and elevated 
stress proteins should be the result of physical inactivity and 
lead to decreased neurogenesis. Through trials of the HS 
model, it revealed that chronic stress positively correlates with 
physical inactivity.[27] Increased signs of depression along with 
chronic stress are related to increases in glucocorticoids and 
reductions of serotonin.[56‑58] Within the aging subjects, they 
displayed increased glucocorticoids and reduced insulin-like 
growth factor-1 (IGF-1).[59] Throughout the chronic stress and 
aging samples, both presented with reduced neurogenesis, 
drawing attention to the function of IGF‑1 in neurogenesis.[58] 
Using a similar reference, the samples examining depression 
and chronic stress revealed that BDNF and serotonin play a 
part in neuronal plasticity.[60‑63] Through these prior evaluations, 

the chronic stress often follows the use of the HS model should 
reveal key data that shed light on the function of stress on 
neurogenesis.

Neurological effects of deficient exercise
When patients with limited mobility are restricted in their 
regiment of physical activity, it hinders the ability of a full 
clinical recovery. Thorough research has presented evidence 
that consistent exercise encourages endogenous neurogenesis 
and may also have a preventive measure against CNS 
disorders. In the past, we have examined the effects of limited 
physical activity relating to neurogenesis using the HS model 
for a 2‑week stint. The HS model procedure involves lifting the 
rat by the tail, therefore raising their hindlimbs and transfers 
the weight to the forelimbs. The exercise and recovery time for 
the rats that were returned to a normal caging environment 
following HS were assessed as well. Rats received an injection 
of BrdU  (50  mg/kg, i.p.), which is a chemical used as a 
marker for proliferative cells, every 8 h for the remaining 
4  days of each treatment group. Immunohistochemistry 
results revealed that HS dramatically reduced the levels of 
BrdU/doublecortin  (Dcx) double‑positive cells within the 
SVZ as well as the DG zone of the brain. Although atrophy 
of the soleus muscle was reduced through exercise and a 
recovery period, the reduced levels of BrdU/Dcx‑positive 
cells did not restore to pre‑HS levels. Another similar group 
of rats was given an identical HS treatment along with the 
addition of an enzyme-linked immunosorbent assay (ELISA) 
of neurotrophic factors that were administered on the brain 
tissue, which was collected following the completion of HS 
treatment.  Furthermore, plasma from all animals treated 
was administered ELISA assays of neurotrophic factors. The 
results imply that the levels of natural BDNFs within the 
hippocampus as well as VEGF plasma levels were reduced 
by the treatment of the HS model. Through this experiment, it 
has been revealed that a reduced exercise regimen following 
brain injuries reduces neurogenesis due to lower levels of 
neurotrophic factors within the brain. By combining the HS 
model with the CNS disease models, the effects of various 
levels of physical activity on neurotrophic factors and 
neurogenesis can be evaluated further.

Rehabilitation and neurogenesis
Previous research studies have identified that reduced 
physical activity can lead to a variety of health complications 
(e.g., osteoporosis, obesity, and cardiovascular diseases).[50‑52] 
The functions of neurogenesis and neurotrophic factors have 
yet to be assessed under these circumstances of reduced 
exercise. When limitations reduce the amount of physical 
activity, a recovering patient can participate in; it creates 
atypical cognitive and motor functions, which can affect 
the patient once they resume a normal healthy state of 
life. When a recuperating patient lacks physical activity, it 
exacerbates the behavioral deficits.[54,55] Within clinics, the 
positive effects of increased exercise are noted, although 
some therapy regimens are not proven and have shown 
few results. Likewise, an 18‑day regimen of forced treadmill 
physical therapy showed no recovery progress involving 
memory and motor functions concerned with the upregulation 
of BDNF mRNA in CA1 and CA3, but not DG.[64] Similarly, 
the process of immobilizing a nonimpaired limb using a cast 
to further the use of the impaired limb following an injury 
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of the sensorimotor cortex, the restraint, in fact, diminishes 
co‑ordinated movement of both limbs.[35] However, there 
is substantial evidence that physical activity reduces the 
neuronal damage and motor function in rodent neurological 
disorder models.[65] The multitude of rehabilitation strategies 
that have various durations, regularity, and other intricacies 
along with the level of severity of the patient’s condition can 
have an effect on the data. These variables can lead to difficulty 
replicating for future research. The standard recovery phase of 
2–4 weeks and post‑HS physical therapy for 2 weeks reduced 
the inflammation of the soleus muscle, so it neared to a normal 
level. On the contrary, when the HS‑impaired neurogenesis 
was removed in the SVZ and DG, it was not improved 
by recovery and exercise, revealing the need for more 
development of the rehabilitation through physical therapy. 
Our study sheds light on the possible roles of neurotrophic 
factors that could help determine therapeutic candidates for 
reversing the physical inactivity due to behavioral deficits. 
Specifically, neurotrophic factors, BDNF and VEGF, show 
involvement with neurogenesis.

Conclusions

We have analyzed a novel paradigm  –  the HS model, to 
investigate the effects of physical inactivity on neurogenesis 
in the adult brain. The basis for concentrating on neurotrophic 
factors along with other stress proteins to monitor the effects 
of physical inactivity on neurogenesis is derived from the 
widely accepted theory of “increased exercise” or “enriched 
environment,” also from successful trials of the HS model 
in peripheral injury  (bone and muscle). Besides this being 
the 1st  time the HS model is incorporated into the CNS 
model (i.e., neurogenesis), the novel scientific development in 
this designed study is our aspiration to offer a more accurate 
approximation of aging and diseased brain states, where 
physical inactivity is a major characteristic. As a result, the 
physical inactivity paradigm will present new information 
regarding neurogenesis that would have been otherwise 
overlooked during the increased exercise and enriched 
environment models. Preclinical studies are a necessity to 
evaluate the possible modifications in neurogenesis within 
the models of immobilized rats. Furthermore, biomarkers 
for stem cell alterations have to be achieved in which they 
are essential to include growth factors and stress‑related 
proteins, anticipating the alterations in neurogenesis caused 
by physical inactivity.
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