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ABSTRACT

Proximal promoters are fundamental genomic
elements for gene expression. They vary in terms
of GC percentage, CpG abundance, presence of
TATA signal, evolutionary conservation, chromo-
somal spread of transcription start sites and
breadth of expression across cell types. These
properties are correlated, and it has been suggested
that there are two classes of promoters: one class
with high CpG, widely spread transcription start
sites and broad expression, and another with
TATA signals, narrow spread and restricted expres-
sion. However, it has been unclear why these
properties are correlated in this way. We
reexamined these features using the deep
FANTOM5 CAGE data from hundreds of cell types.
First, we point out subtle but important biases in
previous definitions of promoters and of expression
breadth. Second, we show that most promoters are
rather nonspecifically expressed across many cell
types. Third, promoters’ expression breadth is inde-
pendent of maximum expression level, and there-
fore correlates with average expression level.
Fourth, the data show a more complex picture
than two classes, with a network of direct and
indirect correlations among promoter properties.
By tentatively distinguishing the direct from the
indirect correlations, we reveal simple explanations
for them.

INTRODUCTION

CAGE data and the nature of transcription initiation

CAGE (Cap Analysis of Gene Expression) is a powerful
method for profiling transcription start sites (TSSs). In
this method, large numbers of short sequence tags are
obtained from the 50-ends of capped RNA molecules.
[short RNAs <100 bases are excluded by AMPure purifi-
cation (1)]. These tags are then aligned to a reference
genome sequence, and they indicate both the location of

TSSs and the expression level, i.e. the proportion of RNA
molecules starting at each site (2).
It is important to remember that CAGE tags are

samples from the RNA population. For example, in a
pineal gland, one TSS might have a true expression level
of 7.62 parts per million (ppm), meaning that 7.62 ppm of
all the capped RNAs in that pineal gland at that moment
were transcribed from that TSS. However, if we obtain
a million CAGE tags, then by chance, 6 (or 10) of
them might match that TSS. This relationship between
population and sample is illustrated in Figure 1.
In the classic textbook view, each gene has one

promoter (or a few alternative promoters), and each
promoter has one TSS at exactly one nucleotide. CAGE
and other data have revealed that the reality is much more
messy (Figure 1): transcription can initiate at many
alternative nucleotides (2–4).
In some promoters, transcription starts are spread over

a wide span of nucleotides, and in others, they are
concentrated in a few nucleotides. Previous studies have
suggested that TSS spread correlates with CpG islands
(CGIs), non–cell-specific expression and other properties
(2,5–8). In these studies, the raw CAGE data (e.g. upper
graph in Figure 1) was first ‘clustered’, with the idea that
each cluster corresponds to a promoter. Then, each
cluster’s degree of spread could be measured.
The problem is that there are different ways to cluster

CAGE tags, and it is not clear which is correct. In fact, it
may not even be falsifiable. For example, in Figure 1, it
could be argued that there are four tight clusters, or two
loose clusters. In other words, there is some arbitrariness
in defining discrete promoters, just as there is arbitrariness
in defining discrete mountains in a rugged landscape.
The simplest clustering method is ‘distance-based clus-

tering’, which just links CAGE start sites that are within
(say) 20 bases of each other. Previous studies have often
used ‘tag overlap clustering’, which links tags that overlap
after alignment to the genome. Because the tags in these
earlier studies had length 20 or 21, this is almost the same
as distance-based clustering. These approaches are intui-
tively flawed because they produce wider clusters when
there are more tags. For example, in Figure 1, they may
produce three clusters, even though the true expression of
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the left-hand double-peak has the same shape as the right-
hand double-peak. This introduces a spurious correlation
between expression level and TSS spread.
An alternative clustering method that avoids this flaw is

‘density-based clustering’ (9), and there are also methods
that consider the similarity of each TSS’s expression
profile across cell types (10,34). However, we lack
certainty that any of these clustering methods avoids all
subjectivity and bias. In the present study, we attempt to
measure TSS spread objectively, by not using any specific
clustering.

Expression specificity

Some promoters are mainly expressed in one or a few cell
types, and others are broadly expressed across many cell
types. It is often desired to quantify a promoter’s expres-
sion specificity using a single number. This is another case
where there are multiple ways to do it, and no one way is
obviously best (11).
For example, suppose we have 100 cell types:

. Promoter A is expressed at 100 ppm in one cell type
and 0 ppm in the others,

. B is expressed at 50 ppm in one and 20 ppm in the
others,

. C is expressed at 30 ppm in 50 cell types and 0 ppm in
the others and

. D is expressed at 10 ppm in all cell types.

Clearly A is the most and D the least specific, but
opinions can differ about B and C.

This problem of measuring diversity has long been faced
by ecologists and economists, who have proposed various
diversity indices, such as Shannon entropy, Simpson index
and Gini coefficient (11) (http://en.wikipedia.org/wiki/
Diversity_index). More recently, Shannon entropy has
been used to quantify gene expression specificity (12).

Another problem is that we need to estimate expression
specificity from limited samples of CAGE tags.
Unfortunately, Shannon entropy and other diversity
indices have a systematic bias: when calculated from
limited samples, the estimated specificity tends to be
higher than the true specificity (13–16).

A different problem is that it can be unclear whether
two cell types are different. For example, suppose we
measure a promoter’s expression in aortic smooth
muscle, bladder smooth muscle, bronchial smooth
muscle, prostate smooth muscle, hepatocytes and macro-
phages. If we treat all these cell types as equally different,
it seems we may get a biased picture of expression speci-
ficity. On the other hand, it has been suggested that
smooth muscle in particular (in addition to fibroblasts
and neurons) may represent an ‘uncalculated diversity of
cell types’ (17). All existing expression atlases, including
FANTOM5, are biased toward easily accessible cell types
(such as muscle) and lack others (such as rare embryonic
cell types).

CpG islands

Mammalian genomes are strongly depleted in CG di-
nucleotides (relative to the abundance of C and G), and
CGIs are short segments that are less depleted in CG. The
likely reason for CG depletion is that CG dinucleotides
are usually methylated on the cytosine, and
methylcytosine has a high mutation rate. CGIs often
overlap proximal promoters, and promoter CG methyla-
tion is associated with transcriptional silencing. This leads
to a simple explanation of CGIs: they reflect promoters
that are active and thus unmethylated in germ line cells.
(Recall that germ line cells are those whose DNA and
mutations can pass to offspring.) In particular, ‘the
pattern of CGIs in the genome should reflect a weighted
average of methylation patterns in the germ line for which
the weight is proportional to the time spent in the
particular methylation state’ (18).

This is a beautifully parsimonious explanation of CGIs,
which does not require ascribing any function to them:
they are merely passive consequences of methylation and
mutation patterns in germ cells. (Of course, this does not
rule out that CGIs may occasionally contribute motifs
that become exapted to function as, say, Sp1 binding
sites.)

An alternative theory is that CGIs are functional
elements. It has been suggested that they are nucleo-
some-destabilizing elements (19), and that they influence
chromatin modification state (20). If CGIs are functional,
they ought to experience evolutionary selection (19,20).
A recent study examined this question using mathematical
models of sequence evolution, concluding that
hypomethylation, and not selection, largely explains CGIs
(21). All in all, there is confusion regarding why CGIs exist.
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Figure 1. A fictional example of transcription initiation and CAGE
tags. The lower graph shows the true proportions, in parts per
million, of capped RNAs starting at each base on one strand of a
short chromosomal segment. The upper graph shows the number of
CAGE tags starting at each base. The horizontal gray lines show some
ways of clustering the CAGE tags into four clusters, two clusters or
three clusters.
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The FANTOM5 data

The FANTOM5 phase 1 data has CAGE tags from 517
human samples (after pooling replicates). These include
‘primary cells’ (e.g. amniotic membrane cells, salivary
acinar cells, tenocytes), ‘tissues’ (e.g. achilles tendon,
adrenal gland, amygdala) and ‘cell lines’ (e.g. glioma cell
line GI-1, teratocarcinoma cell line PA-1). The primary
cells will not perfectly represent pure in vivo cell types
because of the imperfect procedures used to obtain and
handle them. The tissues and cell lines are useful because
they include cell types and promoters missing from the
primary cell collection. In this study, we used all the
samples on an equal footing, except where stated
otherwise.

There are also 290 mouse samples, with more tissues
than the human samples, but fewer primary cells and
much fewer cell lines. Twelve human samples (all cell
lines) and no mouse samples are germ cells, according to
the FANTOM5 ontology.

This work is part of the FANTOM5 project. Data
downloads, genomic tools and copublished manuscripts
are summarized here http://fantom.gsc.riken.jp/5/.

MATERIALS AND METHODS

We conservatively chose to use only CAGE tags near
starts of RNAs in the RefSeq database (22,23). There
are many more CAGE clusters than RefSeq starts, but it
is unclear how many of them reflect promoters and how
many reflect something else (e.g. artifacts of the CAGE
method). There is a risk that RefSeq starts underrepresent
promoters with low and/or highly cell-specific expression.
Another danger is that RefSeq RNAs are based on RNA
sequence data, which is not necessarily more reliable than
CAGE and may suffer from the same artifacts. However,
to make progress, we provisionally accept that these
adequately represent true promoters.

Our first thought was to use CAGE tags starting up to
�d bases from each RefSeq start (d=50). The problem is
that RefSeq starts are sometimes slightly upstream of the
main CAGE peak (perhaps because RefSeq uses the most-
upstream transcript evidence). Therefore, we (i) found
locally maximal CAGE start sites that have more tags
than any other site up to �2d either side, (ii) discarded
locally maximal sites more than �d bases from a RefSeq
start and (iii) used CAGE tags starting up to �d bases
from each locally maximal site. This gave us a set of
17 039 ‘promoters’.

To ensure our conclusions are robust, we also tried
d=20, d=100 and d=200, as well as mouse data with
d=50 (Supplementary Figures S1–S8). The conclusions
do not change.

Sample ontology

To identify and pool replicate CAGE samples, we looked
for samples that have identical ‘is_a’ terms in the
FANTOM5 ontology.

Entropy

The expression level of promoter g in sample t is
wg,t ¼ ng,t=Nt, where ng,t is the number of CAGE tags in
that promoter and sample, and Nt is the number of
mapped tags in the sample. To calculate entropy with
pseudocounts, we used this alternative formula:
wg,t ¼ ðng,t+1Þ=ðNt+NgÞ, where Ng is the number of pro-
moters (17 039). The entropy of promoter g is
Hg ¼ �

P

t
ptjg log2ðptjgÞ, where ptjg ¼ wg,t=

P

t
wg,t.

Simulated promoters

Each simulated promoter is uniformly expressed in all cell
types, 50% of cell types (chosen at random per promoter),
25% of cell types or 10% of cell types. Each simulated
promoter has the same total tag count as the correspond-
ing real promoter. Each tag was randomly assigned to a
cell type, with probability proportional to the number of
mapped tags for that cell type.

CpG and %G+C

We counted CpGs and %G+C in the length-201 sequence
centered on each promoter.

TATA motifs

We found the highest-scoring TATA match within the
length-(2d+71) sequence centered on each promoter, on
the coding strand. The score for base x at position k in the
motif is log2½ðckx+1Þ=

P

y
ðcky+1Þ=0:25�, where ckx is the

count for base x at position k in JASPAR matrix
MA0108.2 (24).

Percentage identity versus mouse

We measured the percentage identity for the length-100
sequence immediately upstream of each promoter’s
central base. Percentage identity here means the percent-
age of human bases that are aligned to an identical mouse
base, in the hg19 vsMm9 axtNet files from the University
of California, Santa Cruz (UCSC) genome database (23).

Miscellaneous

We used RefSeq annotations from FANTOM5’s 1 January
2012 snapshot of the UCSC genome database. We
calculated correlation coefficients and their P-values using
the R function cor.test, and partial correlations using the
R package ppcor (25).

RESULTS

Sampling depth confounds expression specificity

We attempted to quantify each promoter’s expression
specificity, using entropy, which varies from 0 for pro-
moters expressed in a single sample to log2ð517Þ for pro-
moters with perfectly uniform expression (12). As
mentioned above, entropy estimates from limited
samples have a systematic bias, but it is not obvious
whether this will be significant or negligible in our case.
To examine this, we performed a simulation: we took the
3287 promoters with � 105 tags, randomly sampled 102,
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103 or 104 tags from each promoter and calculated the
entropies. The entropy tends to decrease as the sample
size decreases (Figure 2, left column). The difference
between 103 and 104 looks small, but it is large relative
to the tightness of the distribution.
The underlying problem is that, if we get a limited

sample of tags from a promoter with fairly uniform
expression across cell types, the expression looks more
spiky than it really is. One possible solution is to use
pseudocounts, i.e. add one to each promoter’s tag count
in each sample (12). In our simulation, pseudocounts did
not solve the problem: the entropy still tends to decrease
with decreasing sample size (Figure 2, middle column).
Again, the decrease in entropy looks small, but it is
large relative to the tightness of the distribution.
Moreover, with 102 tags there are more pseudocounts
than real counts, so the specificity estimates are not
believable.
An alternative measure of specificity is a promoter’s

maximum expression level in any sample divided by its
median expression level (34). This varies from one for
uniform expression, to large values for specific expression.
In our simulation, this also exhibits a bias: the apparent
specificity increases with decreasing sample size, even
though the real specificity does not change (Figure 2,
right column).
In summary, it is not straightforward to quantify ex-

pression specificity in a way that does not correlate
artifactually with sampling depth. This artifact matters
because tag count correlates with other properties, such
as average expression level and CpG content. So, for

example, it might introduce a spurious correlation
between CGIs and apparent breadth of expression
across cell types. An important message is that future
studies need to be careful when assessing expression spe-
cificity. In this study, we solve the problem by using the
entropy of a random sample of 100 tags from each
promoter, thus fixing the sampling depth to a constant.

TSS spread

We quantified each promoter’s TSS spread using two
standard measures of spread: interquartile range (IQR)
and standard deviation (SD). That is, for every tag in
the promoter, we noted its start coordinate, and calculated
the IQR and SD of these coordinates. IQR shows a
bimodal distribution (Figure 3A): there is one class of
promoters with narrow spread (IQR< 7, peaking around
2), and another with wide spread (IQR> 7, peaking
around 20). This agrees with previous findings (2,5). It is
a bit disturbing that SD does not show clear bimodality
(Figure 3B), but the distribution has a bulge at low SD
that could be interpreted as the narrow-TSS-spread class.

Expression specificity

Most promoters show broad expression across many cell
and tissue samples (Figure 3G). It might be objected that
this is due to the tissue samples being mixtures of cell
types. To address this concern, we also measured expres-
sion breadth using the ‘primary cell’ samples only. This
hardly changes the picture (Figure 4A), although there is
a small peak of promoters with highly cell-specific expres-
sion (entropy close to 0).

To calibrate our entropy scale, we show results for four
simulated data sets: promoters with uniform expression in
100, 50, 25 and 10% of the cell types (Figure 4B–E). This
confirms that most real promoters are broadly expressed
across many cell types, though not uniformly expressed in
all cells. For instance, the real promoters have a median
entropy of 5.41 (Figure 4A), similar to the simulated pro-
moters with uniform expression in 50% of cell types
(Figure 4C). Only 18% of the real promoters have
entropy <4 (similar to the simulated promoters with
uniform expression in 10% of cell types), which might
be considered somewhat specific. Promoters expressed in
just one cell type have entropy=0, and there are only 48
of those.

Curiously, 31 of the 48 cell-specific promoters are active
in hepatocytes. They include promoters for ADH1A
(alcohol dehydrogenase 1A), ALDOB (aldolase B), coagu-
lation factors F9 and F12 and several cytochrome P450
genes.

That most promoters are broadly expressed was also
shown using a richness index (34) (Supplementary
Note 3). Richness is simply the number of samples in
which we would expect to find one or more tags for a
given promoter, if that promoter had (say) 100 tags in
total (11). For most promoters, if we had 10 tags in
total, they would likely be distributed among 9 or 10 dif-
ferent samples. Thus, most promoters are expressed
almost as uniformly across samples as they could
possibly be.
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Other promoter properties

We also measured the following:

. %G+C.

. Observed/expected CpGs, i.e. the observed number of
CG dinucleotides divided by the number expected
from %G+C.

. Score of strongest TATA motif match. We found the
best match in every promoter, no matter how weak, so
this will be a mixture of real signals and random
matches.

. Percentage sequence identity versus mouse.

. Tag count.

. Average expression level (tags per million, tpm).

. Maximum expression level (tpm).

Their distributions are not too surprising (Figure 3).
CpG richness is bimodally distributed (18). Some pro-
moters have 0% identity versus mouse, either because
they are in large evolutionary insertions or deletions, or
because the UCSC genome alignments failed to align them.

Expression specificity is independent of maximum
expression level

It is not obvious how expression specificity relates to
expression level. One hypothesis is that promoters’ expres-
sion specificity should be independent of their average
expression level across cell types. This fits a picture
where each promoter has a default expression level,
which can be upregulated in some cell types and
downregulated in others. The more the regulation, the
greater is the specificity. In this case, we would ex-
pect specificity to correlate with maximum expression
level.
Another hypothesis is that promoters’ specificity should

be independent of their maximum expression level. This
fits a picture where each promoter has a maximum expres-
sion level, which is near-fully achieved in more or fewer
cell types. The fewer the cell types where the promoter is
near-fully on, the greater is the specificity. In this case, we
would expect specificity to anticorrelate with average
expression level.
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In fact, expression breadth (entropy of a sample of 100
tags) is almost independent of maximum expression level,
and correlates with average expression level (Figure 5).
This fits the second hypothesis.

Correlations

We examined pair-wise correlations among nine promoter
properties (Figure 5). The picture is complex: nearly all
pairs are significantly correlated or anticorrelated. Some

of these associations could be indirect. For example, there
is a correlation between expression breadth and %G+C,
but there are stronger correlations between each of these
and germ cell expression. So the correlation between ex-
pression breadth and %G+C might be merely an indirect
consequence of the stronger correlations.

We attempted to distinguish direct from indirect
associations, by discarding all associations that can poten-
tially be explained by stronger ones. This leads to an inter-
esting model that explains all the correlations (Figure 6).
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Strikingly, almost all of the putatively direct associations
have simple explanations:

Average tpm and germ cell average tpm
This is the strongest correlation in Figure 5. It is not
surprising because average tpm includes germ cell tpm.
(Therefore, average tpm must be � 12

517�germ cell
average tpm.)

Average tpm and maximum tpm
This is the second-strongest correlation. It is also not
surprising because average tpm must lie between
maximum tpm and (maximum tpm)/517. Accordingly,
the scatterplot lies in a diagonal band between these
bounds (Figure 5).

Germ cell expression and expression breadth
In fact, expression breadth correlates not only with germ
cell expression, it correlates with expression in any given
cell type. For example, it correlates with expression in
kidney (Txy ¼ 0:483) and lung (Txy ¼ 0:467) samples.
This can be explained by the following two observations:
(i) expression breadth is independent of maximum expres-
sion level; (ii) the greater a promoter’s breadth of expres-
sion, the more likely it is to be expressed near its maximum
level in any given cell type.

Observed/expected CpGs and %G+C
This correlation can be explained by the methylation/
mutation mechanism behind CpG depletion. This mechan-
ism strongly depletes CG dinucleotides, and weakly
depletes C and G mononucleotides (26). Because this mech-
anism acts more strongly in some promoters than others, it

causes a correlation between %G+C and observed/
expected CpGs. Another possible explanation is GC-
biased gene conversion during recombination. This phe-
nomenon increases %G+C in recombination-prone re-
gions of the genome (27), whereas DNA methylation and
transcriptional silencing suppress recombination (28).

Germ cell expression and observed/expected CpGs
This correlation fits the simple explanation of CGIs that
they are due to nonmethylation of active promoters in
germ line cells (29).

%G+C and TATA score
There are perhaps two reasons for this anticorrelation
because our TATA matches include both real signals
and random matches. The first is trivial: random TATA
matches are likely to be weaker in GC-rich sequences. The
second is less trivial: we suggest that real TATA signals
are evolutionarily favored in GC-poor sequences. The as-
sumption is that many promoters can function equally
well with either a real TATA signal, or alternative non-
TATA promoter signals. For such promoters, if muta-
tional patterns tend to enrich for A and T, evolution is
more likely to produce real TATA signals.

TSS spread and maximum tpm
TSS spread (IQR) is only weakly associated with the other
properties (Figure 5). The strongest association is
anticorrelation with maximum tpm. We cannot explain
this as easily as the other associations. One possible explan-
ation is that, when the maximum tpm is low, the CAGE
tags might include a proportionally larger amount of
diffuse ‘noise’.

Evolutionary conservation and maximum tpm
Evolutionary conservation (Percentage identity versus
mouse) is only weakly associated with the other properties
(Figure 5). The strongest correlation is with maximum
tpm. This can be explained by the plausible hypothesis
that promoters with higher maximum expression
tend (slightly) to be more important and conserved in
mammalian biology.

TSS spread and TATA score
TSS spread (IQR) is weakly anticorrelated with TATA
score (Figure 5). This makes sense because the TATA
motif is one of several signals that influence TSS
position (9).

Partial correlations

We have suggested that many of the associations in
Figure 5 are indirect, i.e. merely consequences of other
direct associations. This can be tested using partial correl-
ation. The partial correlation coefficient Txy:z indicates the
correlation between x and y after eliminating the influence
of z. Thus, if x and y are indirectly correlated via z, Txy:z

will be near-zero and nonsignificant.
Unfortunately, there is a practical limitation. If x and y

are indirectly correlated via z, but our measurements of z
are not perfect, then Txy:z can be highly significant (30).

TSS
spread

germ cell
expression

TATA
score

obs/exp
CpGs

% G+C

expression
breadth

% identity
versus
mouse

average
tpm

maximum
tpm

Figure 6. A model for correlations among several promoter properties.
Solid lines represent positive correlations and dashed lines represent
negative correlations. Line widths are proportional to correlation
strength.
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Table 1 shows some examples. It suggests that the
anticorrelation between TATA score and observed/
expected CpGs is mostly, but not entirely, explained by
the associations of both with %G+C. One interpretation
of this is that %G+C is an imperfect proxy for the
mutational patterns that influence TATA evolution.
On the other hand, the correlation between expression

breadth and observed/expected CpGs seems to be only
partly explained by the correlation of both with germ
cell expression (Table 1). However, our measurement of
germ cell expression is extremely imperfect because our
germ cell data comes entirely from cell lines. So it
remains possible that the correlation between expression
breadth and observed/expected CpGs is entirely indirect
via germ line activity. In future, it will be informative to
get CAGE data from various types of primary germ line
cell, given their importance for sequence evolution.

A closer look at TATA motifs

There is more than one way to find TATA motifs. So far,
we have looked for good matches to a TATA model
relative to a uniform background model. It is also
possible to use a per-promoter background model,
which uses the base frequencies of each promoter. With
a per-promoter background model, the score of a given
TATA sequence is reduced if the promoter is AT-rich
(because TATA matches are less surprising), and
increased if the promoter is AT-poor. So it is not
obvious whether our conclusions will be the same.

In fact, our conclusions do not change when we use a
per-promoter background model. The anticorrelation
between TATA score and %G+C is reduced, but not
greatly so (Figure 7). This anticorrelation is not surprising
because we observe an anticorrelation if we randomly
shuffle each promoter sequence (Figure 7).

Promoter classes

It has been suggested that there are two (or perhaps three)
classes of promoter: one class with wide TSS spread, often
CGIs, fast evolution and broad expression across cell
types; and another with narrow TSS spread, low CpG
content, often TATA signals, slow evolution and cell-re-
stricted expression (2,7,8). On one hand, the correlations
in Figure 5 do not suggest clear-cut classes. On the other
hand, Figure 3 suggests two CpG classes (high and low),
and two TSS spread classes (wide and narrow). So the
question arises of whether the high-CpG class is the
wide-spread class.

To visualize this intuitively, we show a mosaic plot re-
flecting the numbers of promoters in the four possible
combinations of high/low CpG with wide/narrow TSS
spread (Figure 8). This confirms there is a correlation,
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Figure 7. Correlation between TATA motif and G+C composition. (A)
Real promoters, uniform background model. (B) Real promoters, per-
promoter background model. (C) Shuffled promoters, uniform back-
ground model. (D) Shuffled promoters, per-promoter background
model. The inset numbers are Kendall rank-order correlation coeffi-
cients (Txy).
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Figure 8. Mosaic plot of high/low CpG versus high/low chromosomal
spread of TSSs. The area of each rectangle is proportional to the
number of promoters in each category.

Table 1. Partial correlations

x� y z Txy (p) Txy:z (p)

CpG�TATA %G+C –0.259 (0) –0.0619 (9.01e–34)
CpG�%G+C TATA 0.491 (0) 0.435 (0)
TATA�%G+C CpG –0.428 (0) –0.358 (0)
CpG�ExB GCE 0.366 (0) 0.208 (0)
CpG�GCE ExB 0.407 (0) 0.28 (0)
ExB�GCE CpG 0.493 (0) 0.404 (0)

Txy, Kendall rank-order correlation coefficient; Txy:z, Kendall partial
rank-order correlation coefficient; p, two-sided P-value; ExB, expres-
sion breadth (entropy of a random sample of 100 tags); GCE, germ cell
expression (average tpm). (The correlation between CpG and GCE
differs from that in Figure 5 because here we omitted 7.6% of pro-
moters with <100 tags.)
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but in our opinion the correlation is not strong enough to
say that the high-CpG class is the wide-spread class.

We still lack explanations for why CpG rate and TSS
spread are bimodal. Presumably, the CpG rates indicate
that many promoters are either usually (housekeeping) or
rarely active in the germ line, and fewer are active for
intermediate amounts of time.

DISCUSSION

The first message of this study is that definition of
promoters, and of their expression specificity, is partly
arbitrary, and there is a danger of artifactual correlations
with other promoter properties. The base reality is a
rugged landscape of transcription initiation at each
genomic nucleotide, and promoters—peaks in this land-
scape—are a partly subjective abstraction. Simple
promoter definitions based on nearness of CAGE tags
produce wider promoters in regions with more tags,
introducing an artifactual correlation between TSS
spread and expression level. This will further cause arti-
factual indirect correlations, e.g. between TSS spread and
CGIs.

The definition of expression specificity is also partly
arbitrary, and typical measures such as Shannon entropy
have a bias when applied to a sample of expression counts:
the measured specificity tends to decrease as the sample
size decreases. This causes a spurious anticorrelation
between expression level and specificity.

To understand the correlations among promoter
properties, the first step must be to avoid such biases.
This study has done so in crude but effective ways
(fixed promoter width and sample size). A frightening
point is that these biases were not obvious to us initially,
and similar biases probably exist undetected in other
genomic studies. This seems especially likely in large
projects with many contributors and diverse results.
Genomic research is perhaps especially prone to statistical
artifacts (30–32).

The second message of this study is that most promoters
have rather nonspecific (but not perfectly uniform) expres-
sion across many cell types. Some other studies have
emphasized that most promoters have nonuniform
regulated expression patterns (12,34). We do not contradict
that, but we do emphasize that most promoters have broad,
albeit not completely uniform, expression.

This result has implications for how cell types are
determined, and how they evolved. We can rule out the
idea that most cell types are determined by expressing
hundreds of unique genes. (Because there are hundreds
of human cell types (17), if most expressed hundreds of
unique genes, there would have to be tens of thousands of
cell-specific promoters, which is contradicted by Figure 4.)
Actually, this is obvious when we consider that humans
have many more cell types than some invertebrates, but
not many more genes. It implies that cell types are
determined by unique combinations of genes, or perhaps
by what genes they do not express.

It has been suggested that cell types evolved by three
main mechanisms: (i) segregation of functions, starting

from multifunctional ancestral cell types, with loss of
gene expression in descendant cells; (ii) divergence of func-
tions, often driven by gene duplication and divergence;
and (iii) acquisition of new functions, sometimes by
co-option of genes from other cell types (33). Our data
suggest that loss of gene expression and co-option may
have been the major mechanisms.
Our third message is that promoters’ expression breadth

is independent of their maximum expression level, and
therefore correlates with average expression level. This
may seem an obscure finding, but it is in fact fundamental,
and it is not obvious a priori. In evolutionary terms, it
suggests that genes became tissue-specific mainly by
being downregulated, rather than upregulated, in newly
evolving cell types.
Our fourth message is that the intriguing correlations

between basic properties of promoters can almost all be
explained simply. The heart of this explanation is that
expression breadth correlates with expression level in
any given class of cells, including germ cells, and germ
cell expression reduces the CpG mutation rate. In
addition, TATA motifs are naturally anticorrelated with
%G+C and CpGs, and they reduce TSS spread. Thus we
need not invoke any direct functional relationship between
CGIs and expression breadth or TSS spread.
These explanations are consistent with the parsimoni-

ous theory of CGIs, that they are nonfunctional conse-
quences of mutation patterns in the germ line. It has
been shown that CGI-containing sequences have a nucleo-
some-destabilizing function (19). However, correlation is
not necessarily causation. It is possible that some
unknown sequence property causes the nucleosome desta-
bilization, which might then lead to expression in germ
cells, causing CGI evolution.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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